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Advanced Internet of Things for Personalised
Healthcare System: A Survey

Abstract—As a new revolution of the Internet, Internet of Things
(loT) is rapidly gaining ground as a new research topic in many
academic and industrial disciplines, especially in healthcare.
Remarkably, due to the rapid proliferation of wearable devices
and smartphone, the Internet of Things enabled technology is
evolving healthcare from conventional hub based system to more
personalised healthcare system (PHS). However, empowering the
utility of advanced loT technology in PHS is still significantly
challenging in the area considering many issues, like shortage of
cost-effective and accur ate smart medical sensors, unstandar dized
loT system architectures, heterogeneity of connected wearable
devices, multi-dimensionality of data generated and high demand
for interoperability. In an effect to understand advance of 1oT
technologies in PHS, this paper will give a systematic review on
advanced 10T enabled PHS. It will review the current research of
loT enabled PHS, and key enabling technologies, major loT
enabled applications and successful case studiesin healthcare, and
finally point out futureresearch trends and challenges.

Index Terms— Internet of Things, Personalised Healthcare,
Lifelogging.

I. INTRODUCTION

Recently, Internet of Things (IoT) is emerging as a ne
paradigm in information technology aimed at building u
a dynamic global network infrastructure by connecting

are now facing the fact that their fast-growing demographics is
the over80s This trend brings with some key concerns about
the economic viability of traditional healthcare systems, and
thus it needs to design and develop more coherent and
ubiquitous ICT enabled solutions for delivering high quality
patient-centred healthcare services. Fortunately, due to the
rapid proliferation of wearable devices and smartphone, 10T
enabled technology is evolving healthcare from conventional
hub based system to more personalised healthcare system.
Successful utilization of 0T enabled technology in PHS will
enable faster and safer preventive care, lower overall cost,
improved  patient-centered  practice and enhanced
sustainability[1]. Future I0T enabled PHS will be realized by
providing highly customized access to rich medical information
and efficient clinical decision making to each individual with
unobtrusive and successive sensing and monitoring.

But empowering the utility of IoT enabled technology in PHS
is still significantly challenging in the area considering shortage
of cost-effective and accurate smart medical sensors,
unstandardized loT system architectures, heterogeneity of
connected wearable devices, multi-dimensionality and high
volume of data generated, and high demand for interoperability.
From user-centered perspective, the successful use of 10T in

HS will also need an interoperable 10T environment for care
;gelivery and research, tightly-coupled health data mining
applications, adequate data and knowledge standards of self-
empowerment and sound clinical decision-making foundation.

variety of physicahnd virtual ‘things’ with the growing mobile
and sensors. 0T was initially proposed to refer to unique}g“
identifiable objects (things) and their virtual representations T ; X
an internet-lik]e stru(cturg,)by mean of using Fr)adio—frequen&f)pl'cat'Ons in loT enabled PHS field. .
identification (RFID) technology. Later on, the concept of 0T In an .effect to understand advance of loT technologies
has been extended cover more type of ‘things’ with a variety PHS, this paper conducts survey on rgcent advapced loT
of sensors, such as actuatagebal positioning system (GPS) enab!ed PHS. Wendeﬁook an extensive hteratul're review by
devices and mobile devices. The seamless integration afjfmining relevant articles from major academic databases

effective harnessf these sensors in a platform associated to th&-EE Xplore, ACM digital library and Science-Direct). Key

Internet have raised up a lot of research issues, from systi§fch terms include the key words “Internet of Things’,

architecture, data processing to applications. Nowadays, Iﬁgalthc.zre” ‘Perv'“f‘sw}f Heal}tlhcaire’. and“;MOlbﬂe H?althzarﬁ’
technology has been rapidly gaining ground as a priorifif!d @ Wide range of other technologies. We also reviewed the

multidisciplinary research topic in many academic an@eﬁear_ch_prloj“t_s relatﬁd to Iog’ e-health, smart healthcare, etc. )
industrial disciplines, especially in healthcare. e initial review shows that some recent survey papers [2]

Traditionally, the motivation of utilizing modern Information[201] have reported and analyzed some loT related techniques

and communication technologies (ICT) in healthcare systemf%' healthcare applications, like wearable sensing technologies

to offer promising solutions for efficiently delivering all kinds " h.ealth_care. [2]. mobile phone sensing technologies [201], or
of medical healthcare services to patients, named as E-he bient intelligence for hgqlthc_arg .[202]' But these swvey

such as electronic record systems, telemedicine systerﬁLOSt concentrate on examining individual layer of 10T enabled
personalised devices for diagnosis, . eBut, driven by a systems like sensing or data analyand lack of a systematic

sustained increase in longevity, many developed countriesARSPective review from the entire 0T eco-systems. So many

ese above challenges and needs grant a lot of opportunities
explore and investigate new concepts, algorithms and
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Fig.1. Four-Layers SoA in IoT enabled PHS.

research issues and factors related to the system level are

ignored, for instance, the involvement of human factors in loT ~ |I. CURRENT RESEARCH FOR |OT ENABLED PHS
systems, the security and privacy concerns of loT architectu
Also, they rarely notice that 10T enabled healthcare is gradua[’@
transferring traditional clinic-centred health systems into more

personalised and mobile-centred healthcare systems (PHS). s rapid advances in sensing technologies, more heterogeneous
Therefore, the key novelty of our review will focus on a firsfS "aP 9 ges, 9

attempt on systematically categorize PHS technologies from Sf'S0'S~ such as accelerometers, gyroscopes, altimeters and
classic 4-layer loT system perspective, focusing on identifyir_@her portableilow-cost de\{lces are capable of bglng connected
the breadth and diversity of existing research in loT enabldig @n 10T environment. Driven by the exponential growth of
PHS, including key enabling technologies, related applicatiorfgommercial wearable-dewces land mobile apipes concept Of_
and successful case studies in 10T enabled PHS. It explol@§ based PHS [5] is established and become incregsing
some new potential research issues, and highlights the fut@@pular These healthcare systems [25-28] useset of
research trends and challenges for researchers regarding theniegconnected devices to create an loT network for performing
of 1oT in PHS. healthcare activities, such as diagnosis, monitoring and remote
The rest of the paper is organized as follows. Section surgeries. In terms of a well-known definition of four layefE lo
presents the background and current research of IoT enabdgdtem architecture, as shown in Fig.1. A number of typical of
PHS. Section Il reviews key enabling technologies oktudies in a loT enabled PHS will be categorized by sensing,

developing loT enabled PHS. Sectidw describes key networking, processing and application, as shown in Table.1.
applications and case studies related to IoT enabled PHS.

