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Abstract  

Oil-Based Mud (OBM) cutting is a by-product generated during oil-well drilling. It is 

classified as a hazardous material; however, its chemical composition suggests that it 

might be suitable as a raw material in cement manufacturing. It is rich in calcium oxide, 

silica, and aluminium oxide, which are the major oxides in raw materials for cement 

manufacturing. In this research, OBM cutting is used as a constituent of the raw meal 

for cement clinker production. Raw meal mixtures were prepared by mixing different 

ratios of raw materials increasing OBM content. The impact of the addition of OBM 

cutting on the resulting clinker has been investigated. The results demonstrate that 

OBM cutting could be recycled in the manufacturing of Portland cement clinker. Clinker 

prepared using OBM cutting had very similar properties to that prepared from limestone. 

This result could represent an opportunity for solving an environmental problem. 

The addition of OBM cutting lowers the calcination temperature, and increases the rate 

of carbonate dissociation. However, it also leads to a higher free lime content in the 

resulting clinker, which is a result of the presence of trace elements, such as barium. 

Overall, its use as a raw material in cement production could provide a cost-effective, 

environment-friendly route for the management of OBM cutting.  
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1 Introduction 

There are several types of industrial hazardous by-products that are not yet utilised. Oil-

Based Mud (OBM) cutting is an example of such materials [1–8]. OBM is produced 

during the oil-well drilling process. It contains oil, heavy metals, organic matter, and soil. 

During the drilling process of a single well, thousands of cubic metres of OBM cutting 

can be produced [9]. OBM cutting is classified as a hazardous material in Oman [10], 

with special storage specification enforced by the environmental authority [11]. 

OBM (also known as drilling fluid mud [1,2,12]), is the carrier of earth cutting during the 

drilling process and comes in many forms. The main role of the OBM is that of lifting the 

cutting up to the surface, thus permitting the drilling operation to move deeper [13–15]. 

Once the cuttings are collected at the surface, this mixture of drilling fluid and earth 

cuttings undergoes a segregation process for removing the cuttings and enabling the 

drilling fluid to be reused. This segregation step is repeated until the fluid can no longer 

be treated and is disposed of. The discarded fluid is known as Fluid-Based Mud cutting, 

the composition of which depends on the type of fluid used. Such type depends on the 

geological characteristics of the underground rocks. In many cases, Water-Based Mud 

[16] is used with the addition of some oil to improve some desirable properties of the 

drilling fluid and optimize the drilling process. This fluid is known as Oil-Based Fluid or 

Oil-Based Mud (OBM). The mud disposed from this process is known as Oil-Based Mud 

cutting (OBM cutting) and is collected in Mud Waste pits. OBM cuttings are 

contaminated with oil, which make them a potentially hazardous waste, and their 

release into the environment should be avoided. 

OBM cuttings have several characteristics which could be exploited in the cement 

industry [17]. The cuttings contain calcium, silica, and alumina, which are essential 

components in cement manufacturing. Moreover, the oil content gives the cuttings a 

calorific value, which could help reduce the fuel demand during cement production. 

From the perspective of the oil industry, the use of cuttings in cement manufacturing 

would provide an environment-friendly waste management solution for a potentially 

hazardous waste. Such a solution is welcome because about 115,000 t of OBM cuttings 

are currently stored across Oman [18]. The reported production rate and disposal of 

OBM cutting is in the range of 300-500 t/day [19] and is expected to grow in the coming 
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years (Fig. 1). The three main storage sites for the cuttings are Elkhwair, Fahud, and 

Quran Al-Alam (Fig. 2).  

 

Fig. 1 Amount of OBM Cutting produced during oil-well drilling in Oman. Actual values 
are reported for 2012 to 2017; values from 2018 onwards are projected [18]. 
 
In Oman, only two integrated (clinkerisation + cement grinding) cement plants exist: the 

Oman Cement Company in the north, and the Raysut Cement Company in the south 

(Fig. 2). As of today, the total combined clinker production capacity in Oman is about 5 

million t/year. This number is likely to increase to 6.8 million t/year by 2021 [20, 21]. 

