
This is a repository copy of On-the-fly Translation and Execution of OCL-like Queries on
Simulink Models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/151034/

Version: Accepted Version

Proceedings Paper:
Sanchez Pina, Beatriz Angelica, Zolotas, Athanasios, Hoyos Rodriguez, Horacio et al. (2
more authors) (Accepted: 2019) On-the-fly Translation and Execution of OCL-like Queries
on Simulink Models. In: Proceedings of the ACM/IEEE 22th International Conference on
Model Driven Engineering Languages and Systems. IEEE (In Press)

https://doi.org/10.1109/MODELS.2019.000-1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

On-the-fly Translation and Execution of OCL-like

Queries on Simulink Models

Beatriz A. Sanchez∗, Athanasios Zolotas†, Horacio Hoyos Rodriguez‡, Dimitris S. Kolovos§ and Richard F. Paige∗∗

Department of Computer Science

University of York, York, United Kingdom

{basp500∗, thanos.zolotas†, dimitris.kolovos§, richard.paige∗∗}@york.ac.uk,

horacio.hoyos.rodriguez@ieee.org ‡, paigeri@mcmaster.ca∗∗

Abstract—MATLAB/Simulink is a tool for dynamic system
modelling. Model management languages such as OCL, ATL and
the languages of the Epsilon platform tend to focus on the Eclipse
Modelling Framework (EMF), a de facto standard for domain
specific modelling. As Simulink models are built on an entirely
different technical stack, the current solution to manipulate them
using such languages requires their transformation into an EMF-
compatible representation. This approach is expensive as the
cost of the transformation can be crippling for large models,
it requires the synchronisation of the native Simulink model
and its EMF counterpart, and the EMF-representation may be
an incomplete copy of the model. In this paper we propose
an alternative approach that uses the MATLAB API to bridge
Simulink models with existing model management languages
that relies on the “on-the-fly” translation of model management
language constructs into MATLAB commands. Our approach
eliminates the cost of the transformation and of the co-evolution
of the EMF-compatible representation while enabling full access
to the Simulink model details. We evaluate the performance
of both approaches using a set of model validation constraints
executed on a sample of the largest Simulink models available on
GitHub. Our evaluation suggests that the translation approach
can reduce the model validation time up to 80%.

Index Terms—Eclipse Modelling Framework, MATLAB
Simulink, Model Driven Engineering, Epsilon

I. INTRODUCTION

MATLAB/Simulink is a modelling tool for dynamic sys-

tems that is widely used across many industries such as

aerospace and automotive [1, 2, 3]. In model-driven engi-

neering processes, models are queried, transformed, modified,

and validated (amongst other activities). Many state-of-the-

art modelling management frameworks that support these

activities are tailored for models conforming to the Eclipse

Modelling Framework (EMF) [4], a de facto standard for

domain-specific modelling [5]. Modelling environments that

build atop EMF, such as Papyrus [6] and Capella [7], have

at their disposal the model management facilities from these

frameworks, but this is not the case for MATLAB/Simulink

models which are built on an entirely different technical stack.

Some attempts to manipulate Simulink models (e.g. [8,

9, 10]) have resulted in single-use solutions tailored for

specific model management activities. A more reusable ap-

proach is provided by the Massif project [11] which offers

a set of facilities that can transform Simulink models into

an EMF-compatible representation and vice-versa. While this

solution is more reusable, the cost of the Simulink-to-EMF

transformation can be crippling when large Simulink mod-

els are involved, as demonstrated later. Evidently, keeping

the EMF representation of continuously changing Simulink

models synchronised requires the repetitive execution of the

transformation procedures whenever the Simulink model or its

EMF-counterpart change. Moreover, the current EMF repre-

sentations of Simulink models are an incomplete copy of the

model as, for example, their meta-model does not consider

Stateflow blocks.

Given the industry adoption of MATLAB/Simulink, in this

paper we propose a new approach to bridge Simulink models

with existing model management languages, addressing these

issues by generating and executing MATLAB commands on-

the-fly from OCL-like queries. Our approach does not require

an upfront transformation which eliminates the round trip

engineering costs of the transformation and of the co-evolution

of the EMF-counterpart. Moreover, through the use of MAT-

LAB’s API to resolve model element types, their properties

and operations, our solution enables the manipulation of the

Simulink complete model.

In this work, we compare the performance of our ap-

proach against Massif’s upfront-transformation by measuring

the execution time of different stages of a validation process.

This process involves the execution of OCL-like invariants

that validate structural properties on a sample of the largest

available Simulink models on GitHub. Our evaluation indicates

that our approach is more appropriate for continuously chang-

ing models as it can significantly reduce the transformation

overhead by reducing the overall time of the validation process

by up-to 80%. In contrast, the transformation approach is more

convenient for signed-off models that need to be extensively

queried as the cost of a transformation is a one-off and the

validation overhead 2 orders of magnitude faster.

Our approach is implemented using the Epsilon [12] model

management framework; however, the approach and evaluation

results are relevant for other frameworks with similar model

connectivity facilities, such as ATL.

Roadmap. The rest of the paper is structured as follows.

Section II introduces the modelling technologies used in our

approach and evaluation. Section III presents the architec-

ture of our “live” approach to bridge MATLAB Simulink

models into Epsilon. Section IV evaluates the execution-

time performance of both bridge approaches on a sample

of large Simulink models. Section V discusses observations

and lessons learnt. Section VI summarizes related work.

Section VII concludes the paper and discusses future work.

II. BACKGROUND

We herby introduce the modelling technologies at the core

of this work: MATLAB/Simulink, Epsilon, EMF and Massif.

A. MATLAB/Simulink

MATLAB is a proprietary programming tool developed by

MathWorks that provides a variety of numerical computing

environments. Under its Simulink [13] package, MATLAB

provides a graphical block-based modelling framework that

enables the modelling, simulation and analysis of dynamic

systems and supports model management operations like code

generation and continuous model verification. Additionally, its

Stateflow [14] package adds decision logic to Simulink models

through state machines and flow charts that describe how

blocks react to input signals, events and time-based conditions.

Simulink Models. These are dynamic systems models

based on blocks that represent sub-systems and connections

between them. Figure 1 presents a sample Simulink model

(from [15]) that represents the behaviour of a car in motion

after the accelerator pedal is pressed . The model contains five

blocks from the Simulink library: a pulse generator, a gain, a

second-order integrator and two outports. The pulse generator

produces an input signal which simulates the accelerator pedal.

The gain simulates the multiplied effect in the car acceleration.

The second-order integrator enables the acquisition of the

position and speed of the car from the acceleration through its

outports. These Simulink blocks are inter connected at their

ports through directed lines called signals.

Fig. 1. Example MATLAB/Simulink model.

