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Abstract 28 

Diaphragm dysfunction accompanies cardiopulmonary disease and impaired oxygen delivery. 29 

Vascular endothelial growth factor (VEGF) regulates oxygen delivery through angiogenesis, 30 

capillary maintenance, and contraction-induced perfusion. We hypothesized that myofiber-31 

specific VEGF deficiency contributes to diaphragm weakness and fatigability. Diaphragm protein 32 

expression, capillarity and fiber morphology, mitochondrial respiration and hydrogen peroxide 33 

(H2O2) generation, and contractile function were compared between adult mice with conditional 34 

gene ablation of skeletal myofiber VEGF (SkmVEGF-/-; n=12) and littermate controls (n=13). 35 

Diaphragm VEGF protein was ~50 % lower in SkmVEGF-/- than littermate controls (1.45±0.65 vs. 36 

3.04±1.41 pg/total protein; P=0.001). This was accompanied by an ~15% impairment in maximal 37 

isometric specific force (F[1,23] = 15.01, P=0.001) and a trend for improved fatigue resistance 38 

(P=0.053). Mean fiber cross-sectional area and type I fiber cross-sectional area were lower in 39 

SkmVEGF-/- by ~40 % and ~25% (P<0.05). Capillary-to-fiber ratio was also lower in SkmVEGF-/- 40 

by ~40% (P<0.05), thus capillary density was not different. Sarcomeric actin expression was 41 

~30% lower in SkmVEGF-/- (P<0.05), while myosin heavy chain and MAFbx were similar 42 

(measured via immunoblot). Mitochondrial respiration, citrate synthase activity, PGC-1Į, and HIF-43 

1Į were not different in SkmVEGF-/- (P>0.05). However mitochondrial-derived reactive oxygen 44 

species (ROS) flux was lower in SkmVEGF-/- (P=0.0003). In conclusion, myofiber-specific VEGF 45 

gene deletion resulted in a lower capillary-to-fiber ratio, type I fiber atrophy, actin loss, and 46 

contractile dysfunction in the diaphragm. In contrast, mitochondrial respiratory function was 47 

preserved alongside lower ROS generation, which may play a compensatory role to preserve 48 

fatigue resistance in the diaphragm.   49 

 50 

Abstract word count: 244 (250 max). 51 

  52 
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 53 

New and Noteworthy (75 words max). 54 

Diaphragm weakness is a hallmark of diseases where oxygen delivery is compromised. Vascular 55 

endothelial growth factor (VEGF) modulates muscle perfusion, however it remains unclear 56 

whether VEGF deficiency contributes to the onset of diaphragm dysfunction.  57 

 58 

Conditional skeletal myofiber VEGF gene ablation impaired diaphragm contractile function and 59 

resulted in type I fiber atrophy, a lower number of capillaries per fiber, and contractile protein 60 

content. Mitochondrial function was similar and ROS flux was lower. Diaphragm VEGF deficiency 61 

may contribute to the onset of respiratory muscle weakness.   62 

  63 
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Introduction 64 

Respiratory muscle weakness develops in many clinical conditions, such as acute critical illness, 65 

chronic cardiopulmonary disorders, and in aging (23). In particular, impairments to the main 66 

muscle of respiration, the diaphragm, contributes substantially to pulmonary complications and 67 

poor clinical outcomes in patients (18, 33). However, the mechanisms that induce diaphragm 68 

weakness and effective rescue treatments remain poorly resolved. Most clinical disorders 69 

associated with diaphragm dysfunction are characterized by abnormal microvasculature and O2 70 

delivery (49) (e.g., critical illness, chronic heart failure, chronic obstructive pulmonary disease; 71 

COPD). Abnormalities in the O2 transport system may be a key mechanism for triggering the 72 

onset of diaphragm weakness (23). Vascular endothelial growth factor (VEGF) is a 73 

transmembrane glycoprotein that is requisite for blood vessel development and maintenance in 74 

all mammalian organs.  VEGF is a family of 5 growth factors (VEGF-A, VEGF-B, VEGF-C, VEGF-75 

D, PGF) that have various roles during embryonic/adult tissue development and maintenance. 76 

However, VEGF-A (referred hereafter as VEGF) is the most predominant form in the majority of 77 

tissues/organs in adults. In addition to signal transduction for angiogenesis, VEGF is critical for 78 

stem cell recruitment, maintenance of vulnerable barriers (i.e. lung, nephron and kidney cells), 79 

and protection of neural tissue (10, 51).  80 

 81 

VEGF plays a critical role in locomotor skeletal muscle structure and function and these variables 82 

impact whole-organism functions, such as exercise tolerance (26, 50). Further, skeletal muscle 83 

remodeling following exercise training is highly dependent on VEGF being properly expressed in 84 

a variety of tissues, including skeletal myofibers (16, 25). VEGF is down-regulated in leg muscle 85 

samples taken from patients with diseases characterized by abnormalities in O2 supply, such as 86 

in COPD (5). In contrast, the role of VEGF expression in the diaphragm remains poorly 87 

characterized and whether low VEGF contributes to diaphragm contractile dysfunction is 88 

unknown. Interestingly, in rats undergoing mechanical ventilation where the diaphragm 89 
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undergoes arrest to induce severe fiber weakness, VEGF is reduced by around two-fold (11, 17). 90 