When cement grinding plants are considered, the current total cement production is 

about 7.73 million t/year, with the capacity projected to increase to about 9.23 million 

t/year by 2021.  
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Fig. 2 Map of Oman showing the locations of oil fields and cement industries (the year 
of establishment is given in brackets) [19,20,22–24]. 
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The extracted OBM cuttings cannot be used directly in cement manufacturing as some 

pre-processing is required. The OBM cutting from drilling operations is wet: it has high 

oil and water contents. The cutting is first transferred to an engineered landfill [9, 5], 

which is open, exposed to direct sunlight, and normally located in the desert. At this 

stage, the OBM cutting is simply left to dry under the effect of direct sunlight and high 

temperature. Within months, the moisture content decreases from 15-20% to about 10-

8%, and the sludge is then transferred to a semi-dry lined pit. Air drying in direct sunlight 

continues for up to a couple of years, after which the moisture content is at most 5%. 

Currently, no accepted management solution exists for this waste; thus, the dried OBM 

cuttings often end up accumulating at the storage yard without additional processing.  

The dry OBM sludge has the potential to be used as a component of cement raw meal 

for cement manufacturing. However, there are a number of different cements which 

could be produced using OBM cutting [25, 26], such as ordinary Portland cement or 

sulphate-resistant Portland cement. A number of studies have demonstrated the 

potential use of raw materials derived from demolished buildings in the cement industry 

[27-30]. In addition, the so-called “Oil Well Cement” (OWC) also has been reported in 

the literature [31–37].  

2 Aim of the study 

This study investigates the effects of the addition of OBM cuttings to the raw meal used 

in cement manufacturing, and reports on the properties of the so-obtained cement 

clinker. 

3 Materials and methods 
3.1 Raw mix design  

Samples were prepared from dried OBM cutting blended with a number of raw materials 

used in the preparation of raw meal. The chemical composition of these materials is 

given in Table 1. These compositions of the blends were calculated to give the same 

phase composition as a real Portland cement clinker. Using the Bogue’s calculation, the 

amount of C3S, C2S, C3A and C4AF in raw meal after the heating process were 

calculated [38,39]. 
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Table 1 
Chemical composition of the raw materials used in this study 

 Limestone QPH Kaolin Iron Ore OBM cutting 

Main & minor oxides (% wt./wt.) 
SiO2 3.60 76.30 41.28 18.28 20.90 

Al2O3 0.55 9.20 33.27 10.32 4.74 

Fe2O3 0.40 6.69 6.69 54.00 2.35 
CaO 52.25 5.90 2.18 0.48 31.85 
MgO 0.19 1.46 1.46 1.98 2.22 
SO3 0.04 0.26 0.18 0.12 1.81 

K2O 0.92 0.32 0.28 0.14 0.41 

Na2O 0.06 0.12 0.21 0.18 0.89 
LOI @ 950 oC 41.59 2.42 14.15 9.98 32.70 

Trace oxides (mg/kg)  
BaO - - - - 5500 
Cr2O3  100 200 37000 100 100 
MnO 100 1500 7600 100 300 
Mn2O3 100 - - 100 300 
P2O5 600 900 200 200 1100 
TiO2 100 5400 4300 500 100 

3.2 Raw meal samples (Rm) 

Five raw meal mixtures were prepared by mixing different ratios of raw materials 

according to theoretical mix-design calculations. Raw meal samples were prepared with 

OBM cutting contents from zero (as a control sample) to 55%. A final sample was 

prepared from 100% OBM cutting, with no raw materials added. In addition, one sample 

of raw meal was obtained direct from a cement plant. This sample contained no OBM 

cutting and was identified as Rmind and later Ckind.  

