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Abstract—As a new revolution of the Internet, Internet of Things 
(IoT) is rapidly gaining ground as a new research topic in many 
academic and industrial disciplines, especially in healthcare. 
Remarkably, due to the rapid proliferation of wearable devices 
and smartphone, the Internet of Things enabled technology is 
evolving healthcare from conventional hub based system to more 
personalised healthcare system (PHS). However, empowering the 
utility of advanced IoT technology in PHS is still significantly 
challenging in the area considering many issues, like shortage of 
cost-effective and accurate smart medical sensors, unstandardized 
IoT system architectures, heterogeneity of connected wearable 
devices, multi-dimensionality of data generated and high demand 
for interoperability. In an effect to understand advance of IoT 
technologies in PHS, this paper will give a systematic review on 
advanced IoT enabled PHS. It will review the current research of 
IoT enabled PHS, and key enabling technologies, major IoT 
enabled applications and successful case studies in healthcare, and 
finally point out future research trends and challenges.  
 
Index Terms— Internet of Things, Personalised Healthcare, 
Lifelogging.  
 

I. INTRODUCTION 

ecently, Internet of Things (IoT) is emerging as a new 
paradigm in information technology aimed at building up 
a dynamic global network infrastructure by connecting a 

variety of physical and virtual ‘things’ with the growing mobile 
and sensors. IoT was initially proposed to refer to uniquely 
identifiable objects (things) and their virtual representations in 
an internet-like structure, by mean of using radio-frequency 
identification (RFID) technology. Later on, the concept of IoT 
has been extended to cover more type of ‘things’ with a variety 
of sensors, such as actuators, global positioning system (GPS) 
devices and mobile devices. The seamless integration and 
effective harness of these sensors in a platform associated to the 
Internet have raised up a lot of research issues, from system 
architecture, data processing to applications. Nowadays, IoT 
technology has been rapidly gaining ground as a priority 
multidisciplinary research topic in many academic and 
industrial disciplines, especially in healthcare. 
    Traditionally, the motivation of utilizing modern Information 
and communication technologies (ICT) in healthcare system is 
to offer promising solutions for efficiently delivering all kinds 
of medical healthcare services to patients, named as E-health, 
such as electronic record systems, telemedicine systems, 
personalised devices for diagnosis, etc. But, driven by a 
sustained increase in longevity, many developed countries in 

are now facing the fact that their fast-growing demographics is 
the over-80s. This trend brings with some key concerns about 
the economic viability of traditional healthcare systems, and 
thus it needs to design and develop more coherent and 
ubiquitous ICT enabled solutions for delivering high quality 
patient-centred healthcare services. Fortunately, due to the 
rapid proliferation of wearable devices and smartphone, IoT 
enabled technology is evolving healthcare from conventional 
hub based system to more personalised healthcare system. 
Successful utilization of IoT enabled technology in PHS will 
enable faster and safer preventive care, lower overall cost, 
improved patient-centered practice and enhanced 
sustainability[1]. Future IoT enabled PHS will be realized by 
providing highly customized access to rich medical information 
and efficient clinical decision making to each individual with 
unobtrusive and successive sensing and monitoring.       
    But empowering the utility of IoT enabled technology in PHS 
is still significantly challenging in the area considering shortage 
of cost-effective and accurate smart medical sensors, 
unstandardized IoT system architectures, heterogeneity of 
connected wearable devices, multi-dimensionality and high 
volume of data generated, and high demand for interoperability. 
From user-centered perspective, the successful use of IoT in 
PHS will also need an interoperable IoT environment for care 
delivery and research, tightly-coupled health data mining 
applications, adequate data and knowledge standards of self-
empowerment and sound clinical decision-making foundation. 
These above challenges and needs grant a lot of opportunities 
to explore and investigate new concepts, algorithms and 
applications in IoT enabled PHS field.      
    In an effect to understand advance of IoT technologies in 
PHS, this paper conducts a survey on recent advanced IoT 
enabled PHS. We undertook an extensive literature review by 

examining relevant articles from major academic databases 

(IEEE Xplore, ACM digital library and Science-Direct). Key 

search terms include the key words ‘Internet of Things’, 
‘Healthcare’, ‘Pervasive Healthcare’ and ‘Mobile Healthcare’ 
and a wide range of other technologies. We also reviewed the 