However in conditions with high mechanical respiratory loading, such as COPD (2) or under 91 

hypoxic conditions (46), VEGF mRNA expression in the diaphragm is elevated. Thus, it seems 92 

that in conditions characterized by diaphragm disuse such as in critical illness, a reduction in 93 

VEGF expression may contribute towards respiratory muscle weakness. The mechanisms that 94 

underpin diaphragm dysfunction have been suggested to include fiber atrophy (due to an 95 

imbalance in protein synthesis/degradation), elevated reactive oxygen species (ROS), an 96 

oxidative to glycolytic fiber type transition, and mitochondrial dysfunction (23, 41).  97 

 98 

Based upon the importance of VEGF in locomotor skeletal muscle during adaptation to exercise 99 

training and various pathologies, we aimed to measure whether VEGF deficiency modulates 100 

diaphragm contractile function, capillarity, fiber structure, and mitochondrial bioenergetics. Given 101 

that diaphragm tissue demonstrates a high degree of cellular abnormalities in a variety of 102 

diseases (6, 8, 9, 31, 32), we hypothesized that low myofiber VEGF impairs diaphragm contractile 103 

function and is accompanied by fiber remodeling and mitochondrial functional deficits including 104 

capillary regression, fiber atrophy, shifts from oxidative to glycolytic fiber types, and reduced 105 

maximal mitochondrial oxygen flux with increased ROS generation.  106 

  107 
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Materials and Methods 108 

Animals and Study Design 109 

We measured diaphragm biochemistry, structure, and contractile function in adult mice with 110 

conditional deletion of the VEGF-A gene in skeletal myofibers (SkmVEGF-/-). To achieve this, we 111 

maintained and bred mice homozygous for the VEGFLoxP transgene (22) with mice 112 

heterogeneous for HSA-Cre-ERT2 (44). Animals were housed in a pathogen-free vivarium in 113 

plastic cages, with a 12:12 hr light:dark cycle, and fed a standard chow diet (Harlan Tekland 8604, 114 

Madison, WI) with water ad libitum. Conditional myofiber-specific deletion of VEGF was initiated 115 

at 10 weeks of age (body weight ~20 g) using a tamoxifen-inducible HSA-Cre-ERT2 system in the 116 

VEGFLoxP mice on a C57BL/6J background (16). Male SkmVEGF-/- mice (n=12) were compared 117 

to floxed wild type (WT) controls (n=13) that did not express cre recombinase (HSA-Cre-ERT2-/-). 118 

All mice received tamoxifen (1 mg/day i.p.) for 5 consecutive d (D0-D4). Following completion of 119 

the tamoxifen treatment period and sufficient time for VEGF expression to be decreased, mice 120 

were anesthetized on day 21 (D21) with inhaled isoflurane vaporized in 100% O2 and killed 121 

through removing the major organs. Our protocol was approved by the University of California, 122 

San Diego, Animal Care and Use Committee and was conducted in accordance to guidelines 123 

outlined by the NIH’s Guide for the Care and Use of Laboratory Animals. 124 

 125 

Genotyping 126 

The presence of HSA-Cre-ERT2 transgene was measured by PCR from tail DNA and forward 5ƍ-127 

CTAGAGCCTGTTTTGCACGTTC-3ƍ and reverse primers 5ƍ-TGCAAGTTGAATAACCGGAAA-3ƍ. 128 

The conditions during cycling were a 2-min polymerase activation incubation at 95°C, 35 cycles 129 

of 30 s denaturation at 94°C, 30 s annealing at 52.1°C, 60 s elongation at  72°C, followed by one 130 

8-min elongation at 72°C. 131 

 132 
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Diaphragm Dissection and Contractile Function 133 

The diaphragm was excised through a laparotomy and thoracotomy. The right costal diaphragm 134 

muscle was divided for measurement of mitochondrial function and the remainder immediately 135 

snap-frozen in liquid N2 for later biochemical analyses. The left costal diaphragm muscle was 136 

prepared in a Krebs-Hanseleit buffer solution (120.5 mM NaCl, 4.8 mM KCl, 1.2 mM MgSO4, 1.2 137 

mM NaH2PO4, 20.4 mM NaHCO3, 1.6 mM CaCl2, 10 mM dextrose, 1 mM pyruvate at a pH of 7.4) 138 

and a muscle bundle (~3 mg) connected from rib to central tendon was dissected, sutured (size 139 

4.0), and mounted horizontally in a buffer-filled organ bath at room temperature equilibrated with 140 

95%O2-5%CO2. The suture connected to the rib was secured to a hook in the organ bath while 141 

the tendon was tied to an adjustable-length force transducer (Model 920CS, DMT, Aarhus, DK). 142 

The muscle was stimulated via platinum electrodes with a supramaximal current (500-ms train 143 

duration; 0.25-ms monophasic pulses) via a high-power stimulator (Model S88, Grass Medical 144 