In addition to the prepared raw meal just mentioned, and to study the thermal behavior 

and obtain the clinker phases formation temperature in respect to different ratio OBM 

cutting added, an additional fourteen raw meal mixtures were prepared by mixing 

different ratios of raw materials according to the theoretical mix-design calculations with 

increasing OBM contents. 
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Table 2 
The rawmix design 

Raw Material 

%  Ratio 

RmInd RmRef. Rm12 Rm55 Rm100 

Zero OBM Zero OBM 12% OBM 55% OBM 100% OBM 

Limestone 81.40 80.90 72.60 43.00 - 
Quartzo-phillite  12.32 11.35 8.60 - - 
Kaolin 4.35 5.65 4.70 0.50 - 
Iron ore 1.93 2.10 2.10 1.50 - 
OBM cutting - - 12.00 55.00 100.00 

Total 100.00 100.00 100.00 100.00 100.00 

 

3.3 Clinker samples (Ck) 

Nodules of about 5-8 mm size were prepared from the raw meal by adding water [40]. 

The dried raw meals were fired using a platinum dish in a static air high-temperature 

furnace (Carbolite, model RHF 16/3). The clinker was prepared according to Al-Dhamri 

et. al [41].  

3.4 XRF and XRD 

Clinker samples were characterized using a PANalytical Axios Fast XRF spectrometer.  

Sample phases composition were determined using a CubiX PANalytical diffractometer, 

with Cu K radiation operating at 45kV and 40 mA. The measurements were performed 

over a 2 range from 10o to 65o with a scanning rate of 0.021o per second and a step 

time of 14 seconds, with full run lasting for 50 minutes. The crystalline phases were 

identified and refined using the HighScore© program from PANalytical.  

3.5 Loss on ignition test (LOI) and free lime test 

LOI was determined by igniting a known mass of the sample at 950 oC [42]. The 

percentage of free lime was obtained by refluxing a known quantity of ground clinker 

(about 1 g) in an alcoholic solution of ammonium acetate. The mixture was filtered and 

titrated with 0.04 M EDTA [43,44].  
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3.6 Inductively Coupled Plasma (ICP-OES)  

The raw materials and the clinker samples were analysed to determine trace element 

and heavy metal contents. The digested sample was analysed for metals oxides using 

an inductively coupled plasma optical emission spectrophotometer (ICP-OES) analytical 

instrument (Agilent 5110 SVDV) with nebulizer flow of 0.70 L/min, plasma flow 12.0 

L/min, Stabilization time 6 seconds and 1.20 kW power.  

3.7 SEM-EDX 

This was used to identify clinker phase formation temperatures, by scanning samples 

under SEM-EDX that had been burned at temperatures from 1180 oC up to 1500 oC. 

The method was also used to detect trace elements in the different clinker phases. The 

polished cross-sections were studied in backscattered scanning electron (BSE) mode 

using a Carl Zeiss EVO MA15 SEM at 15 kV with a working distance of 8 mm, while 20 

kV was used for the elemental mapping.  

3.8 DSC-TGA 

Differential scanning calorimetry and thermogravimetric analysis (DSC-TGA) of the raw 

meals (RMind, RMRef., RM12, RM55 and RM100%) were performed using a DSC-TGA 

Universal V4.5A TA Instrument at heating rate of 10 oC/min, under normal atmospheric 

condition from 20 oC to 1450 oC [46]. 

3.9 Burnability test 

The burnability test was conducted by sintering in laboratory furnace for 45 minutes at 

five different temperatures (1300, 1350, 1400, 1450 and 1500 oC) [47,48]. 

4 Results and Discussion  

4.1 Mineral Composition  

The main clinker phases in all clinker samples are formed such as alite (C3S), belite 

(C2S), tricalcium aluminate (C3A) and ferrite (C4AF). The concentrations of alite and 

belite versus OBM cutting content is reported in Fig. 4. This figure shows the results 

from both Rietveld refinement of the XRD patterns and the theoretical calculations 

based on Boque equations (Table 3).  
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Fig. 3 XRD patterns of the prepared clinker 

 

There was no discernable change in alite or belite polymorph with OBM cutting content 

(Fig. 3). However, the levels of alite and belite formed was dependent on OBM cutting 

content (Fig. 4). This had not been especially predicted by the Bogue calculations, but 

the Rietveld refinement data showed a gradually decreasing alite content (and 

corresponding increasing belite content) with increasing OBM cutting content. Indeed, it 

is noteworthy that the Bogue calculations underestimated the alite content and 

overestimated the belite content at OBM cutting contents of up to 5%.  

