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Abstract—We investigate distributed combining techniques for
distributed detection in wireless sensor networks (WSNs) over
Rayleigh fading multiple access channel (MAC). The MAC also
suffers from with path loss and additive noise. The WSN is
modelled as a Poisson point process (PPP). Two distributed
transmit combining techniques are proposed to mitigate fad-
ing; distributed equal gain transmit combining (ddEGTC) and
distributed maximum ratio transmit combining (dMRTC). The
performance of the previous methods is analysed using stochastic
geometry tools, where the mean and variance of the detector’s
test statistic are found thus enabling the fitting of the received
signal distribution by a log-normal distribution. Surprisingly,
simulation results show a that ddEGTC outperforms dMRTC.

Index Terms—Wireless sensor networks, distributed detection,
Rayleigh fading, multiple access channel, distributed transmit
combining, stochastic geometry.

I. INTRODUCTION

Wireless sensor networks (WSNs) are becoming a main-

stream technology constituting the backbone of several emerg-

ing technologies, such as the internet of things (IoT) [1].

However, several WSNs aspects remain a fertile research

ground, one of which the application of WSNs in distributed

detection [2]. Having geographical distributed battery-powered

sensor nodes (SNs) connected via wireless channels to a fusion

center (FC) adds extra dimensions to the distributed detection

problem. But wireless channel imperfections and SN power

failure lead to having a random number of SNs involved in

the distributed detection operation. In this case, it is unfeasible

to assigns dedicated communication channels to all the SNs.

One solution is to use a multiple access channel (MAC) in

which the channel is shared among all the SNs.

Distributed detection over MAC was investigated in [3], in

which the MAC is only affected by noise. The performance of

distirbuted detection under Rayleigh fading MAC was investi-

gated in [4] fortype-based communication. A further extension

to the case of non-coherent fading channels was investigated

in [5]. The authors in [6] then presented distributed detection

in random WSNs, modelled by a Poisson point process (PPP)

[7]. Distributed detection in random clustered WSNs over an

ideal MAC was discussed in [8] and for a noisy MAC [9].

In this paper, we take a broader approach in which we

investigate the case of a MAC suffering from Rayleigh fading,

path loss, and additive noise. To mitigate fading, distributed

transmit diversity combining is used. Fortunately, by virtue of

the MAC, the received signal is aggregated at the FC facilitat-

ing the use of transmit diversity techniques. We propose two

schemes; distributed equal gain transmit combining (dEGTC)

and distributed maximum ratio transit combining (dMRTC)

[10]. The PPP model for the WSN on the other hand, enables

us to leverage stochastic geometry tools to find the mean

and variance of the received signal at the FC. This, in turn,

permits approximation of the received signal’s distribution by

a log-normal distribution, which enables finding the detector’s

probability of detection and probability of false alarm.

The paper is organized as follows. Section II formally

introduces the system model. In Section III, distributed detec-

tion is discussed in addition to transmit diversity combining

schemes and the statistics of the detector. Simulation results

and discussion are provided in Section IV. Finally, the paper

is concluded with Section V.

II. SYSTEM MODEL

Consider a WSN deployed randomly in a sensing field F ∈
R

2. The number of SNs assumed to be random due to power or

communication failures. Such a network is elegantly modelled

by a PPP Φ = {Xi} with mean λ, where Xi ∈ F is the

location of the ith SN. All the SNs report to a FC located

at x0 = (0, 0), without loss of generality, over flat fading

channels. The channel between the ith SN and FC is Hi =
|Hi|ejθi where |Hi|’s are assumed to be i.i.d. Rayleigh random

variables (RVs) with parameter σ2

H and θi’s are i.i.d. uniform

RVs in the interval [0, 2π]. The SNs estimate the channels

with the aid of a pilot signal sent by the FC in the network



initialization stage. Note, however, that the channels are known

to the SNs but not to the FC.

The WSN is tasked with the detection of any intruders

entering the sensing field. Such an intruder has a power of

Pt located at xt ∈ F . Each SN samples the sensing field thus

acquiring the signal [11]:

H0 : Si = Vi (1)

H1 : Si =

√
Pt

‖Xi − xt‖η
+ Vi (2)

where H0,H1, η, and Vi are the null hypothesis, alternative

hypothesis, sensing path-loss exponent, and the sensing noise

respectively. Where the latter is normally distributed with

variance σ2
s , i.e., Vi ∼ N (0, σ2

s) and sensing SNR here is

defined as SNRs = Pt/σ
2
s . The ith SN local decision, I (Xi),

is positive (1) if Si ≥ γ, where γ is the local threshold. It

is negative (0) if Si < γ. Consequently, the local detection

probability is

Pd (x,xt) = P {I (Xi) = 1;H1}

= Q

(

γ

σs

−
√
Pt

σs ‖x− xt‖η
)

(3)

whereas the local false alarm probability is

Pfa = P {I (Xi) = 1;H0} = Q

(

γ

σs

)

. (4)

The SNs use on-off-keying (OOK) to send their decisions

to the FC over a shared MAC. Moreover, the SNs employ

transmit diversity schemes via pre-multiplying the transmitted

signal with Gi. The received signal is:

Z = Y +W (5)

Y =
∑

Xi∈Φ

√
PtxHiGi

‖Xi − x0‖
α

2

I (Xi) (6)

where Ptx is the SN transmission power, α is communication

path-loss exponent, and W is the MAC’s circular AWGN with

zero mean with variance σ2
c .