research projects related to IoT, e-health, smart healthcare, etc. 
The initial review shows that some recent survey papers [2] 
[201] have reported and analyzed some IoT related techniques 
for healthcare applications, like wearable sensing technologies 
for healthcare [2], mobile phone sensing technologies [201], or 
ambient intelligence for healthcare [202]. But these surveys 
most concentrate on examining individual layer of IoT enabled 
systems like sensing or data analysis, and lack of a systematic 
perspective review from the entire IoT eco-systems. So many  
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Fig.1. Four-Layers SoA in IoT enabled PHS. 
 
research issues and factors related to the system level are 
ignored, for instance, the involvement of human factors in IoT 
systems, the security and privacy concerns of IoT architecture. 
Also, they rarely notice that IoT enabled healthcare is gradually 
transferring traditional clinic-centred health systems into more 
personalised and mobile-centred healthcare systems (PHS).  

Therefore, the key novelty of our review will focus on a first 
attempt on systematically categorize PHS technologies from an 
classic 4-layer IoT system perspective, focusing on identifying 
the breadth and diversity of existing research in IoT enabled 
PHS, including key enabling technologies, related applications, 
and successful case studies in IoT enabled PHS. It explores 
some new potential research issues, and highlights the future 
research trends and challenges for researchers regarding the use 
of IoT in PHS.  

The rest of the paper is organized as follows. Section II 
presents the background and current research of IoT enabled 
PHS. Section III reviews key enabling technologies of 
developing IoT enabled PHS. Section IV describes key 
applications and case studies related to IoT enabled PHS. 
Section VI discusses research challenges and future trends. 
Conclusion is given in Section VII.  

II. CURRENT RESEARCH FOR IOT ENABLED PHS 

The initial vision of IoT was to extend the term “Internet” into 
the real world embracing everyday physical objects by means of 
Radio Frequency Identification (RFID) technology [2-3]. Soon, 
as rapid advances in sensing technologies, more heterogeneous 
sensors – such as accelerometers, gyroscopes, altimeters and 
other portable low-cost devices are capable of being connected 
in an IoT environment. Driven by the exponential growth of 
commercial wearable devices and mobile apps, the concept of 
IoT based PHS [5] is established and become increasingly 
popular. These healthcare systems [25-28] use a set of 
interconnected devices to create an IoT network for performing 
healthcare activities, such as diagnosis, monitoring and remote 
surgeries. In terms of a well-known definition of four layers IoT 
system architecture, as shown in Fig.1. A number of typical of 
studies in a IoT enabled PHS will be categorized by sensing, 
networking, processing and application, as shown in Table.1. 
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Table .1. Typical Studies in IoT enabled PHS Table (ACC-accelerometer; EEG-electroencephalogram; ECG-
electrocardiogram; gyro-gyroscope; DT-decision tree; SVM-support vector machine; HMM-hidden Markov model)  

Sensing layer Network 
layer 

Processing layer Application Assessment 

Device 
specificatio

n 

Placed 
position 

Network Methods Users Subjects Accuracy Advantages Limitations 

1 ACC Back Chipcom 
CC2430 

transceiver 

Self-defined 
thresholds 

Young 
healthy 
people 

Walk, fast 
walk, 
ascend 

stairs, etc. 

91.5%-
100% 

Recognition 
and 

monitoring 
elder people 

at home. 
[10] 

Low-cost 
simple 

algorithms; 
adaptive 

Short time 
monitoring; 
uncontrolled 
environment 

ACOR+ 
kinematic 

system 

day: belt; 
night: chest 

Bluetooth DT Patients, 
healthy 
people 

Postures, 
walk, read, 
exercises 

77%-94% COPD 
patients 

monitoring.[
11] 

Simple 
device and 
algorithm 

The model 
only useful 
for COPD 
patients. 

Multi-
channel 
sensor 
module 
(EEG, 

respiration) 

Head Bluetooth SVM Twenty 
mentally 
healthy 
people 

 

Awake, 
drowsy, etc 

98.5% ± 
1.4%. 

Lifelogging 
mental 
fatigue 

monitoring[
12] 

Real-time 
feedback on 

mobile 
device. 