While the industrial clinker showed the highest levels of alite, addition of OBM cutting to 

the reference raw meal led to increased alite contents. It was not until the OBM cutting 

level was over 15% that the alite content dropped below that observed for Ckref. These 



11 

 

differences could be explained while exploring the other parameters such as influence 

of trace elements content, raw materials characterization and OBM cutting behaviour. 

 

Fig. 4 Clinker phases concentrations by XRD Rietveld analysis (represented by full 
black line) and by Bogue equation (represented by gray dotted line) 
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Table 3 
Chemical oxide and clinker phases composition of the prepared clinker  

 Ckind. CkRef. Ck-12% Ck-55% Ck-100% 

Major oxides (% wt./wt.) 
SiO2 22.19 22.58 21.79 21.88 32.49 

CaO 65.45 65.32 65.87 65.68 51.55 

Al2O3 4.06 5.46 5.37 5.02 7.82 

Fe2O3 4.07 3.86 3.82 3.88 3.88 

LOI @950 oC 0.25 0.12 0.07 0.06 0.04 
 
Minor oxides (% wt./wt.) 
MgO 1.53 0.81 1.24 1.43 1.66 

SO3 1.40 0.30 0.83 1.57 0.33 

Na2O 0.25 0.32 0.35 0.34 0.20 

K2O 0.39 0.25 0.07 0.02 0.11 

Trace oxides (mg/kg) 
BaO - - 2300 8500 11500 

Cr2O3  1200 1100 700 600 500 

MnO 400 500 400 400 400 

P2O5 900 1200 1100 1200 1200 

TiO2 2400 3200 2800 2000 2000 
 
Clinker Module factors & phases (%) 
the phases calculated according to Bogue equations [52,53] 
LSF 92.53 90.5 94.33 94.22 48.45 

SM 2.46 2.42 2.37 2.46 2.95 

AM 1.22 1.41 1.41 1.29 2.02 

C3S 64.66 52.06 60.97 61.78 - 

C2S 14.93 25.55 16.57 16.21 <36.63 

C3A 3.87 7.94 7.77 6.74 14.16 

C4AF 12.39 11.75 11.62 11.81 11.80 
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4.2 CaCO3 decomposition 

Thermal analysis of various raw meal samples showed that the calcination temperature 

decreased with OBM cutting content. Calcite decomposition occurred at 817 oC when 

no OBM was in the sample, falling consistently with increasing OBM cutting content until 

the OBM cutting alone (Rm100%) showed decomposition at 763 oC. The greater than 

50 oC difference in decomposition temperature between limestone and OBM cutting is 

of interest. To understand why the addition of OBM cutting reduces the calcination 

temperature, it is important to study the nature of the calcite in OBM cutting and 

compare it with that in the limestone. 

Many studies [54–58] have reported the limestone reactivity and linked it to the calcite 

structure. Different grain sizes [59] and impurities within the limestone can cause 

variations in the limestone’s textural and mineralogical properties, and subsequently 

influence the calcination temperature [60]. This may also influence both the 

crystallization temperature in different phases of the clinker formation and free lime 

content in the produced clinker [61,62]. It has also been reported that the presence of 

dolomite in limestone helps speed up the calcite decomposition rate [62]. 

In 1962, Dunham [63] established a systematic classification scheme for carbonate 

sedimentary rocks. Initially known as the “Dunham Classification”, this was later 

modified by Embry and Kloven [64–66] to include coarse-grained limestone and 

became known as the “Modified Dunham Classification”. This has become the most 

commonly used classification in petrographic thin sections for identifying and 

distinguishing different types of limestone based on the grain-size, ratio, shape and 

microstructure.  