Section VI discusses research challenges and future trends.
Conclusion is given in Section VII.

e initial vision of IoT was to extend the term “Internet” into
e real world embracing everyday physical objects by means of
adio Frequency Identification (RFID) technold@y3]. Soon,



Table.l. Typical Studiesin IoT enabled PHS Table (ACC-accelerometer; EEG-electr oencephalogram; ECG-
electrocardiogram; gyro-gyroscope; DT-decision tree; SVM-support vector machine; HMM -hidden M arkov model)

Sensing layer Network Processing layer Application Assessment
layer
Device Placed Network Methods Users Subjects Accuracy Advantages | Limitations
specificatio position
n
1 ACC Back Chipcom Self-defined Young Walk, fast 91.5%- Recognition Low-cost Short time
CC2430 thresholds healthy walk, 100% and simple monitoring;
transceiver people ascend monitoring | algorithms; | uncontrolled
stairs, etc. elder people| adaptive environment
at home
[10]
ACOR+ day: belt; Bluetooth DT Patients, Postures, 77%-94% COPD Simple The model
kinematic night: chest healthy walk, read, patients device and | only useful
system people exercises monitoring.[ | algorithm for COPD
11] patients.
Multi- Head Bluetooth SVM Twenty Awake, 98.5% + Lifelogging Real-time Mulitple
channel mentally drowsy, etc 1.4%. mental feedback on| sensors may
sensor healthy fatigue mobile incerease
module people monitoring[ device. the cost and
(EEG, 12] simplicity.
respiration)
ACC and Feet Bluetooth SVM Young, mid- | Postures, 92%-98% Reduce Energy Smart shoes
pressure aged healthy| walk, step, Energy and efficient; are non-
Sensors; people sweep, memory on real-time universal;
cycle, jog smart feedback no mention
phone[13] of
feasibility.
Wearable Wrist Not Multivariate 16 elder Sleep, wake Not Monitoring Real-life No obvious
device mentioned analysis people mentioned elderly environment| disadvantag
health and ; high es
sleep targeedsubj
patterns[14] ects
SHIM- Wrist Bluetooth DT, 20 people Baseline, 92.4% Continous | Inclusive of | Patients are
MER's ECG Bayesian stressed human PA impact not
and GSR Network, stress on the considered
SVM, K- monitoring | stress; long-| and tested.
Means for term
intervention | monitoring.
s[15]
13D ACC, | ACConthe| ZigBee, Wi- SVM Not Run, go 90%-99% lifelogging The Lack of
1 wearable belly; Fi, mentioned | downstairs, health approach privacy;
camera Camera Bluetooth go upstairs, monitoring could inconvenien
hung over take an in context- recognize ce in daily
neck elevator, aware movement lives;
walk, etc. enviornment| directions. limited
[16] subject
categories.
Mobile No strict Bluetooth, HMM, DT 16 healthy Still, walk, 87.9%- lifelogging No needs Not
phone position GSM, WiFi people (8 F,| run, cycle, 96.2% healthecare| for phone’s mentioned
8 M, ages motor monitoring, | 6DOF; fine | whether the
20-45) personal grained model is
transporatio activity useful for
n[17] categories. elderly or
patients.
1 gyroon Feet, knee Not Knowledge- | 10 people, 6| Walk on >96% A system of Identify No obvious
shoe mentioned based people with level controlling transitions | disadvantag
impaired ground, the gait in gait es
gait walk up and cycle of a phase;
down a neuroprosth present
steep, etc esis for walking and
walking in | non-walking
real time activities
[18]
13D ACC, Upper and Bluetooth Kinematic 8 healthy circular, 95%-98% | home-based| low-cost, No obvious
13Dgyro, 1| lower limb modelling | male people| rectangular stroke real-time disadvantag
3D (24-40 motion, rehabilitatio robust in es
magnetic years old) reach, n[19] different
sensor. elevation motion
etc circumstanc
es




The sensing layer for PHS aims to design and develop novelThe processing layer of 10T enabled PHS targedesigning
sensors or sensing technologies for effectively and efficientlyseful computational methodologies for processing a variety of
collectinga variety of types of personalised health and medicalomplex health related data with aiming quality. The early work
information in an loT environment. Existing sensors anth mobile health focuses on developing specific algorithms for
wearable devices, such as inertial sensors [19], GPS (Globame diseases related data rather than general methods handling
Positioning System) [24] , ECG [26] E& [29] are capable of both health and medical data. For instance, Acampora et. al[39]
observing and recording multiple type health data, includingviewed a number of ambient intelligence algorithms in
weight, location, heart rate, blood pressure and user-cont8g@lthcare regarding five applications: activity recognition,
information. Also, many studies[34B5]begin to use behavioral pattern discovery, anomaly detectamd decision
smartphone to collect human emotion and behavior data ypport. But now in the IoT enabled PHS, the key role of specif
specific mobile applications. So far, these sensory techniques agglication is mostly categorized into the application layer, the
relatively technically and functionally sophisticated in manuallgtudy focus of data processing layer here has transferred to
controlled environments. But designing cost-effective and nogeneric algorithms to improve the accuracy and validity of
invasive wearable devices is demanding and challenging. Mafgalth data and or new data analytic tools to facilitate scalable
researches[36]38]focus on developing some novel accuratedssessable and sustainable data structure. So this paper will
reliable cost-effective and non-invasive sensing techniques ffmmarize data processing algorithms for loT enabled PHS into
an automatic collection of human health data in loT basdfiree key parts: data driven approachksowledge-based
uncontrolled environments approaches and hybrid approaches. More specifically, data
The networking layer for PHS is responsible to connect &lfiven approaches mainly contain supervised learning, semi-
devices in sensory layer together and allow personalised hegupervised learning and un-supervised learning methods;
data to be collected, stored, transmitted, shared and aggreg&t@vledge-based methods cover modelling and semantic
under loT infrastructures. Also, it provides interoperability anteasoning approaches; hybrid approaches are a combination of
security needed in the context of 0T for healthcare. Riazul Isla@yove two types of approaches by integrating machine learning
et.al [39] has reviewed a staiéthe art of loT healthcare into knowledge reasoning. The section IIl.C will provide a
network with three issues: topology, architecture and platforréietailed description of utilisation of these data processing
Each issue has become one of the vital research sub-streafpproaches into IoT enabled healthcare data analytic.
the 10T enabled PHS. Traditional loT topology for PHS refers to The role of application layer in loT enabled PHS is mainly to
the representation, configuration and deployment of differeptovide high quality services and edsyuse interfaces to end
health sensor elements in an loT healthcare network, such as Pgrs. As mentioned before, previous mobile health researches
[40], Star [41] and Mesh [42]. As the growth of connectedo not consider application as an individual layer in healthcare,
devices and sub-networks, one key research issue of l8md combine the interface or usability into algorithm layer. So
topology for PHS is how to transfer the heterogeneous static dhgir research focuses on evaluating if entire system or new
mobile devices into hybrid computing grids. Regarding lo®Igorithms have practical effect or help on medical care. In the
architectures for PHS, many previous studies have used IH9@ environment, PHSs are used by a large-scale population so
[43] or 6LOWPAN [43] systems as a basis IoT structure, whidhat the scope of research in application layer has expanded into
can enhance the quality of data [46] transmission and extend fhere wide areas, including healthcare service discovery,
range of healthcare services with mobility and scalability. [47ealthcare service composition, healthcare platfohml,
Now, in order to support more standards for interoperatiien, human-computer-interaction in healthcaretc. Moreover
service-oriented architecture (SOA) [46] has been proposed dddies of application layer in loT enabled PHS also covers
validated by many researchers as a promising solution in I@ifferent kinds of healthcare applications in academia and
enabled PHS. Under SOA, a number of standards have béegustry, like continuous monitoring, assisted living, therapy
built to support the needs of interoperability, like Extensibl@nd rehabilitation, persuasive wellbeing, Emotional Wellbeing
Markup Language (XML), Simple Object Access Protocoind Smart Hospitals, etc.
(SOAP), etc. Some studies [43], [48] investigate the issues ofMobile technologies nowadays play essential roles in
cost, risk and profit in implementing SOA for large-scale lohealthcare monitoring and services. These technologies include
enabled healthcare systems. Apart from above two issuesmobile phones, personal digital assistants (PDAs), mobile
networking layers, designers also need to address factors sg@meras (e.g., SenseCamjnart watches, etc. As most of
as network management technologies for heterogonon’@b“e devices are embedded a Variety of inertial sensors (e.g.,
networks (such as fixed, wireless, mobile, etc.), energiccelerometer, gyroscopes, etc.) and biomedical sensors (skin
efficiency in networks, QoS requirements, service discovetgmperature, heart rate, etc.), they are designed for providing
and retrieval, data and signal presig, security, and privacy. personalised and continuous cares for users. For example, many
Particularly, since personalised health information is relativejobile products (e.g., Fitbit) and applications (e.g., Moves} hav
sensitive for users, any inappropriate disclosure may violdbeen released for the long term record and collection of p@rson
user privacy. The work in studying security and privacydar lifelogging physical activity [51]. Somdevices involve in
enabled PHS has triggered many solutions, like reliable routipgtient’s self-management and interventions .[1Dther
[49], cryptographic scheme [5Qirivacy-preserving health data applications that make use of inertial sensors are capable of
aggregation [48], falling detections and thus avoid undesirable consequences [59]
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I11. KEY ENABLING TECHNOLOGIESIN IOT ENABLED PHS  sensor technology for healthcare requires a much higher level of
. . . . privacy protection. Especially in a lifelogging mode of loT
A Sensing and Identification Technologies enabled PHS, how to store and protect high volume of image
Sensing and identification technologies target at recogniziggts is a big challenge.