III. DISTRIBUTED DETECTION OVER RAYLEIGH

MULTIPLE ACCESS CHANNEL

A. Distributed Transmit Diversity Combining

Transmit combining schemes can be realized in a distributed

manner by virtue of the shared MAC, since all the transmitted

signals are combined at the FC as shown in (6). Distributed

maximum ratio transmit combining (dMRTC) is implemented

if Hi = G∗
i , whereas the distributed equal gain transmit

combining (dEGTC) is implemented if Hi = e−jθi . In order

to represent all cases, define f (Gi) = HiGi, which is |Hi|2
in the case of dMRTC and Hi in the case of dEGTC.

B. Statistics of the Received Signal

The noiseless received signal Y in (6) is actually a random

sum over the point process of detecting SNs. Unfortunately,

its distribution does not have a closed-form. Nonetheless, the

mean and variance of Y can be found via stochastic geometry

tools. Firstly, the mean is given below as

µj = E [Y ;Hj ] = E

[

√

Ptx

∑

Xi∈Φ

f (Gi)

‖Xi‖
α

2

I (Xi) ;Hj

]

=
√

PtxE [f (G)]EΦ

[

∑

Xi∈Φ

1

‖Xi‖
α

2

I (Xi) ;Hj

]

(7)

where EΦ [·] is the expectation with respect to Φ and j = 0, 1
denotes the H0 and H1 hypotheses. The mean can be further

simplified as given in the following proposition.

Proposition 1: The mean of Y defined in (6) is given by

µj =

{

λ
√
PtxE [f (G)] Iµ0

, j = 0

λ
√
PtxE [f (G)] Iµ1

, j = 1
. (8)

where

Iµ0
=

∫

F

‖x‖−α

2 Pfadx (9)

Iµ1
=

∫

F

‖x‖−α

2 Pd (x,xt) dx. (10)

Proof: Realizing that the local detection is actually is a

thinning of the PPP, then Campbell’s theory [7] can be applied

to find the average of the expectation in (7) yielding the result

in (8).

The variance, on the other hand, is not as straightforward. The

following proposition provides the variance.

Proposition 2: The variance of Y defined in (6) is given by

σ2

j = var (Y ;Hj)

=

{

λPtxE
[

f2 (G)
]

Iσ2

0

, j = 0

λPtxE
[

f2 (G)
]

Iσ2

1

, j = 1
. (11)

where

Iσ2

0

=

∫

F

‖x‖−α
Pfadx (12)

Iσ2

1

=

∫

F

‖x‖−α
Pd (x,xt) dx (13)

Proof: See Appendix A.

Having found the mean and variance, it is possible to

approximate the distribution of Y via the traditional moment

matching method. However, the choice of the approximating

distribution is not straightforward. One should note that Y ’s

distribution is skewed due to being based on Rayleigh random

variables and rare event detection. So the lognormal distribu-

tion is an appropriate candidate due to its flexible shape. The

approximate distribution is given by

fY (y) =
1

yσa,j

√
2π

exp

(

− (log y − µa,j)
2

2σ2

a,j

)

(14)
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(a) Mean under dEGTC.
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(b) Variance under dEGTC.
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(c) Mean under dMRTC.
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(d) Variance under dMRTC.

Fig. 1: Mean (µj) and variance (σ2

j ) of Y in (6) for dEGTC and dMRTC, with Ptx = 10.

where the arithmetic mean and variance are

µa,j = log





µ2

j
√

σ2

j + µ2

j



 (15)

σ2

a,j = log

(

1 +
σ2

j

µ2

j

)

. (16)

C. Distributed Detection

The FC reaches its global decision on the target’s presence

by comparing the received signal with a global detection

threshold, Γ. One way to suppress the MAC channel noise

is to increase the received signal SNR at the FC. If the SNR

is chosen appropriately under H0 then the Z’s distribution is

guaranteed to be lognormal under both hypotheses ((1) and

(2)). The SNR at the FC under H0 is

SNRc =
λPtx

σ2
c

E
[

f2 (G)
]

Iσ2

0

. (17)

Hence, the SNR can be arbitrarily large by appropriately

choosing λ and Ptx. Now assuming negligible AWGN and

equipped with the lognormal distribution in (14) the global

detection performance can be readily found. The global prob-

ability of false alarm is

PFA = P (Z > Γ;H0) = Q

(

log Γ− µa,0

σa,0

)

(18)

Consequently, given PFA the global detection threshold can

be found as log Γ = σa,0Q
−1 (PFA)+µa,0. On the other hand,

the global probability of detection is

PD = P (Z > Γ;H1) = Q

(

log Γ− µa,1

σa,1

)