The Dunham classification divides limestone into six sub-classes based on the 

presence or absence of mud supporting the carbonate grains, the grain content and 

nature of the matrix during deposition. The limestones may be further defined by two 

sub-groups: 1) grain-supported limestone and 2) mud-supported limestone. This 

division depends on the percentage of the grains (known as allochems) or mud matrix 

(known as orthochems). The grain-supported limestone is characterized by texture with 
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little or no lime mud but an abundant framework of grains that support each other, while 

the mud-supported limestone consists of grains floating in a muddy, mainly calcitic, 

matrix [67].  

Analysis of petrographic thin sections of the limestone used here shows calcite crystals 

of a depositional texture, with no regular shape and unevenly distributed without 

common direction, (Fig. 5). The grains are coarse (>3mm) and compacted with no void 

space between calcite crystals, appearing flat and with some fractures. This limestone 

could be classified as crystalline limestone according to the Dunham classification [63].  

The OBM cutting meanwhile showed a different petrography, with the calcite being 

mud-supported, with loose packed grains and high porosity. The clay grains were 

mostly present as developed clusters and were immersed in oil. Lath shaped 

plagioclase grains with sharp grain margins were also present, as shown in Fig. 5c and 

Fig. 5d. The calcite showed round sub-millimeter grains, which were highly brittle and 

fragile in nature. Later XRD analysis of OBM cutting showed the presence of dolomite. 

Therefore, classification of the OBM cutting could be a mix between two or three types 

of limestone, falling between mudstone and wakestone. However, the classification 

certainly showed a difference from the limestone used in this research.  

These differences help to explain the lower decomposition temperature of OBM cutting 

compared to limestone. Firstly, the OBM cutting contained dolomite, while none was 

present in the limestone. Dolomite in limestone lowers the decomposition temperature 

of the calcination process. Marinoni et al. [68] showed that limestone decomposition 

starts with the rapid dissociation of dolomite in the first few minutes, followed by calcite 

decomposition. Dolomite dissociation occurs in a single step, without a calcite 

intermediate phase. This suggests that the presence of dolomite reduces the calcination 

activation energy [61,62,68]. Marinoni et al. [62] proposed that limestone dissociation 

starts with dolomite decomposition, resulting in the formation of grain cracks due to the 

CaMg(CO3)2 structure, increasing the surface area and so allowing CO2 diffusion 

[57,62,69].  

The lower decomposition temperature in OBM cutting may also be related to the calcite 

texture therein, which differs from the calcite in limestone, as explained above. Finally, 
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the OBM cutting is more porous than the limestone, allowing more surface area for heat 

transfer. As seen petrographically, the calcite grains float in the mud, with larger spaces 

between grains than in the limestone (Fig. 5c and 5d). 

Similar results were obtained by Marinoni et al. [62] and Galimberti et al. [61] when 

studying the thermal decomposition and burnability of limestone used for manufacture 

of industrial cement clinker. Using different limestone sources revealed that the texture 

of mud-supported limestone had a strong impact on the calcite decomposition 

temperature and its decomposition rate. According to the Dunham calcite classification 

[65,66], raw meal where the limestone is of grain-supported origin is more reactive. 

 
 

Fig. 5 Limestone and OBM cutting petrography analysis 
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The calcite grain size also has an effect on both the rate of decomposition and the 

temperature at which decomposition occurs. Coarser grains show higher decomposition 

temperatures and lower rates of decomposition [70], as illustrated in Table 4.  

Table 4 
Effect of calcite grain size on dissociation of limestone (according to Chatterjee [70]) 

Crystallinity Grain size, 
mm 

Relative rate of 
dissociation 

Relative dissociation 
temperature 

Very coarse grained > 1.00 Lowest Highest 
Coarse grained 1.00 – 0.50     
Medium grained 0.5 – 0.25     
Fine grained 0.25 – 0.10     
Very fine grained 0.10 – 0.01     
Microcrystalline < 0.01 Highest Lowest 
 