physical objects and gathering human health information from another key trend in IoT related sensing technology ighieat
sensors, tags, etc. The prominent development of low-cost gfghearance of many commercial wearable products and mobile
smallin-size wearable sensor such as inertial sensors (egpplications enables a possibility of collecting multi-types of
accelerator, gyroscope or barometric pressure sensors) fafsonal health data with hybrid sensors. The most famous
physiological sensors (e.g., spirometer, skin temperaturersenggpile apps, such as Moves [68], are based on smartphone 3D
or blood pressure cuff), as well as wearable devices (e.g., fithngggelerometer data and GPS information. It allows tracking user
band or mobile phone) has facilities the process of me@surigovement activities including location, distance and speed. The
attributes related to individuals and their Soundings. As a maméaratﬂe productS, such as Fitbit Flex [agﬂke+ Fuelband

risk measure for chronic diseases, a number of wearable sensgy, Withings [71], are all wristband devices that

are studied by researchers for monitoring daily healthcare. Tableaple .2. Typical sensing and identification technologies
2 shows a list of wearable and ambient sensor categories.

Inertial sensors are small-scale MEMS devices, whicensor Sensor Sensor Measur ed
usually fit for measuring human physical activity. They gr&2iedory | subcategories Acce‘i’é??n‘:'eir 73 Lingii@iifation
placed on different parts of body [24]. Accelerometers ¢an of movement
measure degree of position changes of human motjowearabl Inertial Gyroscopes [55] Angular rotational
Gyroscopes are generally combined with accelerometers fopensors Sensors velocity
measuring rotational movements in keen joint rehabilitations Pressure sensors [63  Object’s altitude
[74]. Applying both inertial sensors also enable accurately Magnetic field Location of higher
detecting a specific type of human motion and behaviors, guch ocaton sg”;gr;a?] gﬂ?éféﬁjg;‘:ité%l
as bend knees, descend stairs [18], ascend stairs or turning| [57]. sensors
Their applications cover gait rehabilitation, joint pathology Blood pressure cuff| Systolic and diastolid
[5],stork [10] Parkinson’s disease [57] and fall detection o [75] blood pressure
[53].Similarly, pressure sensors, along with accelerometers|are Physiological | Electrocardiogram Rhythm and

. N . : sensors (ECG) [27] electrical activity of
also useful in monitoring stairs behaviors[62] and fall detectjon the heart
[63] owning to their relationship between sensory readings and Spirometer [76] Expiration, flow rate
altitude. Magnetic field sensor is another type of inertial sensor and lung volume
that can be abled to be placed close to measurement locatign for Electrooculography | Eye movement
achieving high spatial resolution to detect humatirection. (jsai?c[yk]m SKin surface
For instance, in order to recognize a activitywihtching TV”, resgonse (GSR) [15] temperature
a study [64] presents that a magnetometer based system|with Image sensor§ ~ SenseCam [66] | Photographs of daily]
combining accelerometers and indoor localization can telathat living
person is facing to a television. Ambient | Environment Thermometer [78] Indoor/outdoor

. . . . sepnsors sensors temperature

Physiological sensors are mainly designed for measuremen Hygrometer [79] Indoor/outdoor
of specific health related personal data, like heart, rate humidity
temperatureln order to ensure high accuracy of measurements, Window contact [80]| Window open/close
physiological sensors used to be relatively expensive and are ) state
mostly used in clinics. Now, advance sensory techniques bpost férr‘]ggs Door contact [80] | Door ;’t‘;f;‘/c'ose
the design and developmenfta large amount of cost-effective Light switch [80] light on/off state
physiological sensors. For instance, Electrocardiogram (ECG) Remote control Remote control
for heart rate monitoring has been broadly contributed| to switch [80] on/off state
physical activity recognition and monitoring [65] and daily Infra-red [81] Indoor localization
patients [61] health monitoring. More importantly, these Location Zigbee [82] Indoor localization
physiological devices are feasible to be used inofiespital sensors Active RFID [3] indoor localization
conditions, can enable a health data transmission thrgugh Tags RFID tags [83] Objects individual
Internet. interact with

Image sensor in 10T enabled PHS usually indicate a camera NFC tags [84] Objects individual
that is utilised for recording and understanding human activities, interact with

emotions or other contexts by using image or video processing

techniques. Typical image sensor related 10T enabled Phiscord steps count, distance, and calories burnt. These health
cases[100] include SenseCam, Sony Xperia eye, Téteir related data are synchronized to mobile phone via blue-tooth,

developers usalow cost wearable camesasvisual life-logger  and further used in relevant mobile applications.