Mulitple 
sensors may 

incerease 
the cost and 
simplicity. 

ACC and 
pressure 
sensors; 

Feet Bluetooth SVM Young, mid-
aged healthy 

people 

Postures, 
walk, step, 

sweep, 
cycle, jog 

92%-98% Reduce 
Energy and 
memory on 

smart 
phone[13] 

Energy 
efficient; 
real-time 
feedback 

Smart shoes 
are non-

universal; 
no mention 

of 
feasibility. 

Wearable 
device 

Wrist Not 
mentioned 

Multivariate 
analysis 

 

16 elder 
people 

Sleep, wake Not 
mentioned 

Monitoring 
elderly 

health and 
sleep 

patterns[14] 

Real-life 
environment

; high 
targetedsubj

ects 

No obvious 
disadvantag

es 

SHIM- 
MER's ECG 

and GSR 

Wrist Bluetooth DT, 
Bayesian 
Network, 
SVM, K-
Means 

20 people Baseline, 
stressed 

92.4% Continous 
human 
stress 

monitoring 
for 

intervention
s[15] 

Inclusive of 
PA impact 

on the 
stress; long-

term 
monitoring. 

Patients are 
not 

considered 
and tested. 

1 3D ACC, 
1 wearable 

camera 

ACC on the  
belly; 

Camera 
hung over 

neck 

ZigBee, Wi-
Fi, 

Bluetooth 

SVM Not 
mentioned 

Run, go 
downstairs, 
go upstairs, 

take an 
elevator, 
walk, etc. 

90%-99% lifelogging 
health 

monitoring 
in context-

aware 
enviornment

[16] 

The 
approach 

could  
recognize 
movement 
directions. 

Lack of 
privacy; 

inconvenien
ce in daily 

lives; 
limited 
subject 

categories. 
Mobile 
phone 

No strict 
position 

Bluetooth, 
GSM, Wi-Fi 

HMM, DT 16 healthy 
people (8 F, 
8 M, ages 

20-45) 

Still, walk, 
run, cycle, 

motor 

87.9%-
96.2% 

lifelogging 
healthecare 
monitoring, 

personal 
transporatio

n[17] 

No needs 
for phone’s 
6DOF; fine 

grained 
activity 

categories. 

Not 
mentioned 
whether the 

model is 
useful for 
elderly or 
patients. 

1 gyro on 
shoe 

Feet, knee Not 
mentioned 

Knowledge-
based 

10 people, 6 
people with 

impaired 
gait 

Walk on 
level 

ground, 
walk up and 

down a 
steep, etc 

>96% A system of 
controlling 

the gait 
cycle of a 

neuroprosth
esis for 

walking in 
real time 

[18] 

Identify 
transitions 

in gait 
phase; 
present 

walking and 
non-walking 

activities 

No obvious 
disadvantag

es 

1 3D ACC, 
1 3D gyro, 1 

3D 
magnetic 
sensor. 

Upper and 
lower limb 

Bluetooth Kinematic 
modelling 

8 healthy 
male people 

(24–40 
years old) 

circular, 
rectangular 

motion, 
reach, 

elevation, 
etc 

95%-98% home-based 
stroke 

rehabilitatio
n [19] 

 