The effect of particle size was confirmed by grinding the limestone for 5 minutes and 

then obtaining two fractions; that passing a 212 micron sieve and that passing a 63 

micron sieve. These two fractions were compared against ground OBM cutting passing 

through a 212 micron sieve. The particle size distributions of the three resultant 

materials were comparable to materials used in a cement plant and are shown in Fig. 6, 

together with TGA analysis of the three samples. The finer limestone decomposed at a 

lower temperature than the standard limestone, with OBM cutting decomposing at a 

lower temperature still. Thus, the lower decomposition temperature of the OBM cuttings 

may be explained by the finer calcite grains (Fig. 5c and 5d) and the presence of 

dolomite. The calculated activation energies (Ea) of CaCO3 decomposition for limestone 

and OBM cutting are 154.43 J.mol-1 and 181.46 J.mol-1 respectively (Fig. 7), confirming 

the observations made by Chatterjee et al. [70]. 
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Fig. 6 Particle size distribution and decomposition temperature of: 1) fine limestone, 2) 
limestone, and 3) OBM cutting 
 

 

 

Fig. 7 Activation energy value of CaCO3 decomposition reaction in limestone and OBM 
cutting 
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4.3 Burnability 

Fig. 8 shows the burnability data obtained in this study. Fig. 8a shows the data obtained 

from cement industry raw meal (RmInd.) and the reference raw meal prepared in the 

laboratory (RmRef.). The free lime content for both mixes fell with increasing 

temperature. However, the free lime content of RmInd was always greater than that of 

RmRef, with the difference between the two decreasing with increasing temperature, until 

the difference was minimal at 1400 oC and above. The higher free lime content for RmInd 

could be due to its higher LSF, i.e. 92.53 compared to 90.50 for RmRef  (see Table 3). 

Thus, there is more CaO to be consumed during clinkering. This is supported by the 

convergence of the two data sets with increasing temperature. Both mixes showing 

similar burnability behavior validates the use of the reference raw meal in comparisons 

with raw meal prepared using OBM cutting. 

Fig. 8b shows the burnability results for RmRef plus raw meal prepared using 12%, 55% 

and 100% OBM cuttings. Despite the falling free lime contents with increasing 

temperature, there was an increase in free lime with increasing OBM cutting content, 

suggesting harder burnability. However, this did not apply to the sample prepared from 

100% OBM cutting. This sample showed very easy burning behaviour (Fig. 8c). The 

free lime dropped significantly, even at 1300 oC (0.2% free lime), then showing only 

0.02% free lime content when heating at 1500 oC. However, as shown by XRD analysis 

(Fig. 9), when burned at 1200 oC, the 100% OBM cutting showed belite formation and a 

very low free lime content. Higher temperatures still led to no alite formation due to 

there being no CaO remaining as shown in Fig. 13d. This was confirmed by SEM-EDX 

analysis (Fig. 10), where no alite was observed. The absence of alite can easily be 

understood in terms of the LSF, which at 48.45 was considerably lower than for all of 

the other samples.  
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Fig. 8 a) The burnability test result of the reference sample vs. industrial raw meal. b) 
The burnability test of the reference sample vs. raw meals with 12%, 55% and 100% 
OBM cutting 
 

 

Fig. 9 XRD pattern of the different raw meal samples burned at different temperatures, 
the arrows show the free lime peak at 2theta = 37.36º. 

 

 

a. 

b. 
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Fig. 10 Left: clinker sample (100% OBM cutting) after burning at 1450 ºC in platinum 
crucible for 30 minutes. Right: SEM analysis of the same clinker sample on the left 
 

4.4 The XRD and TGA  

XRD and TGA were used to measure clinker phase composition and obtain information 

on the changes in clinkerization during the heating process. Thermal analysis (Fig. 11) 

showed that all of the changes occurring during the heating process, including CaCO3 

decomposition, belite formation, liquid phase and alite formation (liquid phase sintering) 

shifted to lower temperatures as the OBM cutting content of the raw meal increased.  

The effect of OBM cutting on CaCO3 decomposition temperature was described earlier, 

but the effect on other phases is described below. At higher temperature (above 1338 
oC) [71] the liquid phase develops. This comprises mainly Al2O3 and Fe2O3 bearing 

phases. These are essential fluxes, lowering the energy required for completing the 

clinkerization process. When melting commences, the liquid content can increase 

significantly, up to 15 – 25% [71]. The presence of other minor oxides such as SO3, 

MgO and alkalis can have an influence by lowering the energy required to form the flux. 