Instruments, Quincy, MA). The muscle bundle was set at an optimal length equivalent to the 145 

maximal twitch force produced and a 15-min equilibration period followed. A force-frequency 146 

protocol was then performed at 1, 15, 30, 50, 80, 120, 150, and 300 Hz, respectively, separated 147 

with 1-min rest intervals. Following a 5-min period in which muscle length was measured using a 148 

digital micrometer, the muscle underwent a fatigue protocol over 5 min (40 Hz every 2 s with a 149 

500-ms train duration). The muscle was subsequently detached, trimmed free from rib and 150 

tendon, blotted dry on filter paper, and weighed. Muscle force (N) was normalized to muscle cross-151 

sectional area (cm2) by dividing muscle mass (g) by the product of optimal length (cm) and 152 

estimated muscle density (1.06 g/cm3) (13), which allowed specific force in N/cm2 to be calculated. 153 

 154 

Mitochondrial function 155 

Dissected diaphragm tissue (~5-10 mg) was placed immediately in preservation solution at 4°C. 156 

Preservation medium (BIOPS) contained 10 mM Ca2+EGTA buffer, 20 mM imidazole, 50 mM K+-157 

4-morpholineothanesulfonic acid (MES), 0.5 mM dithiothreitol, 6.56 mM MgCl2, 5.77 mM ATP, 15 158 
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mM phosphocreatine and a pH of 7.1. Fiber bundles (each approximately 0.5 to 1 mg) were 159 

transferred to a plastic culture dish and kept in BIOPS at 4°C. The bund les were mechanically 160 

separated using sharp forceps and a dissection microscope (Leica, DE). The bundles were 161 

permeabilized with a 30 min incubation in saponin (50 µg/ml) dissolved in BIOPS at 4°C. Tissues 162 

were washed of saponin for 10 min in respiration medium at 4°C. Fiber bundles w ere weighed to 163 

the nearest µg using an ultrabalance (UMX2, Mettler-Toledo, Greifensee, CH) and transferred 164 

into a calibrated respirometer (Oxygraph 2k, OROBOROS INSTRUMENTS, Innsbruck, AT) 165 

containing 2 ml of media in each chamber. Respirometry and fluorometry was performed in 166 

duplicate at 37°C in stirred media (MiR05+Cr) containing 0.5 mM EGTA, 3 mM M gCl2, 60 mM K-167 

lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, 20 mM creatine, 168 

and 1 g/l BSA essentially fatty acid free, adjusted to pH 7.1. [O2] in the media was kept between 169 

300–500 µM. 170 

 171 

A substrate-uncoupler-inhibitor-titration (SUIT) protocol (37) included: 10 mM glutamate and 2 172 

mM malate to support electron entry through complex I (GM; ‘LEAK’ state), 5 mM ADP to stimulate 173 

oxidative phosphorylation (‘OXPHOS_CI’ state), 10 mM succinate to maximize convergent 174 

electron flux at the Q-junction (ADP+S; OXPHOS_CI+II), carbonyl cyanide-3-175 

chlorophenylhydrazone (CCCP) titrated in 0.5 µM steps to achieve maximal uncoupled respiration 176 

for measurement of electron transport system capacity (‘ETS’ state), 0.5 ȝM rotenone to inhibit 177 

complex I (Rot; ETS_CII). The flux control ratio for OXPHOS was calculated as 178 

(OXPHOS_CI/ETS) and (OXPHOS_CI+II/ETS). OXPHOS coupling efficiency was calculated as 179 

(1-LEAK/OXPHOS_CI+II). The substrate control ratio for succinate was calculated as 180 

(OXPHOS_CI+II/OXPHOS_CI).  181 

 182 

In parallel to respirometry, the green fluorescence-sensor of the O2k-Fluo LED2-Module 183 

(OROBOROS) and the Amplex UltraRed assay was used to measure hydrogen peroxide (H2O2) 184 
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production during of the respiratory states – an index of total mitochondrial ROS production (27). 185 

Amplex UltraRed (AmR; 10µM), horseradish peroxidase (HRP; 1 U/mL) and superoxide 186 

dismutase (SOD; 5 U/mL) were injected prior to addition substrates. AmR is oxidized by H2O2 in 187 

the presence of HRP and allows for an excitation/emission at 563 and 587 nm. [H2O2] was 188 

determined by calibrating to a series of injections of 0.1 µM H2O2 using a 40uM stock solution 189 

made fresh daily. 190 

 191 

Muscle Biochemistry 192 

VEGF protein in diaphragm tissue was quantified by ELISA and normalized to total protein, in 193 

accordance to the manufacturer’s instructions (VEGF Mouse ELISA, R&D Systems, La Jolla, CA). 194 

For western blotting, frozen muscle samples were homogenized in relaxing buffer (90 HEPES, 195 