low-cost, 
real-time 
robust in 
different 
motion 

circumstanc
es 

No obvious 
disadvantag

es 
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The sensing layer for PHS aims to design and develop novel 
sensors or sensing technologies for effectively and efficiently 
collecting a variety of types of personalised health and medical 
information in an IoT environment. Existing sensors and 
wearable devices, such as inertial sensors [19], GPS (Global 
Positioning System) [24] , ECG [26] , EEG [29] are capable of 
observing and recording multiple type health data, including 
weight, location, heart rate, blood pressure and user-context 
information. Also, many studies[32]–[35]begin to use 
smartphone to collect human emotion and behavior data by 
specific mobile applications. So far, these sensory techniques are 
relatively technically and functionally sophisticated in manually 
controlled environments. But designing cost-effective and non-
invasive wearable devices is demanding and challenging. Many 
researches[36]–[38]focus on developing some novel accurate, 
reliable cost-effective and non-invasive sensing techniques for 
an automatic collection of human health data in IoT based 
uncontrolled environments 
    The networking layer for PHS is responsible to connect all 
devices in sensory layer together and allow personalised health 
data to be collected, stored, transmitted, shared and aggregated 
under IoT infrastructures. Also, it provides interoperability and 
security needed in the context of IoT for healthcare. Riazul Islam 
et.al [39] has reviewed a state-of-the art of IoT healthcare 
network with three issues: topology, architecture and platform. 
Each issue has become one of the vital research sub-stream in 
the IoT enabled PHS. Traditional IoT topology for PHS refers to 
the representation, configuration and deployment of different 
health sensor elements in an IoT healthcare network, such as P2P 
[40], Star [41] and Mesh [42]. As the growth of connected 
devices and sub-networks, one key research issue of IoT 
topology for PHS is how to transfer the heterogeneous static and 
mobile devices into hybrid computing grids. Regarding IoT 
architectures for PHS, many previous studies have used IPv6 
[43] or 6LoWPAN [43] systems as a basis IoT structure, which 
can enhance the quality of data [46] transmission and extend the 
range of healthcare services with mobility and scalability [47]. 
Now, in order to support more standards for interoperation, the 
service-oriented architecture (SOA) [46] has been proposed and 
validated by many researchers as a promising solution in IoT 
enabled PHS. Under SOA, a number of standards have been 
built to support the needs of interoperability, like Extensible 
Markup Language (XML), Simple Object Access Protocol 
(SOAP), etc. Some studies [43], [48] investigate the issues of 
cost, risk and profit in implementing SOA for large-scale IoT 
enabled healthcare systems. Apart from above two issues in 
networking layers, designers also need to address factors such 
as network management technologies for heterogonous 
networks (such as fixed, wireless, mobile, etc.), energy 
efficiency in networks, QoS requirements, service discovery 
and retrieval, data and signal processing, security, and privacy. 
Particularly, since personalised health information is relatively 
sensitive for users, any inappropriate disclosure may violate 
user privacy. The work in studying security and privacy for IoT 
enabled PHS has triggered many solutions, like reliable routing 
[49], cryptographic scheme [50], privacy-preserving health data 
aggregation [48], 

The processing layer of IoT enabled PHS targets at designing 
useful computational methodologies for processing a variety of 
complex health related data with aiming quality. The early work 
in mobile health focuses on developing specific algorithms for 
some diseases related data rather than general methods handling 
both health and medical data. For instance, Acampora et. al[39] 
reviewed a number of ambient intelligence algorithms in 
healthcare regarding five applications: activity recognition, 
behavioral pattern discovery, anomaly detection, and decision 
support. But now in the IoT enabled PHS, the key role of specific 
application is mostly categorized into the application layer, the 
study focus of data processing layer here has transferred to 
generic algorithms to improve the accuracy and validity of 
health data and or new data analytic tools to facilitate scalable, 
assessable and sustainable data structure. So this paper will 
summarize data processing algorithms for IoT enabled PHS into 
three key parts: data driven approaches, knowledge-based 
approaches and hybrid approaches. More specifically, data 
driven approaches mainly contain supervised learning, semi-
supervised learning and un-supervised learning methods; 
knowledge-based methods cover modelling and semantic 
reasoning approaches; hybrid approaches are a combination of 
above two types of approaches by integrating machine learning 
into knowledge reasoning. The section III.C will provide a 
detailed description of utilisation of these data processing 
approaches into IoT enabled healthcare data analytic. 
    The role of application layer in IoT enabled PHS is mainly to 
provide high quality services and easy-to-use interfaces to end 
users. As mentioned before, previous mobile health researches 
do not consider application as an individual layer in healthcare, 
and combine the interface or usability into algorithm layer. So 
their research focuses on evaluating if entire system or new 
algorithms have practical effect or help on medical care. In the 
IoT environment, PHSs are used by a large-scale population so 
that the scope of research in application layer has expanded into 
more wide areas, including healthcare service discovery, 
healthcare service composition, healthcare platform API, 
human-computer-interaction in healthcare, etc. Moreover, 
studies of application layer in IoT enabled PHS also covers 
different kinds of healthcare applications in academia and 
industry, like continuous monitoring, assisted living, therapy 
and rehabilitation, persuasive wellbeing, Emotional Wellbeing 
and Smart Hospitals, etc.  
    Mobile technologies nowadays play essential roles in 
healthcare monitoring and services. These technologies include 
mobile phones, personal digital assistants (PDAs), mobile 
cameras (e.g., SenseCam), smart watches, etc.  As most of 
mobile devices are embedded a variety of inertial sensors (e.g., 
accelerometer, gyroscopes, etc.) and biomedical sensors (skin 
temperature, heart rate, etc.), they are designed for providing 
personalised and continuous cares for users. For example, many 
mobile products (e.g., Fitbit) and applications (e.g., Moves) have 
been released for the long term record and collection of personal 
lifelogging physical activity [51]. Some devices involve in 
patient’s self-management and interventions [1]. Other 
applications that make use of inertial sensors are capable of 
falling detections and thus avoid undesirable consequences [59]  
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III. KEY ENABLING TECHNOLOGIES IN IOT ENABLED PHS 