= Q

(

µa,0 − µa,1 + σa,0Q
−1 (PFA)

σa,1

)

. (19)

Unfortunately, (19) does not provide an insight into the

performance of the detector due to the complications in (15)

and (16) w.r.t λ and Ptx. Therefore, we choose to investigate

the deflection coefficient [12] in terms of the means and

variances given by propositions 1 and 2, which is

d2 =
(µ1 − µ0)

2

σ2
1

= λgtc
(Iµ1

− Iµ0
)
2

Iσ2

1

. (20)
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(a) dEGTC for λ = 2.
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(b) dMRTC for λ = 2.
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(c) dEGTC for λ = 10.
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(d) dMRTC for λ = 10.

Fig. 2: Empirical distribution of Y in (6) and the theoretical Lognormal approximation under H0 and H1 at Ptx = 10 and λ = 10.

where gtc = E
2 [f(G)] /E

[

f2(G)
]

is the transmit combining

gain. Interestingly, d2 depends on λ, local detection through

Iµ1
, and the transmit diversity. But does not depend on the

transmission power. Note that it can be shown that for dMRTC

gtc = 1/2 whereas for dEGTC gtc = π/4, so predict that

dEGTC has better performance compared to dMRTC.

IV. RESULTS AND DISCUSSION

We simulate a WSN in a field of 100 × 100. The intruder

is arbitrarily located at xt = (20, 20) with power of P = 10
and η = 1. The sensing SNR (SNRs) is 5 dB. The local

probability of false alarm (Pfa) is 0.01. The path loss exponent

for the communication channel is α = 2 whereas the channel

gains are distributed as iid Rayleigh RV with parameter of

σ2

G = 1/
√
2. The communication SNR is defined as SNRc,0 =

Ptx/σ
2
c where σ2

c = 0.01. The WSN is simulated for 105

Monte Carlo iterations.

Fig. 1 shows an almost perfect match between the simulated

and theoretical mean and variance for both dMRTC and

dEGTC under H0 and H1 for different values of λ. This shows

the verifies the analytic expressions for mean and variance

provided by propositions 1 and 2.

Fig. 2 shows how the lognormal distribution provides an

excellent approximation for the distribution of pure MAC

received signal, Y . The excellent match is due to shape prop-

erties of the lognormal distribution that can assume different

skewness values, in contrast for the Gaussian distribution for

example, which is always symmetrical.

Fig. 3 illustrates the theoretical and simulated ROC graphs

for the dMRTC and dEGTC. A close resemblance is also

observed here. Interestingly, the dEGTC performs better than

the dMRTC as predicted by the deflection coefficient in (20).

This trend is also observed in Fig. 4 where the probability one

detection is achieved when λ is increased.

Fig. 5 shows the performance under ideal and Gaussian

MACs with respect to the communication SNR. Interestingly,

the ideal MAC is independent of the transmission power, as

also predicted by d2. It is also evident that the ideal MAC is

the upper bound for the Gaussian MAC.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Simulation

Theory

dMRTC

dEGTC
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V. CONCLUSIONS

We have investigated distributed detection in WSNs over

a shared MAC suffering from Rayleigh fading and additive

noise. To mitigate the effect of the fading channel, distributed

transmit combining methods are used, in particular dMRTC

and dEGTC. To quantify the performance of both schemes,

stochastic geometry tools were used to find the statistics of

the detector’s test statistics, which were, in turn, used to fit

the distribution with a log-normal distribution. Interestingly, it

has been shown that the dEGTC is better than the dMRTC in

terms of the detector’s performance.

APPENDIX

PROOF OF PROPOSITION 2

Using the total variance identity the variances are

σ2

j = varΦ

(

EG

[

√

Ptx

∑

Xi∈Φ

f (Gi)

‖Xi‖
α

2

I (Xi)

∣

∣

∣

∣

∣

Φ;Hj

])

+ EΦ

[

varG

(

√

Ptx

∑

Xi∈Φ

f (Gi)

‖Xi‖
α

2

I (Xi)

)∣

∣

∣

∣

∣

Φ;Hj

]

(21)

where varΦ (·) is the variance w.r.t the PPP, Φ. Next,

σ2

j = PtxE
2 [f (G)] varΦ

(

∑

Xi∈Φ

1

‖Xi‖
α

2

I (Xi) ;Hj

)

+ Ptxvar (f (G))EΦ

[

∑

Xi∈Φ

1

‖Xi‖α
I (Xi) ;Hj

]

.(22)

From Campbell’s theorem, for a given f(x) we can write

var
(
∑

Xi∈Φ
f(x)

)

= λ
∫

f2(x)dx = E
[
∑

Xi∈Φ
f2(x)

]

.

Hence, by using the variance identity we get

σ2

j = E
[

f2 (G)
]

PtxEΦ

[

∑

Xi∈Φ

1

‖Xi‖α
I (Xi) ;Hj

]

. (23)

Finally, applying Campbell’s theorem yields (11).
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