for recording user daily activity related image sequences. With Apart from above wearable sensor technology, ambient

support of location data and image annotation, these tools eahsor technology is also an important stream for loT enabled

effectively recognize users’ daily activity and behavior, further PHS, as shown in Table.2. Typ|Ca| ambient sensors include

results in improved and innovative home care solution for oldefvironment sensors, binary sensors, location sensors, etc. Thei
people. But compared with other sensor technologmeage appliances focus on smart-home or smart-hospitals. Considering
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that the attention of this paper is to review technologies for Lastly, after collecting diverse health data, security and
personalised healthcare system, we mainly summarize kayvacy issues are critically important to loT enabled PHS.
wearable sensing technologies for IoT enabled PHS in thfiang et al [107] reviews these two issues for mobile healthcare
paper. networks from a quality of protection perspective: privacy
leakage, secure data access and processing, malicious attacks
and misbehavior. In order to solve these issues, a number of
Typically, networking layer in 10T applications contains a wid@esearches have been carried out. Zhang &5hpfoposeda
field of concepts and techniques, such as communication asi§brity based health data aggregation method for cloud assisted
location technologies, topologies, architecture, security aggBANs. It can aggregate different types of health data within
privacy, etc. However, for IoT enabled healthcare applicationgnable delay requirements, and also protects data and identity
asignificant obstacle is that the majority of existing loT enablegrivacy during transmission. Zhou and Ren [87] suggest a
PHS system has limited permission on accessing and connectffieme to securely and efficiently outsource the
hospital systems due to severe considerations on patients re¢@jighputationally intensive access control operations of ABE
and data. Thus, existing end-points of networking layer in lofattribute Based Encryption) to the shared cloud, thus further
enabled PHS mostly rely ortkird party server from companies providing a fine-grained accesserol to users’ important data.
or organizations with similar protocols. Thus, we will mainlyith this scheme, in a high level view, data owners only need
concern three research issues mentioned in Section II: topologyspecify access policies on the encrypted data; and their access
architecture, security and privacy. control can be done automatically by the cloud. For preventing
From classic networking standards perspective, Iohishehavior detection in IoT enabled PHS, Zhang et al [89] also
topologies can be categorized into three basic netwogeveloped a social-based mobile Sybil detection scheme for
topologies:  p2p[40], star[41] and mesh[42]. Theigxploring mobile user’s pseudonym changing behaviors and

characteristics, capabilities and behaviors are reflected by fiygntact statistics to differentiate Sybil attackers from normal
key factors: latency, throughput, fault resiliency, scalability,sers.

hops and range. But for 10T enabled PHS, the topologysiee ) )
be a heterogeneous computing grids for collecting enormotys Data Processing Techniques

amount of vital signs and health data, such as blood sug@gta processing techniques for healthcare contains a quite wide
physical activity, blood pressure, oxygen saturation, etscope regarding differenttypes and format of data, different size
Viswanathan et.al [85] presents a new mobile grid computireg data, different purpose of applications. So here we only give
topology ‘hybrid static/mobile computing gridor data- and a brief introduction of computational methodologies for health
patient-centric 10T enabled healthcare systems. It transfers tietated data processing mentioned in section I, with a
heterogeneous computing and storage capability of static asldssification of data-driven approaches, knowledge base
mobile electronic devices into hybrid computing grids bwpproaches and hybrid approaches, as shown in Table.3.
employing self-optimization and self-healing. Yang et.al [51
also introduces an loT topology that supports the streaming

B. Networking Techniques

]c}]:able .3. Data processing techniquesin 10T enabled PHS

ultrasound videos through an interconnected network witbategory Sub-Categories | Algorithms | References
worldwide interoperability for microwave access (WiMAX), gnPata-driven | Supervised ANNs [23],[90], [150]
internet protocol (IP) network, and a global system for a mobif@P'oaches | learning g\'\/"&"s [gi]*[lgg] oI TRRY
(GSM) network as well as usual gateways and access sefvice {122]’ %12]4] [42], [111]
networks. Jara et.al [52] also introduces a topology that Decision [36], [126] [130]
considers an intelligent medicine box as a gateway to conpect tree
various wearable sensors, health-loT cloud and heterogengous Semi- Cotraining | [133], [38], [109], [110]
network for supporting clinical diagnosis and analysis. The role ﬁa“aprﬁirxged
of gateway in this IoT topology can examine, store and display Unsupervised | Expectation | [111], [L12], [95]
all collected health data. learning maximum

Regarding loT architecture, SoA has been considered as a K-means | [161], [165]
key technology in integrating heterogeneous systems or devi&@gwiedge- Semantic | [114-{116][117]
In 10T enabled PHS, the design of architecture needs to tre asegaches ?nodcigg%nm
lot of issues, including architecture style, communication, g
sensors, web services and health applications, health |dateid Data- [118],[119]
processing and protection, etc. Many researchers have exp|oteifoaches gg;eé‘;sgow'e

the role of SoA in e-healthcare systems. For instance, Kart etak
[86] has applied SOA as a foundation to design, implemerl, Data-driven approaches

deploy and manage health services in a distributed netwqpK|oT enabled healthcare field are based on a mechanism that
system. Omar and Teleb-Bendiab [53] developed gfakes use of a large volume of health related data from different
experimental e-health monitoring system thatuses an SOA agjects for training general models. Regarding the types of
model for deploying, integrating, implementing and managingaining or learning, it can be classified into supervised, semi-
e-health services. The above studies show that SOA is &lbervised and unsupervised algorithms. A number of

effective approach for loT enabled PHS to reachainsiream of algorithms are reviewed below:
interoperability between heterogeneous devices and deliver