A. Sensing and Identification Technologies 

Sensing and identification technologies target at recognizing 
physical objects and gathering human health information from 
sensors, tags, etc. The prominent development of low-cost and 
small-in-size wearable sensor such as inertial sensors (e.g., 
accelerator, gyroscope or barometric pressure sensors) and 
physiological sensors (e.g., spirometer, skin temperature sensor 
or blood pressure cuff), as well as wearable devices (e.g., fitness 
band or mobile phone) has facilities the process of measuring 
attributes related to individuals and their soundings. As a major 
risk measure for chronic diseases, a number of wearable sensors 
are studied by researchers for monitoring daily healthcare. Table 
2 shows a list of wearable and ambient sensor categories. 
    Inertial sensors are small-scale MEMS devices, which 
usually fit for measuring human physical activity. They are 
placed on different parts of body [24]. Accelerometers can 
measure degree of position changes of human motion; 
Gyroscopes are generally combined with accelerometers for 
measuring rotational movements in keen joint rehabilitations 
[74]. Applying both inertial sensors also enable accurately 
detecting a specific type of human motion and behaviors, such 
as bend knees, descend stairs [18], ascend stairs or turning [57]. 
Their applications cover gait rehabilitation, joint pathology 
[5],stork [10], Parkinson’s disease [57] and fall detection 
[53].Similarly, pressure sensors, along with accelerometers are 
also useful in monitoring stairs behaviors[62] and fall detection 
[63] owning to their relationship between sensory readings and 
altitude. Magnetic field sensor is another type of inertial sensor 
that can be abled to be placed close to measurement location for 
achieving high spatial resolution to detect human’s direction. 
For instance, in order to recognize a activity of “watching TV”, 
a study [64] presents that a magnetometer based system with 
combining accelerometers and indoor localization can tell that a 
person is facing to a television.    
    Physiological sensors are mainly designed for measurement 
of specific health related personal data, like heart rate, 
temperature. In order to ensure high accuracy of measurements, 
physiological sensors used to be relatively expensive and are 
mostly used in clinics. Now, advance sensory techniques boost 
the design and development of a large amount of cost-effective 
physiological sensors. For instance, Electrocardiogram (ECG) 
for heart rate monitoring has been broadly contributed to 
physical activity recognition and monitoring [65] and daily 
patients [61] health monitoring. More importantly, these 
physiological devices are feasible to be used in out-of-hospital 
conditions, can enable a health data transmission through 
Internet. 
    Image sensor in IoT enabled PHS usually indicate a camera 
that is utilised for recording and understanding human activities, 
emotions or other contexts by using image or video processing 
techniques. Typical image sensor related IoT enabled PHS 
cases[100] include SenseCam, Sony Xperia eye, etc. Their 
developers use a low cost wearable camera as visual life-logger 
for recording user daily activity related image sequences. With 
support of location data and image annotation, these tools can 
effectively recognize users’ daily activity and behavior, further 
results in improved and innovative home care solution for older 
people. But compared with other sensor technologies, image 

sensor technology for healthcare requires a much higher level of 
privacy protection. Especially in a lifelogging mode of IoT 
enabled PHS, how to store and protect high volume of image 
data is a big challenge. 
    Another key trend in IoT related sensing technology is that the 
appearance of many commercial wearable products and mobile 
applications enables a possibility of collecting multi-types of 
personal health data with hybrid sensors. The most famous 
mobile apps, such as Moves [68], are based on smartphone 3D 
accelerometer data and GPS information. It allows tracking user 
movement activities including location, distance and speed. The 
wearable products, such as Fitbit Flex [69], Nike+ Fuelband 
[70], Withings [71], are all wristband devices that 