Simulink models are composed of elements of different

type e.g. Block, Line, Port, but also have a specific subtype.

For example, an element of type Port may have an inport

or outport subtype. In Figure 1 all highlighted elements

are of type Block and their subtypes, from left to right, are:

DiscretePulseGenerator, Gain, SecondOrderIntegrator and

Outport.

MATLAB/Simulink commands. In addition to MATLAB’s

graphical interface, Simulink models can be managed through

MATLAB/Simulink commands. Listing 1 shows sample func-

tions that enable model navigation and modification. MAT-

LAB/Simulink Models are file based and have to be loaded

before interacting with them. Line 1 shows how to load a

model named carModel. The find_system function in line 2

shows how to retrieve all model elements of a given type,

in this case: Block. Assuming carModel refers to the model

in Figure 1, this function would return five blocks, and by

changing the Block parameter for Line or Port it would return

the 4 signals or the 8 ports in the figure. Line 3 illustrates

a model query at subtype level which uses the BlockType

parameter to retrieve specific block elements. Alternatively the

parameters LineType or PortType can be used to collect line

or port subtype elements. Applied on the model of Figure 1,

the statement in line 3 would return the second block element.

In the same listing, line 4 shows how to create a new model

element, in this case, a Gain block. The first argument of

the add_block function is the path of the library block to

be used, in this case, a Gain block in the Simulink library,

while the second argument is the path where the new model

element should be created. This path starts with the name of

the model, ends with the new element’s name, and may contain

in between the name of intermediary SubSystem blocks that

will ultimately contain the new element. Lines 5 and 6 of

the listing show the use of getter and setter functions. Line 5

shows how to retrieve the block’s subtype property and line 6

how to set the block’s name.

1 load_system carModel

2 blocks=find_system('carModel','FindAll','on','

Type','Block')

3 gainBlocks=find_system('carModel','FindAll','on',

'BlockType','Gain')

4 gain=add_block('simulink/Math Operations/Gain','

carModel/SubSystem/Gain')

5 chartBlockType=get_param(gain,'BlockType')

6 set_param(gain,'Name','newName')

Listing 1. MATLAB/Simulink commands.

MATLAB Java API. MATLAB provides Application Pro-

gramming Interfaces (APIs) for languages like C++, Python,

C, Fortran and Java. The Java API [16] provides an interface

to MATLAB-specific types e.g. structural arrays, and to the

MATLAB engine where MATLAB functions can be evaluated.

Listing 2 shows sample methods provided by this API. Lines

1 and 5 show how to start and close the connection with

the MATLAB engine. Lines 2 and 3 evaluate MATLAB

commands on the engine that are passed as strings to the eval

method. Line 4 shows how to retrieve the value of a variable

from the engine, in this case the one declared in line 3.

1 MatlabEngine eng = MatlabEngine.startMatlab();

2 eng.eval("load_system model;");

3 eng.eval("m = getSimulinkBlockHandle('model')");

4 Object m = eng.getVariable("m");

5 eng.close();

Listing 2. MATLAB Java API

B. Epsilon

Epsilon is a model management framework that provides

a family of inter-operable languages and tools designed for

model management tasks like model navigation, validation and

transformation. The Epsilon Object Language (EOL) [17] is

an OCL-like model query and transformation language that

all other Epsilon languages are built on top of. Among these

model management languages we find the Epsilon Validation

Language (EVL) [18] —designed to evaluate invariants on

model elements, and the Epsilon Transformation Language

(ETL) [19] —targeted at model-to-model transformations.

Epsilon has a layered architecture. The Epsilon Model

Connectivity (EMC) middle-layer provides abstraction facil-

ities that allow models of arbitrary technologies (e.g. EMF,

XML) to be managed in a uniform manner in any of the

Epsilon languages. Concrete EMC implementations for dif-

ferent modelling technologies such as EMF, or PTC-Integrity

Modeler, are known as EMC drivers. Listing 3 shows an

EOL program that can be executed on models of arbitrary

modelling technologies due the EMC facilities. Basically, the

model (represented by M in the script1) would be injected to

the EOL interpreter at runtime by a specific EMC driver.

1 var element = M!Block.all.first();

2 var name = element.name;

3 element.evaluate();

4 var newElement = new M!Block;

5 newElement.name = "My Block";

Listing 3. Example EOL Script.

Provided the injected model contains elements of type

Block, line 1 of the previous listing shows how to retrieve all

elements of this type from the model using the all keyword

and later on how to select the first element of the collection

using the first() operation. The all keyword calls a method,

implemented by the EMC driver, which collects all elements

of the preceding type, in this case Block. In contrast, the

operation first() is provided by default by EOL and works

on collections. Other operations such as select() and collect

() are provided in EOL by default, along with other language

constructs like if statements and for loops. Line 1 additionally

shows how to declare and assign the value returned by first

() to the element variable. Line 2 shows how to retrieve

the value of the name property from the element variable

while line 3 shows how to invoke the evaluate() method

on the same block element. Further down, line 4 shows how

a new element of type Block is created and assigned to the

newElement variable while line 5 sets the name property on

this element.

The syntax that an EOL program uses to create and delete

model elements, to set and get their properties, or invoke their

methods does not depend on the EMC driver. The contribution

of an EMC driver to the script is the availability of model

element types, their properties and additional methods. For

Listing 3 to terminate successfully, the EMC driver used at

runtime to provide model M would need to manage model

elements of type Block with a name property and an evaluate

() method. Some of the modelling abstractions that EMC

drivers implement to achieve this are presented in the top

compartment of Figure 3 and will be discussed in section III.

Epsilon currently provides EMC drivers for a variety of

modelling technologies including EMF, XML [17] and Spread-

sheets [20]. Section III presents the architecture of the new

Simulink EMC driver which is the main contribution of this

work.

1The character “!” is used in Epsilon to separate the runtime name of the
model from the type or kind of the model element.

C. Eclipse Modelling Framework and Massif

The Eclipse Modelling Framework (EMF) was originally

designed to build Java applications based on domain-specific

model definitions. The meta-modelling language used to de-

scribe EMF models is Ecore. EMF offers several representa-

tions of Ecore models including Java code, XML Schema, and

UML diagrams, but its canonical format is the XML Metadata

Interchange (XMI).

Massif. The Massif [11] project enables the transformation

of MATLAB/Simulink models into an EMF-compatible repre-

sentation and vice-versa. The resulting EMF models conform

to an Ecore Simulink meta-model defined by the project.

Massif connects to MATLAB’s engine in order to parse or

write Simulink models. The project’s facilities that transform

a MATLAB/Simulink model into EMF or vice-versa result in

partial model-to-model transformations as they are limited to

Simulink elements and not Stateflow elements.