cost-effective healthcare services. 1) Supervised learning methods



Dataset is often divided into training sets and testing set in tAbove supervised learning methods have their advantages on
procedure of conducting supervised learning algorithmprocessing data in healthcare or clinical applications. But in
Training dataset, also called labelled data samples is made pisgctice, labelling every sample in supervised learning methods
for building the prediction model, whilst a testing dataset is fés quite expensive and requiring lots of human efforts. Some
validating the model. For most occasions, larger datasets aealth datasets provided by unknown third party may exclude
used to train models, while smaller ones are for validating tliser annotations. So in these practical cases, semi-supervised or
prediction results. Supervised learning are widely anghsupervised learning methods are more popular. Some 0T
effectively applied in computer-aided systems for activitgnabled healthcare studies investigated the performance of
recognition, clinical decision making and symptomapplying semi-supervised methods in practical healthcare
rehabilitations. Typical supervised learning approaches aapplications is to only train a small amount of labelled data, and
artificial neural networks (ANN), Bayes networks (BNs)leave a large amount of unlabeled data for an improved
decision tree (DT), support vector machine (SYM}near feasibility and reduce casiCo-training is a classic semi-
neighbor (KNN), etc. For example, ANNs have been used lsypervised setting that takes advantage of two classifiers
many researchers for identifying and classifying different typeésdependently to train and update data from multi-view using
of human physical activities and diseases diagnostic systemslabeled samples with high degree of confidence [125]. Stikic
Gyllensten and Bonomi [64] proposed a feed-forward neurat al. [109] made use of accelerometer and infra-red, compared
network with 5-fold cross validation to train the data of freedifferent semi-supervised techniques, found that co-training and
living subjects in daily life from a single accelerator. Nii et abelf-training methods are the most adaptive methods for physical
[47] proposed a fuzzified neural network to train ECG data farctivity models. Furthermorésn-Co-training is an improved
estimating human physical activity. R. Das et al. [120] buildersion proposed by Guan et al. [126] which is more flexible
heart disease diagnosis model with multi-layer feedforwafdr physical activity measurements, since compared to Co-
neural networks achieving 89.01% accuracy classification. Difaining with two separately strong classifiers, En-Co-training
also is also a typical algorithm widely used in healthcateains data as a whole without requirement for confidence of the
applications, especially for physical activity monitoring relatethbelling of each classifier. The study showed with 40 wearable
disease diagnosis and treatments [108kewise, SVM is sensors on the individual’s legs, results of static postures and
capable to address the issue of either wearable sensorsaimbulation obtained better performance than supervised
precisely observing abnormal activities [121], or static posturesethods when 90% samples are unlabeled. [127]
detection for healthcare measurement [102], as well as in clinical
outcome classification and prediction (e.g., disease diagnosis)
[31]. In recent years, deep learning has gradually becameAafew studies investigated typical unsupervised clustering
popular method in medical diagnosis and health stateethods like K-means cluster [111] and Gaussian mixture
classifications due to its high efficiency and accuracy. Thoughodel (GMM) [128]. For example, Maekawa et al. [128]
deep learning techniques are traditional used in medical img@g®posed a probabilistic model employing GMM to calculate the
analysis, a few works also operate them in terms of sensimilarity of physical characteristics between a new user and
signals. Tamilselvan P. et al. [122] applied deep belief netwoskburce users and hence find the closest activity pattern. On the
(DBN) constructing a hierarchical layer model with deether hand, Alshurafa et al. [111] pointed out that GMM is the
network for health diagnosis method. The experiment resulistter algorithm compared to K-means clustering in different
outperform traditional machine learning methods like SVMevels of activity intensity which would benefit intersubject
especially in high dimensional data inputs. variability. In addition to these, minority unsupervised learning
To achieve more satisfactory and practical performancrg,e thods hfave tt;}e aid l:())f In;ermr:edla(;_y to Iar:alg/Sﬁ abundapt dallta
many researches combine different classifiers for the Sar%e‘%slourc(fi r(ilmt eweh rat Fe rt'an |recthy f‘be mfg rav(\; §’|gnas
purpose as standalone classifier, which are efficient to procé ngﬁe[u'\é]tig ;etsgiic ::;Z'ess(;; mtséilacﬁf tug W?]%I'e‘? mét Sal
data from both a single accelerometer [107] and from muItipESO] employed in act?vit obse?vation v?/he}e a se};ies of sénsor
wearable sensors [25]. For instario and ANN are combined data wef)e yconverted i>r/1to documentation for inference of
in the study [25] for unconditional physical activity detectjons;,. ey .
and the results was prominently improved by being replac(ejgferem types of activity. As such, sensor-based activity data
. . -are regarded as stream of natural language terms to match
every node in DT models with ANN. In the same manner, naiVe:  ts for minina models from the web [131]
Bayes classifier was fused into each node of Hidden Mark8V’ 9 '

model (HMM) proposed by [123] for AAL in a context-2. Knowledge-based approaches

awareness environment. HMM was incorporated into Gaussigiowledge-based approaches represent and transfer knowledge
Discriminant Analysis (GDA) classifier presented in [124]gom human expert (e.g., healthcare personnel and medical
achieved a considerably satisfactory result to naive Bayes afitherts) into computer algorithms to establish computer-aided
smgle_ GDA classifier in accuracy. On the other hand, it is .thfecision support system. For example, a knowledge-based
combination of several algorithms that causes higlysiem can deliver tailored information and advice to patients,
accumulation of complexity of each classifier. Hence, sucdthrers and family members of the patient, taking decisions that
hybrid classifier would weaken system performance on capacye described in the treatment plan. Equally it can recommend
and time. diagnosis and clinical decisions to health personnel who will
2) Semi-supervised learning methods makg char_lges in medicatiqn, and thus significantly improve the
quality of live (QoL) for patients of chronic disease and elderly

3) Unsupervised learning methods
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people living independently [1]. Organizational knowledgelriven and knowledge-based approaches has the potential to
model construction and rule-based inference are two main stageske up the respective shortcomings of each other and thus
for carrying out knowledge-based methods. The structure taking advantage of advances in semantic reasoning with
models is built in a way that allow systems to automaticallyrobabilistic models. COASR [118] is the typical case of
process reasoning, whilst the inference is made of a set ofdémbining two approaches in ADL detection for self-
(premise) THEN (action) rules from domain expert. management of elder people at their own homes. Collecting tens
The knowledge model is expressed in some knowledgé thousands of training data for a large amount ADL
representation language or data structure that enable compautassification is almost an impossible task in such environment,
to execute the semantic rules. Knowledge-based approachas based on mature techniques of classifying a few physical
mainly consist of syntax-based, logic-based and ontology-basativities, with high level ontological reasoning, allows the issue
approaches. Syntebased approach makes use of grammar thatell studied and application simply conducted. The same
express the structure based on language modelling. It follopsnciple is also adopted by R. Helaoui et El19] for
hierarchical structure containing two layers which are HMMaterleaved and concurrent activity recognition (one of the AAL
(Hidden Markov Models) and BNs (Bayes Networks) on theesearches) with Markov logic framework and a set of
bottom and CFGs (Context Free Grammars) on the top. Logenntextual information acquired from ambient sensory data.
based method such as description logic describes entities and
then make logical rules for high-level reasoning. Among V. 10T APPLICATIONSAND CASE STUDIESIN PHS

knowledge-baseq approaches, ontology is the most flexible 6\Wﬁﬂle the technologies applied in 10T enabled PHS are still in
used approach in loT enabled healthcare filed due to

bili ‘onal | decidabili It early stage, the potential use in industry is rapidly evolving
reusability, computational completeness, decidabllity ang,y gowing. A lot of research projects and industrial cases

. . Pelated to 10T enabled PHS has been developed and deployed.
knovyledg(_a not only define ~concepts, propertles, aN% this section, we review some successful platforms and
relationships among them, but also supports instance-baseghjications including European projedtsdividually national
reasoning. Some ontology based open resources of jects and research approaches

systems that can share and reuse domain knowledge are alreal i/

available such as SOUPA [114], SOPRANO [115], and GAIA A. Physical activity platforms and applications