126 KCl, 36 NaCl, 1 MgCl, 50 EGTA, 8 ATP, 10 creatine phosphate, in mmol/L at pH 7.4) 196 

containing a protease inhibitor mix (Inhibitor mix M, Serva, Heidelberg, Germany), and sonicated 197 

for 10 cycles (Sonoplus GM70, Bandelin Electronics, Berlin Germany), with protein content of the 198 

homogenate subsequently determined (BCA assay, Pierce, Bonn, Germany). Citrate synthase 199 

activity (a marker of mitochondrial content) was assessed at room temperature, as previously 200 

described (6, 8, 9, 31, 32). Diaphragm homogenates (5 - 20 µg) mixed with loading buffer (126 201 

mM Tris-HCl, 20% glycerol, 4% SDS, 1.0% 2-mercaptoethanol, 0.005% bromophenol blue; pH 202 

6.8) were separated by SDS-polyacrylamide gel electrophoresis. Proteins were transferred to a 203 

polyvinylidene fluoride membrane (PVDF) and incubated overnight at 4°C wi th the following 204 

primary antibodies for the contractile proteins of myosin heavy chain (MyHC; 1/1000, Sigma-205 

Aldrich, Taufkirchen, Germany), and sarcomeric actin (1/500; Sigma-Aldrich, Taufkirchen, 206 

Germany), the signaling proteins of PGC1-Į (1/200, Santa Cruz, Heidelberg, Germany) and HIF1-207 

Į (1/200, Santa Cruz, Heidelberg, Germany), and the stress-related proteins MAFbx (1/2000; 208 

Eurogentec, Seraing, Belgium) and NADPH oxidase subunit gp91phox (1/1000; Abcam, 209 

Cambridge, UK). Membranes were subsequently incubated with a horseradish peroxidase-210 
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conjugated secondary antibody and specific bands visualized by enzymatic chemiluminescence 211 

(Super Signal West Pico, Thermo Fisher Scientific Inc., Bonn, Germany) and densitometry 212 

quantified using a 1D scan software package (Scanalytics Inc., Rockville, USA). Blots were then 213 

normalized to the loading control GAPDH (1/30000; HyTest Ltd, Turku, Finland), which we 214 

confirmed was not different between experimental groups. All data are presented as fold change 215 

relative to control group.  216 

 217 

Histology 218 

Liquid-nitrogen isopentane frozen diaphragm sections prepared for cryosectioning were cut at 10 219 

µm, mounted on glass cover slips, and incubated overnight at 4°C in antibody dilue nt (Dako, 220 

Hamburg, Germany) with primary antibodies against myosin heavy chain type I fibers (M8421, 221 

1/400; Sigma, Taufkirchen, Germany) or laminin (1/200; Sigma, Taufkirchen, Germany). After 222 

washing with TBST, sections were incubated with fluorescently-conjugated (Alexa 488) 223 

secondary antibodies for 1 h, further washed, and then visualized under a fluorescent microscope. 224 

Images were captured at x5 magnification and merged to allow fiber morphology to be determined 225 

using imaging software (Analysis Five, Olympus, Münster, Germany), which included ~300-500 226 

fibers in a muscle area of ~500,000 µm2 (i.e., ~40-50% of the total muscle section). Stained fibers 227 

(bright green) were taken as type I, unstained fibers (black) as type II, with fiber boundaries 228 

demarcated in red. In addition, capillaries were stained with lectin specific to endothelial cells 229 

using rhodamine-conjugated Griffonia simplicifolia lectin-1 (1:250 dilution; Vector Laboratories 230 

Ltd, Peterborough, UK), with the capillary-to-fiber (C/F) ratio (number of capillaries to number of 231 

fibers) and capillary density (CD; number of capillaries per mm2 of muscle tissue) calculated 232 

alongside the mean fiber cross sectional area (FCSA). Images were captured at x40 233 

magnification, which included ~100 fibers in a muscle area of ~120,000 µm2 (i.e., ~15% of the 234 

total muscle section).  235 

    236 
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Statistical analyses 237 

Means were compared, where appropriate, with t-tests. Diaphragm muscle contractile function 238 

data were analyzed using a two-factor repeated measures ANOVA (contraction time × genotype 239 

and contraction frequency × genotype). Mitochondrial function data were analyzed using a two-240 

factor repeated measures ANOVA (respiratory state × genotype). Data are presented as mean ± 241 

SD, and, where appropriate, the 95% confidence interval (CI95) is included.   242 
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 243 

Results 244 

In this conditional VEGF deficiency mouse model, we confirmed VEGF protein levels were lower 245 

in the diaphragm of SkmVEGF-/- mice compared to WT mice by ~50% (1.45±0.65 vs. 3.04±1.41 246 

pg/total protein; P=0.001). 247 

 248 

Contractile function 249 

Specific force generated by diaphragm fiber bundles was impaired following VEGF deletion by 250 

~15% in SkmVEGF-/- compared to WT mice (F[1,23] = 15.01, P=0.001; main effect of genotype), 251 

which occurred at both low and high stimulation frequencies ranging from 15 to 300 Hz (Fig 1A). 252 

Similarly, there was a rightward shift in the normalized force frequency relationship (F[1,23] = 253 

2.98, P=0.045; interaction), with relative forces lower between 30 - 120 Hz in SkmVEGF-/- 254 

diaphragm fiber bundles (Fig. 1B). In contrast, fatigue resistance tended to be higher in 255 