Massif’s Simulink Ecore meta-model. The Massif meta-

model considers any Simulink model element that can be

identified and named as a subtype of the SimulinkElement

class and their identity is stored as an element of class

SimulinkReference [21]. All subclasses of SimulinkElement

are presented in Figure 2. Direct subtypes of this class

are Block, Port, Connection and SimulinkModel. The

SimulinkModel class is the root model element which keeps

a reference to the file and version of the original MAT-

LAB/Simulink model. This class contains all the Block el-

ements along with their Port and Connection elements.

In Massif, the ports (Port) of a block are either of type

InPort or OutPort and they can be represented by a virtual

block of class PortBlock. Similarly, the lines that connect the

block ports are instances of the Connection class which can

be either SingleConnection or MultiConnection. Any block

whose MATLAB subtype can’t be found as a class in Massif

is considered as a generic Block. Some blocks have predefined

properties as attributes e.g. the tag property in the SubSystem

class, but most of their properties are dynamically added to

their parameters attribute which contains array of Property

elements, each with a specific name, value and type.

Some of the Massif meta-model constructs differ from

the way MATLAB manages Simulink models. The most

notable difference is that MATLAB/Simulink’s block library

offers 140 different Block subtypes (e.g. Gain, Sum, Unit-

Delay, etc.) while Massif only provides 11 concrete ones.

The MATLAB/Simulink subtype of blocks that do not fall

under the previous 11 subtypes can be retrieved from the

block’s parameters attribute, looking for the one with the

BlockType identifier. Similarly, there are 5 Port subclasses

in Massif’s meta-model out of the 6 subtypes found in the

MATLAB/Simulink library and, in particular, it is unclear how

the State class in Massif maps to one or both of the Reset

and ifaction port types in Simulink. A related inconsistency

happens when, after a transformation into EMF, the attributes

of some block subclasses can have redundant or unpopulated

values as they can also be found within the block’s parameters

Fig. 2. Simulink element types provided by Massif’s Simulink meta-model.

attribute e.g. the tag attribute in the SubSystem class which

can also be found in the parameters. Another difference is

that the Massif Connection class refers to MATLAB/Simulink

elements of type Line and subtype signal and that the

MultiConnection and SingleConnection subclasses in the

meta-model are used refer to the SegmentType property of

lines in MATLAB which can take the value of trunc or

branch, correspondingly. In addition, in MATLAB/Simulink

commands subtype capitalization is important e.g. input is

used to refer to a the port subtype as opposed to Input which

identifies a block subtype. In contrast, in Massif the InPort

and InPortBlock classes are used to refer to the port and

block elements, respectively. Finally, MATLAB also provides

data types such as Cell Arrays2 and Structure Arrays3 which

Massif stores as plain Strings.

From Simulink to EMF and vice-versa. Massif provides

four different ways to transform Simulink models into an

EMF-compatible representation. This process is known as the

import process. The import modes can affect performance of

the process as they differ in the way the MATLAB/Simulink

ModelReference blocks4 are resolved: The shallow mode does

not process the referenced model; the deep mode creates new

SimulinkModel elements for each ModelReference block; the

flattening model processes these blocks as SubSystem blocks;

and the referencing mode processes ModelReference blocks as

new EMF resources (once) and references them in the model.

The Massif export process consist on transforming

the Simulink EMF-compatible representation into a MAT-

LAB/Simulink file. This process can produce files with either

.slx or .mdl extension.

III. LIVE MATLAB/SIMULINK BRIDGE

In this section we introduce the architecture and implemen-

tation of an approach that directly bridges MATLAB/Simulink

models, including their MATLAB/Stateflow elements, through

the on-the-fly translation of model management constructs

into MATLAB commands. We choose the Epsilon model

management framework to implement and evaluate our ap-

proach based on the connectivity facilities that it offers, which

abstract-away the run-time model management constructs from

the concrete modelling technology, and for the variety of

model management languages in which the implementation

2Indexed data containers that can store any type of data.
3Groups of data in containers that store any type of data
4Blocks that represent a reference to another model

becomes available. Other model management frameworks with

similar connectivity facilities, such as ATL [22], could have

been used instead. We refer to our implementation as the

Simulink EMC driver, which is available under the Epsilon

project5. [12] and its architecture is illustrated at the bottom

compartment of Figure 3.

As discussed in subsection II-B, the Epsilon Model Con-

nectivity (EMC) layer enables the uniform navigation and

manipulation of models in any Epsilon model management

language regardless of the model’s underlying technology. Our

implementation of the Simulink EMC driver is able to man-

age “live” MATLAB/Simulink models because it generates

MATLAB commands executed on the model on-demand. To

achieve this, the Simulink EMC driver connects to MATLAB’s

engine via the MATLAB Java API. To illustrate the on-the-

fly translation approach, consider the EOL program below to

be injected a model managed by the Simulink EMC driver at

runtime.

Block.all.select(b|b.Name == 'MyBlock');

The Block type and its Name property would become available

to the script through the use of on-the-fly translation of type

and property getters into appropriate MATLAB commands.

In other words, to retrieve all the Block model elements (i.e.

Block.all), the following MATLAB command is submitted

to the MATLAB engine for evaluation after the ? placeholders

are replaced by the name of the model and the Block keyword,

in that order.

find_system(?, 'type', '?',...)

Then, the returned collection of block identifiers is internally

managed by the Simulink EMC driver as a collection of

SimulinkBlock instances, described in subsection III-A. By

default the EOL select operator that follows iterates over the

elements of the collection and filters by a condition but the

Simulink EMC driver is required in the condition iterator to

retrieve the Name property of a block. For that, the MATLAB

statement below is submitted to the MATLAB engine after

replacing the placeholder with block’s identifier.

get_param(?, 'Name')

5https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/plugins/org.
eclipse.epsilon.emc.simulink

Fig. 3. Epsilon Simulink EMC driver architecture

A. Model

The Simulink EMC driver considers a Simulink file

as a model. A model is managed as an instance of

the SimulinkModel class (see Figure 3). An instance of

SimulinkModel defines the behaviour of inherited methods

from the CachedModel and Model classes of the EMC layer,

which describe how the model will perform CRUD operations

on its owned model elements and the model itself.

The SimulinkModel class determines how to load and

dispose the Simulink model, before and after the execution of a

model management program e.g. validation, navigation. When

the model is loaded, the Simulink EMC driver establishes a

communication with the MATLAB engine.

B. Model Elements

The SimulinkModel manages elements that inherit from

the SimulinkModelElement class which can be either

SimulinkElement or StateflowBlock.