[116]. MSP (Mobile sensing platform) [136] designed a lightweight
Rules are defined in the form of an implication between afearable device placed on the waist to recognize a variety of
antecedent and consequent based on the structured model. Jigical activities and ADLs through connecting to the mobile
conditions are specified in the antecedent, and the results of §ine. The standalone device presented in the work was one of
reasoning are declared in the consequent. Many researches lig¥emost statef-the-art techniques in early stage of activity
been conducted detecting ADLs in 0T environment for assist@gbnitoring investigation using wearable sensors. The platform
living using knowledge reasoning. Also, knowledge-basegbmprises of sensing model, feature processing model and
decision support systems have been studied and deployed|issification model within the version 1.0, 2.0 and 3.0.
various scenarios of remote health monitoring, remindingccelerometer and microphone are the two distinct sensors for
patients to visit physicians when their conditions are undg@ieasure different type of activities. The platform version 2.0
severe situations. For example, Abidi et al. [132] developgdsolves some practical issues such as storage, processor and
clinical practice guidelines and a decision support system f@ttery life compared with version 1.0. MSP 1.0 and 2.0
support family care for breast cancer patients in terms pfplemented supervised training approach and achieve accuracy
semantic and logic inference. Riafio et al. [28] used an ontologte of activity recognition to 83.6% and 93.8%, respectively,
based approach to develop two personalized procedures \ghile labelled training data is reduced in the version 3.0, and
chronical patient healthcare, including anomaly detectiogemi-supervised training method is taken to automatically
missing data and preventive actions. Another example is showQster activity patterns. The result of recognition accuracy is
by Paganelli and Giuli [133] which provided the contexhiso up to 87.4%. The system trains data offline, but provides
semantic reasoning as monitoring system for chronic patientga|-time feedback.
Thomas et al. [134] made use of asthma treatment guidelines tqSDM (Wireless Sensor Data Mining) [137] is a typical
provide the physician with disease assessment aBfhtform that detects human physical activity based on Android
recommendations on the basis of objective functional patigfone sensors placed in one’s pocket. Data is from the
testing and case based treatment. Martinez-Garcia et al. [13&¢elerometer, features are extracted according to the
discussed a knowledge inference engine to support healthcgggntification of time between signal peaks, and activities of
personnel to help patients manage depression. walking, jogging, ascending stairs, descending stairs, sitting and
3. Hybrid Approaches standing are selected in this work due to their repetitive

. . . . characteristics. Supervised training algorithms are investigated
Since the training data samples and labels in nature environmgni compared in the system using J48, logical regression

are very difficult to obtain. Although unsupervised and SemH1ultilayer perceptron and straw man. The result exhibits that

supervised learning methods have their advantages in reducﬁ%%ending and descending stairs are the most difficultly

the requirement of data sample, the immature foundations Ofﬁ%'gognized PA. Besides, the work plans to involve more

!ead to erroneous pre@cﬂons. Wh|le ontologlcql meth.Ods Ctivities and users, as well as carrying the phone in different
incompetent in handling a variety of uncertainties in rea