SkmVEGF-/- compared to WT mice during the fatigue protocol (F[1,23] = 4.15, P=0.053; main 256 

effect of genotype), such that relative force tended to be ~10% higher throughout the repeated 257 

contractions (Fig. 1C). Twitch kinetics remained unaltered following VEGF deletion, with no 258 

differences  (P>0.05) between WT and SkmVEGF-/- mice in terms of time to peak tension (TPT; 259 

43±7 vs. 42±3 ms, respectively) and half-relaxation time (HRT; 60±17 vs.  63±16 ms, respectively).    260 

 261 

Muscle structure and protein expression  262 

The C/F ratio was ~40% lower in SkmVEGF-/- compared to WT mice (P=0.008; Fig. 2A). In 263 

contrast, the CD remained unchanged between groups (P>0.05; Fig. 2B) which can be explained 264 

by the scale-dependent consequence of VEGF deletion lowering mean FCSA in parallel (Fig. 2C; 265 

P=0.023). Representative muscle sections from WT and SkmVEGF-/- are presented in Fig. 2D-E. 266 

Fiber proportion for type I slow and type II fast myosin heavy chain isoforms were not different 267 
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between SkmVEGF-/- and WT mice (P=0.455; Fig. 2F), with type I fibers representing ~10 % of 268 

overall fiber population. In contrast, however, type I fiber cross-sectional area was lower by ~25 269 

% in SkmVEGF-/- compared to WT mice (P=0.027; Fig. 2G). No difference was detected in type 270 

II fiber cross-sectional area between the groups (P=0.786; Fig. 2G). While no difference was 271 

observed between groups for MyHC expression (P=0.429; Fig. 3A), the smaller type I fiber size 272 

corresponded to an ~30% lower level of the key contractile protein actin (P=0.011; Fig. 3B). We 273 

subsequently measured key proteins known to be involved in fiber atrophy signaling, but found 274 

no differences between groups in relation to the key E3 ligase MAFBx (P=0.189; Fig. 4A) and 275 

major ROS source NADPH oxidase (P=0.091; Fig. 4B). We also probed for protein expression of 276 

key upstream regulatory proteins in the VEGF signaling cascade, but found no differences in 277 

protein expression of HIF-1Į (P=0.417; Fig. 4C) and PGC-1Į (P=0.176; Fig. 4D).  278 

 279 

Mitochondrial function 280 

Diaphragm mitochondrial O2 consumption was not different between SkmVEGF-/- and WT (F[1,80] 281 

= 0.85, P=0.36, Fig 5A), nor was an interaction present (respiratory state × genotype: F[4,80] = 282 

0.1, P=0.98, Fig 5A). However, H2O2 production was lower in SkmVEGF-/- vs WT (F[1,75] = 14.57, 283 

P=0.0003, Fig 5B), with particular differences observed at OXPHOS_CI+II and ETS_CII 284 

respiratory states. OXPHOS coupling efficiency, the ratio of free to total OXPHOS capacity, was 285 

not different between SkmVEGF-/- and WT (Fig 5C). There were no differences (P>0.05) in the 286 

flux control ratios (FCR) for ADP-stimulated respiration (Fig 5D-E) or in the substrate control ratio 287 

(SCR) for succinate (Fig 5F). Citrate synthase activity was also not different (P>0.05) between 288 

WT and SkmVEGF-/- mice (8.38±0.73 vs. 8.20±0.96 µmol/min/mg protein, respectively).     289 

  290 
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Discussion 291 

We found that myofiber-specific VEGF deficient mice produce reduced specific tension in the 292 

diaphragm accompanied by a lower C/F ratio, fiber atrophy and loss of sarcomeric actin content. 293 

While the mechanisms linking VEGF signaling to diaphragm weakness remain unclear, we 294 

suggest it may be related to the lower number of capillaries supplying each fiber.  This could limit 295 

oxygen and nutrient availability and affect contractile function via tissue hypoxia, inflammation, 296 

and/or protein homeostasis (23). Interestingly, diaphragmatic mitochondrial function and content 297 

were maintained in VEGF deficient mice and mitochondrial-derived ROS generation was lower.  298 

These findings suggest that vascular dysfunction may lead to metabolic compensation in 299 

myofibers that manifests as improved fatigue resistance measured in the absence of neural or 300 

vascular systems.  301 

 302 

Myofiber-VEGF deletion leads to diaphragm weakness  303 

Conditional gene deletion of skeletal myofiber-specific VEGF in adult mice reduced VEGF protein 304 

levels by ~50%. While other cells, including endothelial cells, macrophage stem cells and 305 

fibroblast express VEGF, myofibers are the major source of VEGF in skeletal muscle (50).  Rather 306 

than life-long VEGF gene ablation, conditional deletion provides a more clinically relevant model 307 

to investigate whether diaphragm VEGF deficiency is linked to respiratory muscle weakness in 308 

adult patients. The reduction in diaphragm VEGF levels were similar to that reported previously 309 

in life-long skeletal myofiber targeted VEGF gene ablated (~60% reduction) 20 week old mice 310 