In this study RMInd showed the presence of a liquid phase from 1334 oC, very close to 

temperature of liquid phase reported in the literature [71]. However, RmRef showed 

temperature of formation of the liquid phase from 1331 oC which also close to industrial 

sample. However, with increasing OBM cutting content, the liquid phase formed at ever 
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lower temperatures, decreasing to 1320 oC with 55% OBM cutting and 1263 oC when 

100% OBM cutting was clinkerized. This could be attributed to the present of minor 

oxides from the OBM cutting, as shown in Table 3 and Fig. 12.  

 

Fig. 11 Calcination temperature and the temperature of main phases of the clinker 
formation of raw meal with increasing % of OBM cutting which is obtained from the DTA 
analysis (the trend lines are moving average trendline) 
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Fig. 12 Minor oxides content in prepared clinker 
 

 
The decreasing temperature for the onset of liquid phase formation with increasing 

OBM cutting content also influenced the sintering temperature. The role of the liquid 

phase at this stage is very important and critical to the clinkerization mechanism. The 

liquid wets the solid grains, forming an interpenetrating film [71]. This has two main 

functions: 1) its surface tension pulls the solid grains together, serving to form clinker 

nodules. 2) It also eases transport of the main oxides in the liquid phase during the 

sintering stage and aids formation of alite and belite. The lower temperature for the 

onset of liquid phase formation, due to the presence of the minor oxides, impacts also 

on the sintering temperature, which were too close for RmRef and Rm12 at 1434 oC and 

1431 oC respectively. However, the sintering temperature fell to 1424 oC for Rm55. 

The clinker sample made with 100% OBM cutting, CK100%, showed formation of belite 

at 1200 oC, as indicated by XRD and SEM-EDX analysis. At higher temperatures, no 

further new phases were formed. The CK-100% at 1450 oC showed belite grains 
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swimming in a high melt content (Fig. 10), a result of the high concentration of Al2O3 

and Fe2O3 % in the mix. 

4.5 The Effect of Barium on clinkerization 

As shown above, the incorporation of OBM cutting had a slight, yet noticeable effect on 

clinker composition. Initial elemental analysis of the raw materials showed that a 

number of trace elements were present in the OBM cuttings (Table 1), while the 

presence of some trace elements plays a major role on clinker phase formation [72–79]. 

This was thus investigated further, with particular focus on the barium content.  

In RmRef, the belite and alite formation temperature was 1284 and 1331 oC respectively, 

but these fell upon incorporation of OBM cutting. SEM-EDX and and ICP analysis 

(Table 5) both showed an increase in barium content with increasing OBM cutting 

content. Furthermore, SEM-EDX analysis revealed the distribution of barium through 

the clinker phases. The highest barium concentration was found in the liquid phase. 

Table 5 
BaO content in clinker phases (mg/kg) 

Sample  CkInd CkRef. Ck12 Ck55 Ck100 

Alite - - 3500 4200 -* 

Belite - - 2500 19800 64000 

Liquid phases - - 25700 24600 143200 

*no alite observed in Ck100. 
 

The effect of barium on phase composition is related to the free lime content. An 

increased free lime content indicates reduced burnability and incomplete formation of 

the main clinker phases. This is possibly due to alite formation being destabilized. As 

stated earlier, the addition of OBM cutting decreased burnability and the free lime 

contents increased (Fig 13). With the OBM cutting containing 0.85 wt% BaO, the barium 

content of the clinker increases with increasing OBM cutting content. It has repeatedly 

been shown that BaO has a negative influence on alite formation, thus increasing the 

free lime content. Kolovos et al. [74,80] studied the effect of raw meal BaO content on 
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the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system. They noticed that the addition of 1% 

BaO to the raw meal then sintering at 1200 oC and 1450 oC led to an increase in free 

lime compared with the reference sample. This BaO was then shown, by SEM analysis, 

to concentrate in the melting phase of the clinker.  