healthcare environment. So the combination of both the data-



part of one’s body as the results may diverse from phone putting requirements to improve the efficiency and success of a therapy
from tops to trousers. (e.g., changing patient’s dosage). The systems provide an
mHealthDroid (Mobile Health Android)138] is an open alternative approach to improving the quality of live (QoL) of
source framework designed to facilitate the rapid and eathe patients through interaction among patients, physicians and
development of biomedical android application which igaregivers. Such systems are able to deal with a variety of patient
available on Google Play [139]. The platform is able to collecbnditions using sensor technologies, objective and subjective
data from connecting heterogeneous commercial devices (eagsessment methods, treatment plans and guidelines, with
smart watch, belt and mobile device) for both ambulation andilored information and advice being delivered to patients based
biomedical signals. The system contains communicatiam their feedbacks. While the procedure of the service is to
manager, data storage manager, data processing managmlect and storage of relevant health data and then send
visualization manager and system manager. Especially, d&adback to the patient, whiatesignated the “Closed Loop
preprocessing, segmentation, feature extraction amldinciple” [143].
classification using Weka [140] are operated in the data EMERGE (Emergency Monitoring and Prevention) [144]
processing manager. It also provides healthcare interventidasgeted on emergency medical services (EMS) system to assist
such as alerts and guidelines. The most important aspect iseiderly living independently through automatic detection of
extensibility, which supports diverse modes and ways #®DLs in an loT environment. Data from wrist devices with
facilitate new system implementation for time and cost savingmbedded-in wearable sensors and ambient sensors at home
For instance, mDurance[141], a mobile healthcare suppevere collected for activity detection as well as vital data
system for assessment of trunk endurance, is implementedrinasurement. The proposed framework made attempt to
terms of the core functionalities of mHealthDroid. classify different types of activities such as short-term
WearlT@Work [142]is an European project to investigatemergencies (e.g., fall, helplessness) and long-term clinical
wearable computing technology in different areas. In healthcaessessment (e.g., toilet usage, sleep) with the knowledge-based
it studied gesture determination, including open/close hoaoapproach, and highlighted weight as a characteristic to carry out
doors and trunk, checking steering wheel, etc. to assist doctors’  the fuzzy reasoning. Furthermore, relationships between facts
diagnosis [123]. Multiple small and cost-effective acceleratioare described orderly for the temporal inference. Knowledge-
sensors are distributed on patient’s arms for gesture based model is used as an inference agent describes objects and
classification. Data dimensionality are reduced by usinglationships in the sensing layer and hierarchically constructed.
supervised learning method dynamic time warping (DTW), anthe approach was tested by a few elderly people and caregivers
hybrid supervised learning is selected as a recognizer. For eackurope following the close loop principle.
accelerometer axis, HMM is exploited for metaclassifier, while MOSKUS (Mobile Musculoskeletal User Self-management)
its outcomes are sent to a Naive Bayes model in order to imprg¥g [145]is a to develop a smart ICT solution to support self-
the ultimate result. The experiments proved that using fusionmanagement for patients suffering from arthritis, a prevalent
classifiers achieved high accuracy in the condition of extensiand debilitating chronic disease, and thus, saving costs in the
of sensor network life time. health care sector and improving the clinical outcome. A
Apart from some typical projects above, there are also mapersonalized chronic patiést self-management system
other successful 10T enabled healthcare applications, li(CPSMS) proposed in MOSKUS is a knowledge-based
rehabilitation, persuasive wellbeing, emotional wellbeing andecision support and evidential reasoning system that makes
smart hospital. For example, Jarochowski et al. [184] propouse of a set of reasoning rules, providing non-pharmacological
the implementation of a system, the ubiquitous rehabilitatictreatment plans to assist patients keep better control on the
center, which integrates a Zigbee-based wireless network wchronic disease and reduce the frequency of hospital visits. The
sensors that monitor patients and rehabilitation machinestates of self-report (questionnaires) measurements are divided
Etiobe [185] is another project devoted to treat child obesity. linto four categories: High, Medium, Low and None. Due to the
architecture merges ubiquitous, intelligent, and persuasiimprecise concepts, fuzzy rule reasoning mechanism are
features for implementing a cyber therapy approach. It is basdefined for the multiple assessment fusion [145] in CPSMS.
on virtual and augmented reality, and attempts to persuaThis platform delivers patient’s conditions, medical and
children to avoid poor eating habits. The system usesbehavioural assessments and inference mechanisms for
collection of environmental sensors for capturing importardecision recommendations.
information such as contextual, physiological, and SMART (Self-Management supported by Assistive,
psychological data. McNaney et al. [186] have designed Rehabilitation and Telecare Technologies) [146] is a
wearable acoustic monitor (WAM) device, which providepersonalized self-management and monitoring platform for
support in various aspects of social and emotional wellbeing bgme health conditions namely chronic heart failure, chronic
inferring levels of social interaction and vocal features gfain and stroke using wearable sensing technologies. The aim of
emotionality. Rodriguez et al. [187] describe development diie project is to assist patients maintain their health condition at
SALSA, an agent-based middleware to facilitate responding bmme through setting life goals based on a number of physical
the particular demands of patients and hospital’s personnel. activity tracking outcomes, also to provide a series of feedbacks
according to the process of the therapy plan. In order to monito
o __ patients’ physical activities, it made use of accelerometers, vital
In recent years, self-management services in tele monitoring ajfighs like weighing scales and a blood pressure monitor, as well
AAL settings have been becoming a heated research aflambient sensors (i.e., bed sensor, door sensor, etc.)itormon
application facial pointlesigned for satisfying user’s specific  patients activities and sleeping pattern, TV usage and food
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preparation. Data-driven and knowledge-based methods aequired to address these challenges and examine of availability
both adopted in the SMART. of existing PARM technologies to ensure a good fit in the loT
PIA (Personal IADL Assistant) [84] is an AAL JP (Ambientenvironment.
Assisted Living Joint Programme) project aiming at assistingA. Technical Challenges
elderly people to live independently in their homes and perfor@ost effective and non-obtrusive wearable sensing: While
daily activities without external help. It uses simple approaddxisting sensing technologies have made a great progress in the
that the elderly people can watch instructional videos of how tast decade, it still limits to long-term healthcare monitoring in
use modern household equipment through interacting with Nebke free living environment, as even only a small single sensor
Field Communication (NFC) tags attached on the equipmemttached on a certain part of the body is still uncomfortable for
with their smart devices. There are two main categories of emqermanent monitoring. While wearable devices have been
users: elderly people and caregivers. Caregivers are healthgan@ven its popularity among general users, their majority usages
personnel, family or friends, whose responsibility is to recordre limited in the fitness fields. The products simply provide
and upload the instructional video and link it to the NFC tags vimocessed measurements (e.g., steps, distance or calories) so that
PIA app. The end-user then use the smart devices (e.g., srsaffer from further data processing. Raw sensor data can be
phone or tablet) with the app installed to tap the equipment widirectly acquired from mobile phone, but because of divensity
the NFC tag attached and then the same video automaticéifly pattern and environmental impacts, personal data from
plays. The ontology-based top-down, goal-driven model iadividual wearable device exhibits remarkable uncertainty in
developed in PIA that the goals are set as recognition of eldee natural environment such as battery, capacity issues and
people’s ADLs [147]. placed positions. The results are widely divergent when the
- . . mobile phone is put in the pants pocket from handbags.
C. CDSS automated prediction and diagnosis Particularly that inertial sensors are sensitive to any changes in
PredictAD (Predict Aizheimer's Disease) [148] is an Europeagosition and orientation. Thus, so far, existing wearablersgnsi
research project for developing a standardised and objectig@nhnologies are limited in terms of their size, fast response,
solution that would enable an earlier diagnosis of Alzheimer’s  continuous monitoring capability, wireless data transmission,
disease, improved monitoring of treatment efficacy angng non-obstructive user experience. Moreover, there is usually
enhanced cost-effectiveness of diagnostic protocols. The projgciradeoff between high quality and low cost of developing
develops a generic decision support software library ar@nsing technologies. The idea candidate of future sensing
platform with different classification methods behind with Q.echno'ogies for loT enab|ed PHS Shou'd be a t|ny sensor into
CDSS model composed by data tier for data collection apg@rsonal daily use items, including but not limited to clothing,
storage, logic tier for data processing and presentation tier {9atches, glasses, shoes, belts, and so on. Moreover, for many
user interaction and interface. The special point of this CD&$ronic disease monitoring, non-obstructive sensing devices are
tool is the proposed disease state index (DSI) function and §@s; to success of IoT enabled PHS, and will potentially bring a
been tested for efficiently assessing and predicting differeigk of convenience to patients.
diseases Secured and Trustful mobile health platform: Any
METEOR (Methodist environment for translationahealthcare related applications must consider various security
enhancement and outcomes research) [149] is an integrad@@d privacy issues. In many loT enabled PHS applications
clinical informatics framework that contains a data and |Ogi§nce health information (e_g_, phenomena, health condition,
storage EDW (enterprise data warehouse) and a clinical outcogiergency) is relatively sensitive for users, any inappropriate
prediction tool SIA (software intelligence and analytics) fofjisclosure may violate user privacy and even result in property
physicians, caregivers and other clinical staff. The system is algg@s. Users may also concern about their critical health data
designed to remotely monitor and control the patient’s physical  peing tampered with when their health data are stored in
state from data collection of blood pressure, spirometry, pulg@trusted servers or placeslso some malicious attackers
oximetry, temperature, etc. in the way of communications medigisbehave in loT based health systems to disrupt the
like web browser and thus provide medical interventions argfectiveness or mislead other users’ preferences. Thus, how to
reminders. The whole engine integrates many key techniqu&gvide appropriate security and privacy protections in loT
like service-oriented architecture (SOA) and JBoss applicatigiabled PHS platform is still a challenging issue. Without good
server (JBoss AS) where manage reasoning rules extracted fi@tRemes to protect usgrprivacy, users may not accept loT
electronic health recordEER). Also, the framework is also enabled healthcare applications. Another important issue is that
applied in COPD patient remote monitoringhowing itS the costs of security protections ryawith users’ diverse

feasibilities and universalities demands, and may impaeters’ experiences of mobile health
applications. For example, complicated encryption techniques
V. RESEARCH CHALLENGESAND FUTURE TRENDS may offer users more security guarantees but with higher

While empowering the utility of 10T enabled technologies ifomputational overheads and latency than lightweight ones. To
personalised healthcare has huge potential benefits, it is swilisfy users’ diverse security requirements and balance the
broadly agreed that the 10T technologies are in their infancy afi@de-off between the performance and security protections,
face many challenges due to the need of cost-effective senditglity of protection has become a newly emerging security
technologies, advanced algorithms of processing life-loggirgPncept that allows applications to seamlessly integrate
data, methods of coping with uncontrolled environment, highdjustable security protection