Instances of SimulinkElement can be further decomposed

into SimulinkBlock, SimulinkPort and SimulinkLine and

handle MATLAB/Simulink elements of type Block, Port and

Line, respectively. In Epsilon, the union of an element’s

super types and of its concrete type is referred to as the

element’s kinds. The Simulink EMC driver considers the

MATLAB/Simulink subtype as the model element concrete

type and considers both the MATLAB’s subtype and type

as the element’s kinds. For example, a MATLAB/Simulink

element of type Block and subtype Gain would be considered

by the Simulink EMC driver as a model element of type Gain

and of Gain and Block kinds.

MATLAB Simulink model elements provide different ways

to be identified (e.g. path, id, handle). The Simulink EMC

driver uses as identifier their handle property which is a non-

persistent session-based immutable identifier of type Double.

MATLAB queries return handles or paths, we chose handles

as the paths are sensitive to the containment location of

a model element and ids are only available to the latests

MATLAB versions.

Create. The SimulinkModel instance manages the creation

of block model elements. When the new reserved word is called

in an EOL script the method createInstance(type:String)

of the SimulinkModel (inherited from the Model class in the

EMC layer) is invoked. To create blocks, this method requests

the execution of the add_block MATLAB function, which

requires the path of the library block to use for instantiation.

Listing 4 shows the creation of Sum and SubSystem blocks in

EOL using their library block path. The use of the back-tick

(`) is required when a type identifier contains spaces. These

blocks are created at the top level of the Simulink Model but

can later be placed elsewhere by changing their parent.

1 var sum = new `simulink/Math Operations/Sum`;

2 var subsystem = new `simulink/Ports & Subsystems/

Subsystem`;

Listing 4. Model element creation

There is no equivalent add_port function in MATLAB to

create port model elements. In contrast, the add_line function

which creates lines, requires the source and target ports to be

connected. The Simulink EMC driver does not allow the direct

creation of lines through a statement such as new Line(); or

new signal();. Instead, it creates them through the use of

“linking” methods that may specify the source and/or target

ports to be connected. For example, provided a model with

the blocks in Figure 1 but no lines, these can be created with

the following EOL program:

pulse.link(gain);

gain.linkTo(integrator, 1);

integrator.linkFrom(outport1, 1);

integrator.linkFrom(outport2, 2);

Listing 5. Linking methods for block elements

Delete. When an EOL statement uses the delete re-

served word, as in Listing 6, the SimulinkModel in-

stance calls the method deleteElementInModel(element:

SimulinkModelElement) inherited from the Model class. This

method retrieves the model element identifier (i.e. its handle)

to request the evaluation of the delete_block or delete_line

MATLAB functions6.

1 delete sum;

2 delete subsystem;

Listing 6. Model element deletion

Read. Listing 7 illustrates different model element collec-

tion mechanisms in EOL, given a model M. The allContents

6There is no equivalent delete_port function

and all keywords invoke SimulinkModel methods that retrieve

model elements. These methods, inherited from the Model

class, request to the MATLAB API the evaluation of variations

of the find_system MATLAB function and their results are

mapped to lazy collections of SimulinkModelElement objects.

The all keyword (lines 1-3) triggers the execution of

the getAllOfKindFromModel(kind:String) method which as-

sumes the kind argument is either Block, Line or Port.

The submitted MATLAB command looks for elements of a

type e.g. find_system(model,'type','Port'). If the kind

argument is different to Block, Line or Port (lines 4-5),

then the SimulinkModel will look by MATLAB subtype.

The allContents() method in EOL (line 6) invokes the

allContentsFromModel() method which simply aggregates

results of collections by supertype (i.e. Block, Port, Line),

including Stateflow blocks.

1 var blocks = M!Block.all();

2 var lines = M!Line.all();

3 var ports = M!Port.all();

4 var sums = M!Sum.all();

5 var subsystems = M!SubSystem.all();

6 M.allContents();

Listing 7. Retrieval of model elements

Update. The SimulinkModel delegates to instances of

SimulinkPropertyGetter and SimulinkPropertySetter the

retrival and modification of model element properties. In

turn, this classes request the evaluation of the get_param or

set_param MATLAB functions when EOL getters and setters

are invoked. Lines 1 and 3 in Listing 8 are examples of EOL

property setters while lines 2, 4 and 5 are examples of EOL

property getters.

1 subsystem.name = "Controller";

2 var subsystemName = subsystem.name;

3 sum.description = "Sum block";

4 var sumDescription = sum.description;

5 var inportHandles = subsystem.LineHandles.Inport;

Listing 8. Get and set model element properties

In the particular case of line 5, the property LineHandles

returns a Structured Array, which is a MATLAB-specific type

that represents an array of key-value pairs. In MATLAB, their

values are retrieved using the getfield(element,property)

function. The Simulink EMC driver can identify these types

and navigates them as any other property. In the example, the

value of the Inport key is retrieved.

Methods. Our Simulink EMC driver provides helper

methods, such as the linking mechanisms in Listing 5, to

facilitate common model and model element operations. Other

methods such as getType(), getParent() and getChildren

() are also available. Nevertheless, MATLAB provides many

more functions for its Simulink and Stateflow model elements

that would be challenging to individually include in the EMC

driver. To deal with this, when an unknown method in EOL

is called on the model or its elements the following strategy

is applied.

Many MATLAB/Simulink API functions at model and

model element level have a common syntax which takes the

model element as first argument:

method_name(element, arg0, ..., argN)

while model element operations in EOL are executed as

instance methods using the following syntax:

element.methodName(arg0, ..., argN);

To enable the execution of these unknown MATLAB func-

tions, the EMC driver dynamically translates the method as a

MATLAB command and submits it to the MATLAB engine

for evaluation. For example, the EOL statements below

subsystem.find_mdlrefs();

subsystem.find_mdlrefs("AllLevels",true);

become the following MATLAB commands, where subsystem

represents the MATLAB identifier of the block:

find_mdlrefs(subsystem)

find_mdlrefs(subsystem,'AllLevels',true)

C. Stateflow

Our Simulink EMC driver can also manage Stateflow

model elements. MATLAB handles these blocks different

from Simulink elements. Figure 4 shows some Stateflow

model elements contained under a Simulink Chart block. The

figure contains two states named ON and OFF that represent

operating modes of a system, and one transition, named E1,

that goes from one state to the other. The arrow on the left is

not a transition.

In MATLAB, all Stateflow types are preceded by the

Stateflow keyword and a period. Our driver uses the same

convention to differentiate them from SimulinkElements.

MATLAB/Stateflow model elements need a parent to be

instantiated. For example, an element of type Stateflow.

State in MATLAB is created using the Stateflow.State(

chart) MATLAB statement, where chart is a reference to a

Stateflow.Chart element used as parent. In EOL this state

can be created with the following statement new `Stateflow

.State`(chart). In addition, the Simulink EMC driver can

delay the instantiation of Stateflow elements until the parent

is resolved. In other words, a state placeholder is created

when using the new `Stateflow.State` statement —with no

parent, and have its properties updated but only have the

state instantiatiated and updated in MATLAB when its parent

property is assigned.