(50). Life-long VEGF deficiency reduces diaphragm capillarity by around 40%, and this reduction 311 

in capillaries was almost two-fold greater than that observed in locomotor muscles in this same 312 

mouse line (50). We observed a similar trend in the present study.  Conditional VEGF gene-313 

deletion induced in adult mice resulted in an ~40% lower C/F ratio in the diaphragm. However, in 314 

contrast to mice with life-long loss of the VEGF gene, locomotor skeletal muscle capillaries are 315 

stable when VEGF gene deletion is initiated in adult mice (16, 26).  316 
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 317 

While low VEGF levels are associated with conditions where diaphragm dysfunction is developed 318 

such as mechanical ventilation (11, 17), a direct link had not been previously explored. Given the 319 

diaphragm’s high degree of sensitivity when homeostasis is challenged (6, 8, 9, 31, 32), we 320 

anticipated low VEGF expression would impair diaphragm contractile function. A major finding of 321 

our current study, therefore, was confirming that VEGF deficiency impairs isometric specific forces 322 

by ~15% in the diaphragm. These functional differences are similar to that observed in patients 323 

and experimental animal models where diaphragm fiber function is impaired, such as in 324 

mechanical ventilation, critical illness, and heart failure (24, 31, 40). The contractile dysfunction 325 

was present at both low (15-30 Hz) and high (120-300 Hz) stimulation frequencies, which 326 

indicates that low VEGF-dependent signaling could impact a range of respiratory movements, 327 

such as resting and exercising ventilation in addition to acute respiratory exacerbations involving 328 

airway clearance.  329 

 330 

Our data add important knowledge to indicate that respiratory muscle shows a substantial degree 331 

of sensitivity to VEGF ablation. This is not surprising given the diaphragm shows a high sensitivity 332 

to dysfunction compared to the limbs when challenged by disease states such as heart failure 333 

(53), systemic hypertension (8), and pulmonary hypertension (14). Thus, the onset of diaphragm 334 

weakness may represent an early marker of disease. The mechanism(s) is likely underpinned by 335 

the diaphragm’s persistent contraction pattern, which renders it highly susceptible to early 336 

changes in mechanical loading (possibly related to pulmonary/acid-base disturbance) and/or 337 

delivery of oxygen, nutrients, inflammatory cytokines, and ROS (23). Deficient skeletal myofiber 338 

VEGF levels are also linked to whole-body reductions in exercise tolerance (26, 50), and our data 339 

provide support that respiratory muscle weakness may be a contributing factor.  340 

 341 

 342 
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Mechanisms of VEGF-induced diaphragm weakness  343 

The mechanism(s) by which VEGF deficiency induced diaphragm contractile dysfunction remains 344 

unclear. Our data confirmed impaired force generation at both low and high stimulation 345 

frequencies in isolated fiber bundles concomitant with a rightward shift in the normalized force-346 

frequency relationship. Impaired forces at the low stimulation frequencies and the rightward shift 347 

in the normalized force-frequency relationship in VEGF deficient diaphragm fibers could be 348 

interpreted as a result of a slow-to-fast fiber type switch and/or alterations in calcium handling 349 

(i.e., more rapid Ca2+ release/reuptake dynamics). However, we found no changes between 350 

groups in terms of fiber type or twitch kinetics, which would argue against such mechanisms 351 

acting. However, we did find that protein expression of sarcomeric actin was ~25% lower in the 352 

diaphragm of SkmVEGF-/- mice, which could directly limit cross-bridge cycling thus limiting force 353 

generating capacity. It remains unclear why we observed a preferential loss of actin compared to 354 

myosin. A disproportionate loss between the major contractile proteins is not uncommon and this 355 

has been reported in various conditions including critical illness myopathy, immobilization, and 356 

microgravity (21, 35). Under conditions of VEGF deficiency, therefore, various mechanisms may 357 

be induced in the diaphragm including the preferential degradation of actin (following specific 358 

targeting of numerous activated E3 ligases), impaired transcription and synthesis of actin, and/or 359 

an imbalance in protein turnover rates between actin and myosin (21, 35). 360 

 361 

The lower actin content was also a likely factor underlying atrophy preferentially observed in type 362 

I fibers in the diaphragm of SkmVEGF-/- mice. The reason for why we observed a preferential fiber 363 

type I atrophy in VEGF deficient skeletal muscle remains unclear, but it may be consequent to 364 

type I fibers having a more rich capillary supply than type II fibers. Therefore, type I fibers may be 365 

more susceptible to contractile protein loss (and thus atrophy) under conditions associated with 366 

VEGF deficiency that severely impair capillary maintenance [e.g., cigarette smoke exposure; (34, 367 

52)]. Interestingly, loss of thin filaments may increase the maximal shortening velocity (Vmax) even 368 
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without a change in MyHC (42). Without a measure of Vmax, however, we can only speculate at 369 

this point.  370 

 371 

It is important to note that it remains unclear how much this loss of actin actually contributed to 372 

the observed contractile weakness/type I fiber atrophy given the small proportion of type I fibers 373 

present in mouse diaphragm.  Nonetheless, in other diseases where O2 delivery is impaired, such 374 

as heart failure and COPD, reduced actin content in combination with muscle dysfunction and 375 

atrophy are present (7, 30, 47). In muscle wasting following dexamethasone treatment or cigarette 376 

exposure in mice, VEGF protein expression is also reduced (4). In combination, these findings 377 

suggest VEGF may play a critical role in modulating protein homeostasis. However, we wish to 378 

note a few limitations in our methodology, which include not distinguishing between the type II 379 

fiber subtypes (a, x, b) and use of a low salt buffer to assess levels of MyHC and actin where total 380 

abundance may not be accurately reflected if incompletely solubilized (43).   381 