volume of data set, security and privacy, etc. Future efforts areEffective data validation in healthcare: In a loT enabled
PHS environment, as we mentioned before, personal health data
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from individual wearable device exhibits remarkable uncertainface interactions between clinicians and patients. New
in the natural environment. How to validate these data technologies, however, are augmenting this interaction model
longitudinal healthcare cases is very challenging. As tlend fundamentally transforming the ways in which clinicians
exponential growth of mobile healthcare market, numeroukeliver and individuals and their friends and family consume
similar wearable products have been developed, which wilhre. Mobile apps, for example, can facilitate tracking and
significantly increase the heterogeneity and diversity of devicesonitoring.
connected in loT based personalized healthcare system% Future Research Trends
Effective validating these health data from heterogeneous ™ = = - ) ) )
devices in loT enabled personalized healthcare environmentSsing interoperability: multiple sensors with different
difficult, and needs more advanced intelligent algorithms. features often coexist in a single biometric system. While sensor
Intelligent data processing and analytic in healthcare: In interoperability refers to the ability of the system to merge and
terms of traditionally adaptive models for different people witRdapt data from different types of sensor and device. In loT-
different physical states, all data-based approaches require Iapgéed PHS, such interoperability is especially distributed in
number of samples for model training, in which supervised€twork layer and processing layer. Firstly, the battery life and
learning methods need to be set appropriate categories ahedepddwidth overhead for low power sensor nodes is a still
time, and each sample needs to be labelled. In addition, in @#allenge. Second, due to different types of sensors have diverse
cases of abnormal behavior alerts for the elderly (e.g., falling ®paracteristics such as frequency, as such, many approaches and
faint), the systems must enable prompt interaction with usd¥9medical platforms have been proposed for sensing
and caregivers. Considering limitations of existing sensirlgteroperability. However, almost every biomedical sensor has
devices which algorithms are normally implemented on tHE interoperability issues, few systems so far are able to hgndli
remote server, choosing lower complexity of algorithm ma&‘{gith raw sensor data and feature extractions in pre-processing
suffice to the circumstances. Also, for the life-logging physicagvel in real, and thus expected to provided more practical and
activity monitoring environments like symptom analysis fronteasible approaches.
long-term daily activity record, precise offline algorithms tend Lifelogging Mode: One key feature of l1oT environment is
to be more functional. Lastly, only a few attentions are devotéggt the collection of life-logging data becomes possible. It
to training healthcare model from the sensor signals [R€ans that daily health data are monitored and accessed
naturalistic or semi-naturalistic environmentn$eupervised continuously and constantly in a life-long term. Due to limited
and unsupervised approaches are more eligible in real life wifgmory and power resource in affordable wearable devices,
many uncertainties, and thereby to resolve the complexity ali§-109ging physical activity data will not be milliseconds-based
accuracy of the algorithms is a challenging topic can be furthé sensory signal, but minutes/hours-based segmented set. The
investigated. changed typed of raw data leads to different features in a simple
M onitoring and changing individual human behaviour in ~ unchanged subject of physical activities. Existing researches
healthcare: In traditional model of healthcare, a reactive systefg@nnot apply the same machine learning algorithms into these
that treats acute illnesses after the fact is recently evolving wiigW features for equivalently high accuracy. Thus, how to
loT techno|ogies to one more centred on patientS, preventi(ﬁ{fectively transfer these available machine Iearning algorithms
and the ongoing management of chronic conditions. Thus, itif§0 these new features in life-logging health related data, how
highly important to effectively monitor and change individuaf© €xplore new feasible algorithms for training these life-logging
behaviour with 10T enabled personalised healthcare systeridta set, what kind of features in these life-logging data
which requires a close collaboration between technical expeP@tentially leads to the best accuracy, etc. are all valuable
and clinicians. This need poses a variety of new research isstiggéarch topics in this area.
Firstly, how to integrate behaviour change into new healthcareUncontrolled environment: Another feature of loT enabled
delivery models with 10T enabled PHS is a big issue. Many ofdHS is to face to completely uncontrolled environment. It
health systems are putting increased emphasis on primary c&H#ows a global trend of population aging, which requires the
especially through the use of integrated care delivery modé&ignsformation of traditional hospital based healthcare services
designed to improve the health of the population. To succed@,patient empowered home based healthcare services. In this
these new models must extend their reach outside of the f&@se. the future trend of using loT technologies in PHS will
walls of a clinician’s office so that they can support patient ~focus on completely real life or namely uncontrolled
behavior change beyond traditional clinician-patien@nvironments. However, existing health related data analyzing
interactions. This requires new capabilities, including clinicanethods were mostly set up and verified in lab or experimental
workflow tools to support patient targeting, care alerts sent &e€narios for the purpose of improving recognition accuracy,
both clinicians and patients, enhanced communication and c&fé suffer from application in unconditional environments (i.e.,
management support for patients, and remote monitorirfgtdoor, real home). The reason for that is lying on the two
Clinicians must adopt a patient-centered approach when tHgicial but inevitable issues: short-battery or poor capacity of
interact with patients, one that focuses on understanding #@vices and time-consuming of running machine learning
whole person and their barriers to change. Secondly, it 8gorithms. Moreover, the diverse life pattern of individual
worthy to study of utilizing remote and self-care-oriente@erson will cause huge uncertainty on personal health data in
technologies to enhance the communication between patiedfsontrolied environment. People performs physical activities
and clinicians. Frequent, real-time communication ani varied manners owning to different age, gender, weight, etc.
feedback are important in supporting change effortslence, a specific recognition model fits one group of people
Traditional models of care delivery have, at their core, face- May not fit another one. Thus, how to achieve high accuracy
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and stability of health data processing using loT technologies
in uncontrolled environment is of interest to many researchers
in future.

High volume of data: The heterogeneous devices connected
in 10T environments and life-logging collection of physical2]
activity data will be driving major expansion in big data OL?’
personal health information. These data contain not only a sh (13r
volume of long-term personal lifestyle information, but also
complex, diverse and rich context of other health informatiof#]
The uncertainty of these data will be much higher than physical
activity data training by classic machine learning methods Eg"
healthcare fields. Effectively and efficiently improving validity
of these health related data and exploring useful knowledge
becomes a difficult task. Therefore, research work on how
explore these big health related data under loT environments for
bringing intelligence for more solid clinical decision-making
and policy formulation will be significance. (7]

Security and Privacy: The architecture of lIoT environment
is supposed to be a very complicated heterogeneous network.
loT enabled PHS may be a specific application or service in tfsg
entire loT environments. But, the personalised health data will
be stored and managed into the server of I0T systems. Tge
typical issues of security and privacy in loT networkin
architecture will be naturally inherited to 10T enabled PHS
applications. Compared to existing commercial wearable
devices with data protection scheme on their standalone ser\ﬁ{
like Fitbit, etc. protecting privacy and security in the lo
environments is more serious and difficult since the number of
potential attack vectors on 10T entities is obviously much larger.
So more research work on how to protect security and privaE)}]
needs to be carried out in healthcare using 10T technologies.

VI. CONCLUSIONS

Internet of Things paradigm represents the vision of the ne[>l<'%]
wave of ICT revolution. 10T enabled technology in PHS will
enable faster and safer preventive care, lower overall co E]
improved patient-centered practice and enhanced sustainability
loT enabled PHS have the potential to enhance our everyday
life in many different aspects and, in particular. In this survey,
we explored the application of I0T in healthcare from vario
perspectives. We reviewed the existing stotehe-art
technologies for 10T enabled healthcare applications. From a
different perspective, we discussed current technology afdl
infrastructure, such as sensing, networking and data processing
technologies. More importantly, we provided a high Ievq[LG]
description of various I0T enabled healthcare applications. But
we are aware that the goals set up for 10T in healthcare are not
easily reachable, and there are still many challenges to be fabel
and, consequently, this research field is getting more and more
impetus. Researchers with different backgrounds are enhancijrg
the current state of the art of 10T in healthcare by addressing
fundamental problems related to human factors, inteIIigenézle?]
design and implementation, and security, social, and ethical
issues. Asa result, we are confident that this synergic approach
will materialize the complete vision of IoT and its full[20]
application in healthcare and human wellbeing.
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