In the Simulink EMC driver, Stateflow elements are man-

aged by the StateflowBlock class. Stateflow model elements

in MATLAB use a syntax closer to EOL to get and set

their properties. For example, the name of a Stateflow.

State element can be retrieved with the statement element.

Name and have its value set with element.Name = 'NewName'.

Assuming there is a chart variable of type Stateflow.Chart,

the elements in Figure 4 can be created with the following

EOL program:

Fig. 4. Example of MATLAB/Stateflow model elements

var on = new `Stateflow.State`;

on.Name = "ON";

on.parent = chart;

var off = new `Stateflow.State`(chart);

off.Name = "OFF";

var tOnOff = new `Stateflow.Transition`(chart);

tOnOff.Source = on;

tOnOff.Destination = off;

tOnOff.LabelString = "E1";

IV. EVALUATION

This section evaluates the execution-time performance of

two approaches to bridge MATLAB/Simulink models in a

model management framework. The first approach consist

in the use of the Simulink EMC driver to manage models

in the Epsilon model management framework. The second

approach consist on the use of Massif facilities to transform

Simulink models into an EMF-compatible representation. Ep-

silon provides an EMF EMC driver able to read and write

arbitrary EMF-based models which we use to manage the

those produced by Massif. In the following, we refer to the first

approach as live —since it manipulates the actual Simulink

model, and to the second one as Massif/EMF —as it uses

the Massif import facilities to produce their EMF-compatible

representation.

Epsilon supports model element caching through a

CachedModel abstraction that both the Simulink EMC driver

and the EMF EMC driver reuse. We evaluate both approaches

with these facilities enabled and disabled.

A. Experiment setup

In order to evaluate the model management of Simulink

models with Massif or the Simulink EMC driver, we compare

the execution-time performance of the validation process of

large Simulink models for each technology, which consists on

the execution of EVL invariants that validate the structural

properties of the model.

Validation process. EVL has a dedicated engine that con-

sumes an EVL validation script and any number of models

provided by EMC drivers of arbitrary modelling technology at

runtime. An example of an EVL script is shown in Listing 9.

This script contains an invariant (line 2) of type critique

and name BlockNameIsLowerCase that is validated against

all model elements of kind Block as specified by the context

reserved word in line 1. Invariants may be of type constraint

or critique depending on the severity level of their failure

i.e. a constraint produces errors while a critique produces

warnings. Line 3 shows the EOL statement that is executed

on each of the block model elements which verifies that the

name of the element is lowercase. The self reserved word

is a reference to the current model element the invariant is

acting on. If a given block fails the check statement, then

fix elements become available if present in the invariant

declaration. In the example, the fix in line 4 updates the

element name to lowercase as indicated in line 7 by the do

environment. The title of the fix (line 5) is just informative.

1 context Block {

2 critique BlockNameIsLowerCase {

3 check: self.Name == self.Name.toLowerCase()

4 fix {

5 title: "Name to lower case"

6 do {

7 self.Name = self.Name.toLowerCase();

8 }

9 }

10 }

11 }

Listing 9. Sample EVL script with invariant 9 from Table II

Before the EVL engine can execute the validation script,

the models involved must be loaded. When the EMF EMC

driver is used to process an EMF model, the loading stage

consist on the registration and resolution of the model and

meta-model resources and packages. When the Simulink EMC

driver is used to process a MATLAB/Simulink model file, the

driver establishes the connection with the MATLAB engine

and requests the model to be loaded in the engine. Once a

model is loaded by the corresponding EMC driver, then the

EVL engine can execute validations parsed from an EVL script

against the model. In the following we consider the model

loading and validation execution as two different stages of the

validation process. These are depicted in Figure 5 as stages 1

and 2. In addition, for the Massif/EMF approach we consider

the transformation of the model —from Simulink to EMF, as

an additional stage of the validation process which we call the

import stage (Stage 0 in Figure 5) after the Massif facilities

that enable this transformation.

Fig. 5. Validation setup with no upfront transformation.

The implementation of the EMC drivers and the structure

of the meta-model used in the EMF driver affect the way the

model is navigated in EOL-based programs. Consequently,

the EVL validation script cannot be reused as-is across ap-

proaches. To illustrate this, consider an EOL program that re-

trieves the PortDimension property of a block model element.

Using the Simulink EMC driver to inject the model at runtime,

the EOL statement below is able to retrieve this property.

block.PortDimension;

In contrast, when using the EMF driver with the Massif meta-

model, the statement needs to be adapted since the Block

class in the meta-model does not have a PortDimension

attribute but instead has a parameters attribute containing a set

of Property elements, one of them with the PortDimension

identifier. In this case, the EOL statement becomes:

block.parameters.selectOne(p | p.name == "

PortDimension").value;

We measure the execution-time performance of the different

stages of the validation process i.e. (0) Simulink-to-EMF

transformation, (1) model loading, and (2) model validation.

Notice that: Stage 0 is only applicable to the Massif/EMF

approach; Stage 1 is applicable to both approaches; and Stage

2 is applicable to both approaches with the caching facilities

of the EMC drivers enabled or disabled.

Each stage of the validation process was executed 20 times

with 5 warm-up iterations for each model. We used the Java

Microbenchmark Harness (JMH) [23] tool to run these exper-

iments on a quad core Intel Core i5-7200U CPU @ 2.5 GHz

with 16GB of RAM. The Java Virtual Machine (64-Bit) was

provided with up to 10GB of memory and ran Java 8 on JDK

1.8.0 152. All EMF-compatible models were generated using

the shallow mode of the Massif import facilities which does

not process external model references. The validation scripts

and the Simulink models that were used in our experiments

can be found in the examples of the Epsilon project7.

Validation scripts. Equivalent EVL scripts are used to

evaluate each approach. They are equivalent to the best of

our knowledge as they are using (a) equivalent EVL con-

texts which may vary in naming across approaches (e.g.

Inport vs. InPortBlock), (b) equivalent model element

navigations (e.g. self.parameters.selectOne(p|p.name ==

'PortDimensions').value) for the EMF EMC driver and

self.PortDimensions for the Simulink EMC driver), and (c)

equivalent way in which the constraint checks and guards are

prescribed. Each script consists of 9 invariants (see Table II)

inspired in model checks used by industrial partners but

also intended to exercise the model through typical query

language features [24] performed on signature model element

types [1]. In Table II the Kind column refers to query checks

inspired on well-formedness constraint categories used by the

Train Benchmark [24], and the Context column refers to the

EVL context, that is, the model element types on which the

invariant is executed. Stateflow blocks were not included in

the validation scripts as Massif does not support them.