 382 

The signaling pathways responsible for protein loss and fiber atrophy in VEGF deficiency remain 383 

unclear, but likely include an upregulation in protein degradation and/or a downregulation in 384 

protein synthesis in muscle with insufficient supply of O2. Given that conditional VEGF ablation 385 

led to around a ~40% lower C/F ratio and as previous data have shown it can also impair muscle 386 

perfusion (26, 50), it is possible that VEGF deficiency in muscle induces tissue hypoxia to activate 387 

proteolytic pathways (15). It is important to note that this is speculative, as we do not have a 388 

measure of diaphragm tissue hypoxia in vivo from the current study. Nonetheless, as protein 389 

levels of the key E3 ligase atrogene MAFbx were not different between WT and SkmVEGF-/- mice 390 

suggests diaphragm VEGF deficiency may upregulate other key atrophic pathways associated 391 

with contractile protein degradation (e.g., calpain, caspase-3, MuRF1, or increased ubiquitin 392 

proteasome activity; (7, 30, 48)) or via inhibition of protein synthesis (e.g., Akt, mTOR, p70S6K 393 
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(45)). Future investigation into the role VEGF exerts over various protein synthesis/degradation 394 

signaling molecules may therefore prove worthwhile.  395 

 396 

Elevated ROS in the diaphragm in disease can also stimulate protein degradation (45) and induce 397 

post-translational oxidative contractile protein modifications (9). However, as our ROS measures 398 

of mitochondrial as well as transmembrane NADPH oxidase were not elevated in SkmVEGF-/-, 399 

with both known to be strong mediators of diaphragm weakness (1), this argues against VEGF 400 

deficiency inducing diaphragm weakness via a ROS-related mechanism. However, an activity-401 

based assay of NADPH oxidase should be considered for future experiments. We also probed 402 

upstream regulators involved in the VEGF signaling cascade for potential compensatory 403 

adaptations to the VEGF deficiency. Both HIF-1Į and PGC-1Į independently stimulate VEGF (3), 404 

with VEGF generally secreted by the transcription factor HIF-1Į in response to hypoxic conditions 405 

(19) and by the transcriptional coactivator PGC-1Į in response to exercise (29). Both HIF-1Į and 406 

PGC-1Į signaling in diaphragm tissue were not impacted in the present study indicating they do 407 

not form part of a compensatory response to VEGF deficiency.    408 

 409 
VEGF deletion does not impact diaphragm mitochondrial respiration   410 

Mitochondrial impairments are developed in diseases associated with diaphragm dysfunction (38, 411 

40). However, in our study in situ mitochondrial O2 consumption was not impacted. Neither 412 

mitochondrial content (as assessed by citrate synthase) nor the coupling efficiency or respiratory 413 

capacity were different under VEGF deficiency.  Whether the fiber atrophy that occurred following 414 

VEGF deficiency acted as a compensatory mechanism to maintain mitochondrial respiratory 415 

function remains unclear but seems a reasonable suggestion. For example, in response to 416 

derangements in muscle perfusion, a lower muscle size may help maintain adequate O2 diffusion 417 

between capillary and myocyte (26).  418 

 419 
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In contrast, mitochondrial-derived ROS flux was lower following VEGF ablation. The mechanisms 420 

underlying lower mitochondrial ROS flux in SkmVEGF-/- mice remains uncertain, but it could be 421 

related to a higher anti-oxidant enzyme capacity. For example, a compensatory increase in 422 

oxidative enzyme activity (i.e., citrate synthase, ȕ-HAD) occurs in both locomotor and diaphragm 423 

muscle in mice with VEGF deficiency from birth (36) and in the gastrocnemius following 424 

conditional deletion (16). As a shift towards greater muscle oxidative capacity is commonly 425 

associated with increased anti-oxidant enzyme activities (e.g., superoxide dismutase, glutathione 426 

peroxidase, catalase) (39), this could be a plausible explanation for why mitochondrial ROS flux 427 

may be lower. However our current data showed citrate synthase activity remained unchanged.   428 

 429 

High mitochondrial ROS production is particularly common in conditions associated with 430 

diaphragm weakness, such as heart failure (28) and mechanical ventilation (40).  Surprisingly, we 431 

found that mitochondrial-derived ROS flux was lower in VEGF deficient diaphragm fibers. As 432 