Other studies [74,81-84] have also reported on the impact of barium on clinkerisation 

reactions. These mostly confirm that the free lime content increases with barium 

content, and that barium is mainly concentrated in the melting phase. Furthermore, 

Zezulova et al. [81], in addition to showing high BaO contents in the melting phase, also 

reported higher concentrations of BaO in belite than alite. This is possibly caused by the 

crystal lattices of alite and belite, with the belite structure being more accommodating of 

foreign ions [81]. 

 

Fig. 13 The free lime content for each clinker sample 
 

Clinker morphology and chemical composition was then studied by SEM/BSE imaging 

and EDX analysis. Below 1250 oC, clinkerization proceeded through solid-solid 

reactions, in the absence of the liquid phases. These reactions occurred at the original 

phase boundary between the solids [85], leading to the formation of belite, see Fig. 

14A1. This happens through diffusion of the CaO on the SiO2 surface as could be seen 

in the SEM-EDX in the reference clinker sample CkRef. and the industrial sample CkInd 

which are shown in Fig. 14A1 and 14B1. EDX analysis revealed a cluster of SiO2 
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surrounded by the CaO. This led to belite formation, which is known to form between 

900 oC and 1250 oC [86,87] with the precise formation temperature defined by a number 

of factors, such as minor compounds [72,74,76,79,88,89], particle sizes [90] and 

retention time [40]. 

The raw meal containing 12% OBM cutting showed some formation of alite at 1350 oC 

(Fig. 14A1). Free lime was present in clusters, but belite was not observed. The co-

existence of alite and free lime without belite suggest that no further alite could be 

formed, irrespective of temperature, because no belite is available to react with any free 

lime. Fig. 15 shows the SEM images with EDX mapping for Ck100% heated at three 

different temperatures; 1300, 1350 and 1400 oC. At all temperatures, belite was the 

dominant phase, showing rounded to regular edges. XRD patterns from Ck100% 

heated to 1000 oC showed formation predominantly of belite, plus free lime (Fig. 16). 

However, upon heating to 1300 oC there was no evidence of free lime in either the XRD 

patterns nor the SEM images. The same was observed when the temperature was 

raised further, to 1350oC. While temperatures above 1400 oC would normally be 

expected to yield alite, the lack of free lime in the Ck100% sample meant that alite 

formation was not expected. XRD analysis confirmed the absence of alite. Finally, EDX 

mapping revealed the concentration of magnesium and barium in the liquid phase, at all 

temperatures (Fig. 17B1 and 17B2), with the formation of C3A and ferrite.  
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Fig. 14 Microstructure of clinker samples analysis. 



27 

 

 
 
 

Fig. 15 Microstructure of clinker samples analysis that prepared by 100% OBM cutting
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C: Calcite, D: Dolomite, F: free lime, Q: Quartz  

Fig. 16 XRD of OBM cutting heated to different temperatures 
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Fig. 17  Microstructure of clinker samples analysis 
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5 Conclusions 
 

The results presented in this study demonstrate that the clinker prepared using OBM 

cutting has very similar properties to those of the clinker prepared from limestone 

normally used in cement production. This implies that OBM cutting could be recycled in 

the manufacturing process of Portland cement clinker. More in detail, the main results of 

this study are listed as follows:  

- The addition of OBM cutting lowers the calcination temperature. This is because 

the calcite in OBM cutting has a smaller grain size than that in limestone.  

- Furthermore, the OBM cutting contains some dolomite (CaMg(CO3)2). This 

increases the rate of carbonate dissociation, thus contributing to lowering the 

calcination temperature. 

- However, the addition of OBM cutting to the raw meal leads to a higher free lime 

content in the resulting clinker. This can have several causes. In this work, the 

role of trace elements, especially barium, in destabilizing alite has been 

demonstrated. 

Clinker could be prepared simply by heating the OBM cutting at 1200 °C, without 

any additives. The XRD and SEM-EDX analysis of the resulting clinker showed 

the formation of belite with a very low free lime content, and no alite formation. 
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