The validation scripts for the live approaches used 96 lines

of code (LOC) and that for the Massif/EMF approach used

110 LOC. The body of the invariants was written in the same

amount of lines for both approaches (89 LOC) and the extra

lines were related to helper operations.

Model selection. We used BigQuery [25] to find a list of

Simulink files (*.slx) publicly available in GitHub that were

larger than 1MB. Out of the 70 models found, we selected

the first 7 models that could be translated into EMF in under

2 hours using Massif’s import facilities. Table I shows the

number of model elements of each type used in the validation.

The number of block elements on the models ranged from

8628 to 9536.

The selected models had dependencies to proprietary

Simulink libraries. For simplicity, we did not process any

libraries in any approach.

7https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples/org.
eclipse.epsilon.examples.emc.simulink.emf

Size Block Inport Outport Goto From SubSystem

1.112 8785 1373 1177 69 103 717
1.131 8628 1372 1167 62 93 740
1.133 8645 1372 1167 62 93 740
1.134 9536 1489 1269 38 57 861
1.135 8645 1372 1167 62 93 740
1.138 8651 1376 1177 62 93 745
1.141 8634 1374 1156 67 99 714

TABLE I
NUMBER OF ELEMENTS PER TYPE BY MODEL SIZE.

B. Results

All validation invariants were executed in the same number

of model elements for all approaches. Similarly, the results of

the validation reported the same number of failed constraints

on all approaches. The file size of the EMF models produced

by the import stage are displayed in Figure 6.

1.110 1.115 1.120 1.125 1.130 1.135 1.140
MATLAB File size (MB)

100

120

140

160

180

E
M

F
Fi

le
 s

iz
e

(M
B

)
Fig. 6. Size of the imported EMF models against the original MATLAB files.

Figure 7 shows the whole validation process execution-

time (in minutes) calculated using the average sum of each

stage for each approach with and without caching. Figure 8

shows the execution time of each stage of the model validation

process (in seconds and logarithmic scale) against the size of

the MATLAB model files (in MB): Sub-figure (a) displays the

duration distribution of Massif’s import task (Stage 0) which

transforms Simulink models into an EMF-compatible model.

Similarly, Sub-figure (b) displays the duration distribution

of the model loading task (Stage 1), required by both the

EMF and Simulink EMC drivers. Sub-figure (c) displays the

duration distribution of the model validation task (Stage 2) for

both approaches with and without caching.

1.110 1.115 1.120 1.125 1.130 1.135 1.140
MATLAB File size (MB)

0

10

20

30

40

50

60

70

80

90

Ti
m

e
(m

in
)

Massif Live Massif-Cached Live-Cached

Fig. 7. Total execution-time duration (log-scale) against MATLAB file size.
Note that Massif and Massif-Cached overlap.

Figure 8 shows that most of the performance overhead of the

Massif/EMF approach happens at the import stage while most

of the Simulink EMC driver overhead happens at the validation

stage. The import stage of the Massif/EMF approach took

Kind Context Description

1 PropertyCheck Goto TagVisibility property is local
2 NavigationAndFilter From There is a Goto block in scope with the name of the GotoTag property
3 PropertyCheck Inport/InPortBlock PortDimensions property should not be inherited (-1)
4 PropertyCheck Outport/OutPortBlock Description property is not null or empty
5 NavigationAndFilter SubSystem ForegroundColor property is green for all connected Inport blocks
6 TransitiveClosure SubSystem Subsystem is no more than three levels deep
7 VertexConnectivity SubSystem All outports are connected
8 LoopAbsence SubSystem No feedback. Outports do not connect to the same subsystem
9 PropertyCheck Block Block’s name is in lower case

TABLE II
EVALUATED INVARIANTS

1.110 1.115 1.120 1.125 1.130 1.135 1.140
(a) MATLAB File size (MB)

10
0

10
1

10
2

10
3

Ti
m

e
(s

) l
og

 s
ca

le

Stage = Import

Approach
Massif
Live
Massif-Cached
Live-Cached

1.110 1.115 1.120 1.125 1.130 1.135 1.140
(b) MATLAB File size (MB)

Stage = Loading

1.110 1.115 1.120 1.125 1.130 1.135 1.140
(c) MATLAB File size (MB)

Stage = Validation

Fig. 8. Execution-time duration in log-scale against MATLAB/Simulink model file size per stage of the validation process.

between 4,486 and 2,911s to finish. The Massif/EMF approach

achieved the loading stage in 2.95-3.63s while the Simulink

EMC driver achieved it in 15.5-16.5s. The live approach was

approximately 1 order of magnitude slower at the loading

stage. In the validation stage, the Massif/EMF approach took

between 22.4-28.9s while the Simulink EMC driver took

1,877-2,098s to complete. With caching facilities enabled in

both drivers, the Massif/EMF approach took 8.10-10.2s while

the Simulink EMC driver took 816-882s to finish. With and

without caching, the live approach was approximately 2 orders

of magnitude slower at the validation stage. The caching

facilities improved the performance in the validation stage by

54.4-72.0% in the Massif/EMF approach and 55.3-58.0% in

the live approach.

When we compare the overall performance, that is, the sum

of the average execution per stage of the different models,

we observe that the live approach improves the performance

of the Massif/EMF approach by taking 70.7-80.0% less time

when caching is enabled and by 32.6-53.2% with no caching.

C. Threats to Validity

Our evaluation only tested the performance of one model

management language (EVL). Moreover, the validation script

were limited to read-only operations.

The sample of models may not be significant but was

limited by the 2-hour cap imposed to the import stage. Our

experiments would benefit from more diverse models with a

broader range of sizes and more varied constraints.

V. OBSERVATIONS AND LESSONS LEARNED

This section summarises our observations and lessons

learned in the implementation of the Simulink EMC driver

and our experiments.

Performance. Model validation processes generally involve

several iterations of checking constraints and fixing errors,

unless the model is correct to start with. For this reason, we

consider the live approach more suitable for large models in

development as it improved the overall performance by 80%

in our experiments. In contrast, for large signed-off models

that need to be extensively queried, the Massif/EMF approach

is much suitable as the cost of the transformation to EMF is

paid once and the validations are faster and the Simulink EMC

driver differed by 2 orders of magnitude. The performance of

the Simulink EMC driver is likely influenced by the overhead

of calls to the MJ-API. To improve performance, operations

on collections of model elements could be optimised to submit

MATLAB/Simulink commands that execute bulk operations.

Meta-model fidelity. One of the findings of this work is that

the MATLAB’s API provides sufficiently fine-grained facilities

to support on-the-fly translation and execution of OCL-like

queries on Simulink models and their Stateflow components

and even provide support for MATLAB-specific data types.