NADPH oxidase, a cytosolic ROS marker, was also not different between groups, our data 433 

indicate that diaphragm weakness induced by VEGF deficiency is unlikely to be mediated by 434 

elevated oxidative stress.  SkmVEGF-/- mice may have been better protected against ROS-435 

induced muscle fatigue, as increased ROS production during repeated contractions inhibits force 436 

generation (12). Interestingly, improvements in relative fatigue of the diaphragm in vitro are also 437 

present in disease (31), which suggests the SkmVEGF-/- mouse model may closely reflect 438 

pathological states and thus mirror adaptations to that often observed after long-term endurance 439 

training (39). However, the observation of this improved fatigue resistance may be dependent on 440 

the in vitro muscle fatigue protocol employed. Using a “matched-stimulus” rather than “matched-441 

initial specific force” protocol, healthy (or control) diaphragm fibers generate higher absolute 442 

forces initially and throughout to induce an apparent more rapid fatigue (20, 31). Therefore, the 443 

fatigue protocol employed in our study may explain why relative fatigue resistance was higher in 444 

mice with VEGF deficiency and extrapolation of these findings should be interpreted with caution.  445 



19 
 

 446 

Conclusions 447 

Skeletal myofiber-specific VEGF deletion resulted in diaphragm contractile dysfunction that was 448 

accompanied by lower CF ratio, smaller type I fibers, lower sarcomeric actin protein, and lower 449 

mitochondrial ROS generation. Whether differences in type I fiber size, capillarity, and ROS 450 

generation compensated to protect mitochondrial respiratory function remains unclear. Deficient 451 

diaphragm VEGF levels may be a contributing factor to the onset of diaphragm dysfunction and 452 

provide a viable treatment target for patients afflicted with respiratory muscle weakness.  453 
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Figure Legends  652 

Figure 1. Diaphragm contractile function in skeletal muscle-specific VEGF deficient (skmVEGF-/-653 

) mice compared to wild type (WT) controls. Isolated diaphragm fiber bundles were stimulated at 654 

increasing stimulation frequencies to measure isometric specific force (A) and normalized relative 655 

to maximum force (B), with fatigability assessed during repeated stimulations (C). Data are 656 

mean±SD. *P<0.01; §P<0.05 skmVEGF-/- vs WT.  657 

 658 

Figure 2. Diaphragm structural properties in skeletal muscle specific-VEGF deficient (skmVEGF-659 

/-) mice compared to wild type (WT) controls, which included assessment of capillary-to-fiber (C/F) 660 

ratio (A), capillary density (CD) (B), and mean fiber cross-sectional area (FCSA) (C) (n = 5 per 661 

group). Representative immunofluorescent diaphragm sections from WT (D) and skmVEGF-/- (E) 662 

mice (fiber boundaries stained red, type I fibers green, and type II fibers unstained), revealed no 663 

change in fiber type proportions (F) but a type I specific fiber atrophy in skmVEGF-/- mice 664 

compared to WT controls (n = 8-11 per group). Data are presented as mean±SD. *P<0.05 665 

skmVEGF-/- vs WT.      666 

 667 

Figure 3. Protein expression in the diaphragm of the key contractile proteins myosin heavy chain 668 

(MyHC; A) and sarcomeric actin (B), as well as respective representative blots (C) in skeletal 669 

muscle-specific VEGF deficient (skmVEGF-/-) mice compared to wild type (WT) controls. Data 670 

were normalized to the loading control GAPDH and calculated as fold change (∆) vs. WT. Data 671 

are presented as mean±SD. *P=0.01 skmVEGF-/- vs WT.        672 

 673 

Figure 4. Diaphragm protein expression along with representative blots of regulatory muscle 674 

signalling proteins measured in skeletal muscle-specific VEGF deficient (skmVEGF-/-) mice 675 

compared to wild type (WT) controls, which included the key atrogin MAFBx (A) and ROS source 676 

NADPH oxidase (subunit gp91phox) (B), as well as the upstream VEGF activators HIF-1Į (C) and 677 
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PGC-1Į (D). Data were normalized to the loading control GAPDH and calculated as fold change 678 

(∆) vs. WT. Data are presented as mean±SD.  679 

 680 

Figure 5.  Diaphragm mitochondrial respiratory function and ROS production. Rate of oxygen 681 

consumption (JO2) measured during a high-resolution respirometry substrate-uncoupler-inhibitor-682 

titration (SUIT) protocol. Panel A:  LEAK: glutamate+malate for LEAK state respiration. 683 

OXPHOS_CI: ADP for the phosphorylating state with substrates provided to complex I. 684 

OXPHOS_CI+II: ADP+succinate. ETS: Carbonyl cyanide m-chlorophenyl hydrazine for 685 

uncoupled respiration and electron transport system capacity. ETS_CII: Rotenone added to inhibit 686 

complex I. Panel B:  H2O2 flux measured simultaneous to JO2. Main effect of genotype present 687 

(F[1, 75] = 14.57, P=0.0003) and * denotes different to WT. Panel C: OXPHOS coupling efficiency 688 

was calculated as (1-LEAK / OXPHOS_CI+II). Panel D:  Flux control ratio (FCR) for OXPHOS_CI 689 

was calculated as (OXPHOS_CI / ETS). Panel E:  FCR for OXPHOS_CI+II was calculated as 690 

(OXPHOS_CI+II / ETS). Panel F:  Substrate control ratio (SCR) for succinate was calculated as 691 

(OXPHOS_CI+II / OXPHOS_CI). Error bars are SD, n=8-10. 692 
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