We have discussed in subsection II-C how the Simulink Ecore

meta-model provided by Massif uses different names to refer

to MATLAB/Simulink model elements. In contrast, model

element types used in the Simulink EMC driver are closer

to those managed by the MATLAB command line interface.

In addition, our Simulink EMC driver provides support for

Stateflow elements. Moreover, the MATLAB specific data

types can be manipulated as such in the Simulink EMC driver

while in their EMF-counterpart they are managed as strings.

Model file size and model elements. In Figure 6 we

observe that the size of the EMF model produced by Massif is

much larger than the original MATLAB/Simulink (.slx) files.

This is partly due to .slx being a compressed file format. As

Table I shows, the size of the MATLAB/Simulink file is not

directly proportional to the number of Block8 elements in the

model. In contrast, the size of the EMF model file seems to be

related to the number of block elements, which would explain

the peak on the EMF file size with the MATLAB/Simulink

model with the largest number of block elements.

VI. RELATED WORK

It is often desirable to have a common framework to manage

models from heterogeneous modelling technologies. Examples

of those frameworks are traceability tools such as Capra [26]

and Yakindu [27], which need to be able to read models used

at different stages of de the development process in order to

create and manage traces among their model elements. Other

examples include model management frameworks such as Ep-

silon [12] and ATL [22], which offer a subset of task-specific

languages for model navigation, validation, model-to-model

or model-to-text transformations, etc. and which are able to

interact with a number of models of arbitrary underlying tech-

nologies. Similarly, Software-as-a-Service (SaaS) modelling

platforms are used to foster heterogeneous models and execute

model management scripts as a service. MDEForge [28] is an

example of a SaaS platform though it is currently limited to

ATL model-to-model transformations and EMF models [29].

When model management frameworks do not offer support

for a specific modelling technology such as Simulink, import

and export facilities can be used to translate the models into a

supported format. Possibly for protective reasons, proprietary

modelling tools don’t always offer exporting facilities into

open modelling formats such as XMI. MATLAB, in particular,

does not offer any export or import facilities for Simulink

Models with other open-source modelling formats. To solve

this feature gap, the open-source Massif project led the de-

velopment of import and export facilities between EMF and

Simulink models. Massif internally uses MATLAB’s command

line interface to parse the Simulink models and populate their

EMF representation and vice-versa.

The Open Services for Lifecycle Collaboration (OSLC) [30]

is an initiative that aims at simplifying the software tool inte-

gration problem among proprietary tools. Built atop the W3C

Resource Description Framework (RDF), Linked Data, and

the REST architecture, OSLC provides set of specifications

targeted at different aspects of application and product life

cycle management. Nevertheless, the comprehensiveness of

the information exposed by these services is at the discretion

of service provider. MATLAB does not officially provide an

OSLC interface for its Simulink models, although the Eclipse

8Inport, Outport, Goto, From and SubSystem are all subtypes of
Block

Lyo [31] project provides a Simulink OSLC adaptor [32] for

MATLAB version R2013b and also Massif [11] provides an

OSLC adaptor for their EMF-compatible representations [33].

Transformations from SysML to Simulink models (and

vice-versa) have motivated several research works such as

[8, 9, 10]. [8], [9] and [10] wrote model-to-text transforma-

tions with Acceleo [34] to produce MATLAB scripts that on

execution created the Simulink model. More specifically, [9]

generated several MATLAB scripts to populate different parts

of the Simulink model, [10] proposed the use of a UML

profile to annotate the SysML models before the MATLAB

code generation, and [8] suggested that to go back from

Simulink to SysML the creation of a MATLAB script to parse

Simulink models and produce an XML-based SysML model

description file. As the previous works are dealing with a

specific transformation (SysML to Simulink scripts) they are

not very reusable nor allow the actual management of Simulink

models. In this regard, the Massif project facilities brought the

possibility of managing an actual EMF-compatible Simulink

model representation in a broader range of model management

scenarios at the expense of having to co-manage both artefacts.

In contrast, our approach uses the modelling technology API

to translate high-level CRUD operations at model type level

on-demand in a similar fashion to other Epsilon bridges such

as [20, 35].

VII. CONCLUSIONS AND FUTURE WORK

We have proposed an approach to bridge

MATLAB/Simulink models with the Epsilon model

management framework that uses on-the-fly translation

of on-demand model management constructs into MATLAB

commands. Our approach eliminates the need for a

transformation into an EMF-compatible representation

and for the co-evolution of this EMF-counterpart that current

solutions require, and enables complete Simulink model

management including Stateflow components. We have

evaluated our bridge against an approach that requires the

Simulink model upfront transformation into EMF using

Massif facilities. Our experiments measured the execution

time performance of a model validation process performed

on a sample of the largest publicly available Simulink models

in GitHub (up to 1.141 MB and 9536 blocks) using both

approaches. Our evaluation results support the claim that

the transformation of large Simulink models into an EMF-

compatible representation can be very expensive and shows

that our bridge can reduce the effect of the transformation in

the time required for the validation process by up to 80%.

Future Work. We plan to extend the Simulink EMC driver

to support MATLAB toolboxes such as the Simulink Require-

ments. In addition, the model element collection and selection

operations could be optimised through parallelisation, pagi-

nation and more efficient MATLAB queries. The evaluation

can be extended to include models from a broader size range,

the application of validation fixes, the inclusion of Stateflow

elements and the performance of the EMF-to-Simulink trans-

formation when EMF models constantly change.

ACKNOWLEDGMENTS

The work in this paper was partially supported by Innovate UK and the
UK aerospace industry through the SECT-AIR project; by the Engineering
and Physical Sciences Research Council (EPSRC) through the National
Productivity Investment Fund (NPIF) in partnership with Rolls-Royce under
Grant No.: EP/R512230/1; and by the Mexican National Council for Science
and Technology (CONACyT) under Grant No.: 602430/472773.

REFERENCES

[1] M. Bender, K. Laurin, M. Lawford, V. Pantelic, A. Korobkine, J. Ong,
B. Mackenzie, M. Bialy, and S. Postma, “Signature required: Making
Simulink data flow and interfaces explicit,” Science of Computer Pro-

gramming, vol. 113, pp. 29–50, 2015.
[2] V. Pantelic, S. Postma, M. Lawford, A. Korobkine, B. Mackenzie,

J. Ong, and M. Bender, “A Toolset for Simulink - Improving Software
Engineering Practices in Development with Simulink,” Proceedings of

the 3rd International Conference on Model-Driven Engineering and

Software Development, pp. 50–61, 2015.
[3] V. Pantelic, S. Postma, M. Lawford, M. Jaskolka, B. Mackenzie,

A. Korobkine, M. Bender, J. Ong, G. Marks, and A. Wassyng, “Software
engineering practices and Simulink: bridging the gap,” International

Journal on Software Tools for Technology Transfer, vol. 20, no. 1, pp.
95–117, 2018.

[4] The Eclipse Foundation, “Eclipse Modeling Framework.” [Online].
Available: http://www.eclipse.org/emf

[5] D. S. Kolovos, A. Garcı́a-Domı́nguez, L. M. Rose, and R. F. Paige,
“Eugenia: towards disciplined and automated development of GMF-
based graphical model editors,” Software and Systems Modeling, vol. 16,
no. 1, pp. 229–255, 2017.

[6] The Eclipse Foundation, “Papyrus.” [Online]. Available: https://www.
eclipse.org/papyrus/

[7] PolarSys, “Capella.” [Online]. Available: http://www.polarsys.org/
capella/

[8] A. Sindico, M. Di Natale, and G. Panci, “Integrating SysML with
Simulink using open-source model transformations,” SIMULTECH 2011

- Proceedings of 1st International Conference on Simulation and Mod-

eling Methodologies, Technologies and Applications, pp. 45–56, 2011.
[9] M. D. Natale and F. Chirico, “An MDA Approach for the Generation of

Communication Adapters Integrating SW and FW Components from
Simulink,” Model-Driven Engineering Languages and Systems, vol.
8767, pp. 353–369, 2014.

[10] B. Chabibi, A. Douche, A. Anwar, and M. Nassar, “Integrating SysML
with simulation environments (Simulink) by model transformation ap-
proach,” Proceedings - 25th IEEE International Conference on Enabling

Technologies: Infrastructure for Collaborative Enterprises, WETICE

2016, pp. 148–150, 2016.
[11] Viatra, “Massif: MATLAB Simulink Integration Framework for

Eclipse.” [Online]. Available: https://github.com/viatra/massif
[12] The Eclipse Foundation, “The Epsilon Project.” [Online]. Available:

https://www.eclipse.org/epsilon/
[13] MathWorks, “MATLAB Simulink.” [Online]. Available: https://www.

mathworks.com/products/simulink.html
[14] Mathworks, “MATLAB Stateflow.” [Online]. Available: https://uk.

mathworks.com/products/stateflow.html
[15] MATLAB & Simulink, “Create Simple Model.” [Online]. Available:

https://uk.mathworks.com/help/simulink/gs/create-a-simple-model.html
[16] Mathworks, “MATLAB Java Engine API Summary.” [On-

line]. Available: https://uk.mathworks.com/help/matlab/matlab external/
java-api-summary.html

[17] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The Epsilon Object
Language (EOL),” Lecture Notes in Computer Science, vol. 4066 LNCS,
pp. 128–142, 2006.

[18] D. S. Kolovos, R. F. Paige, and F. A. Polack, “On the evolution of OCL
for capturing structural constraints in modelling languages,” Lecture

Notes in Computer Science, vol. 5115 LNCS, pp. 204–218, 2009.
[19] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon transformation

language,” Lecture Notes in Computer Science, vol. 5063 LNCS, pp. 46–
60, 2008.

[20] M. Francis, D. S. Kolovos, N. Matragkas, and R. F. Paige, “Adding
spreadsheets to the MDE toolkit,” in Lecture Notes in Computer Science,
vol. 8107 LNCS, 2013, pp. 35–51.

[21] Massif, “Massif Simulink Ecore Documentation,” Tech. Rep.,
2015. [Online]. Available: https://github.com/viatra/massif/wiki/pdf/
massif-simulink-ecore-doc.pdf

[22] The Eclipse Foundation, “The ATLAS Transformation Language
Project.” [Online]. Available: https://www.eclipse.org/atl/

[23] OpenJDK, “Java Microbenchmark Harness.” [Online]. Available:
https://openjdk.java.net/projects/code-tools/jmh/

[24] G. Szárnyas, B. Izsó, I. Ráth, and D. Varró, “The Train Benchmark:
cross-technology performance evaluation of continuous model queries,”
Software & Systems Modeling, pp. 1–29, jan 2017.

[25] Google, “BigQuery.” [Online]. Available: https://bigquery.cloud.google.
com/

[26] S. Maro and J.-P. Steghofer, “Capra: A Configurable and Extendable
Traceability Management Tool,” in 2016 IEEE 24th International Re-

quirements Engineering Conference (RE). IEEE, sep 2016, pp. 407–
408.

[27] itemis AG, “Yakindu Traceability.” [Online]. Available: https://www.
itemis.com/en/yakindu/traceability/

[28] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino,
and A. Pierantonio, “MDEForge: An extensible Web-based modeling
platform,” CEUR Workshop Proceedings, vol. 1242, no. 619583, pp.
66–75, 2014.

[29] J. Di Rocco, D. Di Ruscio, A. Pierantonio, J. S. Cuadrado, J. De Lara,
and E. Guerra, “Using ATL transformation services in the MDEForge
collaborative modeling platform,” Lecture Notes in Computer Science,
vol. 9765, pp. 70–78, 2016.

[30] “Open Services for Lifecycle Collaboration (OSLC).” [Online].
Available: http://open-services.net/

[31] The Eclipse Foundation, “The Lyo Project.” [Online]. Available:
https://www.eclipse.org/lyo/

[32] The Eclipse Foundation, “Lyo Simulink Adapter.” [Online]. Available:
https://wiki.eclipse.org/Lyo/Simulink

[33] A. Horvath, I. Rath, and R. Rizzi Starr, “Massif - the love
child of Matlab Simulink and Eclipse — EclipseCon NA 2015,”
2015. [Online]. Available: http://www.eclipsecon.org/na2015/session/
massif-love-child-matlab-simulink-and-eclipse.html

[34] The Eclipse Foundation, “The Acceleo Project.” [Online]. Available:
https://www.eclipse.org/acceleo/

[35] A. Zolotas, H. H. Rodriguez, D. S. Kolovos, R. F. Paige, and S. Hutches-
son, “Bridging Proprietary Modelling and Open-Source Model Manage-
ment Tools: The Case of PTC Integrity Modeller and Epsilon,” in 2017

ACM/IEEE 20th International Conference on Model Driven Engineering

Languages and Systems (MODELS). IEEE, sep 2017, pp. 237–247.

	I Introduction
	II Background
	II-A MATLAB/Simulink
	II-B Epsilon
	II-C Eclipse Modelling Framework and Massif

	III Live MATLAB/Simulink bridge
	III-A Model
	III-B Model Elements
	III-C Stateflow

	IV Evaluation
	IV-A Experiment setup
	IV-B Results
	IV-C Threats to Validity

	V Observations and Lessons Learned
	VI Related Work
	VII Conclusions and Future Work
	Acknowledgment