Table .2. Typical sensing and identification technologies 

 

record steps count, distance, and calories burnt. These health 
related data are synchronized to mobile phone via blue-tooth, 
and further used in relevant mobile applications. 
    Apart from above wearable sensor technology, ambient 
sensor technology is also an important stream for IoT enabled 
PHS, as shown in Table.2. Typical ambient sensors include 
environment sensors, binary sensors, location sensors, etc. Their 
appliances focus on smart-home or smart-hospitals. Considering 

Sensor 
category 

Sensor 
subcategories 

Sensor 
examples 

Measured 
parameters 

 
 

Wearabl
e sensors 

 
 

Inertial 
sensors 

Accelerometer [72] Linear acceleration 
of movement 

Gyroscopes [55] Angular rotational 
velocity 

Pressure sensors [62] Object’s altitude 

Magnetic field 
sensors [73] 

Location of higher 
spatial resolution 

Location 
sensors 

GPS [74] Outdoor locations 

 
 

Physiological 
sensors 

Blood pressure cuff 
[75] 

Systolic and diastolic 
blood pressure 

Electrocardiogram 
(ECG) [27] 

Rhythm and 
electrical activity of 

the heart 
Spirometer [76] Expiration, flow rate 

and lung volume 
Electrooculography 

(EOG) [77] 
Eye movement 

galvanic skin 
response (GSR) [15] 

Skin  surface   
temperature 

Image sensors SenseCam [66] Photographs of daily 
living 

Ambient 
sensors 

Environment 
sensors 

Thermometer [78] Indoor/outdoor 
temperature 

Hygrometer [79] Indoor/outdoor 
humidity 

 
 

Binary 
sensors 

Window contact [80] Window open/close 
state 

Door contact [80] Door open/close 
state 

Light switch [80] light on/off state 

Remote control 
switch [80] 

Remote control 
on/off state 

 
Location 
sensors 

Infra-red [81] Indoor localization 

Zigbee [82] Indoor localization 

Active RFID [3] Indoor localization 

Tags RFID tags [83] Objects individual 
interact with 

NFC tags [84] Objects individual 
interact with 
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that the attention of this paper is to review technologies for 
personalised healthcare system, we mainly summarize key 
wearable sensing technologies for IoT enabled PHS in this 
paper. 

B. Networking Techniques 

Typically, networking layer in IoT applications contains a wide 
field of concepts and techniques, such as communication and 
location technologies, topologies, architecture, security and 
privacy, etc. However, for IoT enabled healthcare applications, 
a significant obstacle is that the majority of existing IoT enabled 
PHS system has limited permission on accessing and connecting 
hospital systems due to severe considerations on patients record 
and data. Thus, existing end-points of networking layer in IoT 
enabled PHS mostly rely on a third party server from companies 
or organizations with similar protocols. Thus, we will mainly 
concern three research issues mentioned in Section II: topology, 
architecture, security and privacy.    
     From classic networking standards perspective, IoT 
topologies can be categorized into three basic network 
topologies: p2p[40], star[41] and mesh[42]. Their 
characteristics, capabilities and behaviors are reflected by five 
key factors: latency, throughput, fault resiliency, scalability, 
hops and range. But for IoT enabled PHS, the topology needs to 
be a heterogeneous computing grids for collecting enormous 
amount of vital signs and health data, such as blood sugar, 
physical activity, blood pressure, oxygen saturation, etc. 
Viswanathan et.al [85] presents a new mobile grid computing 
topology ‘hybrid static/mobile computing grid’ for data- and 
patient-centric IoT enabled healthcare systems. It transfers the 
heterogeneous computing and storage capability of static and 
mobile electronic devices into hybrid computing grids by 
employing self-optimization and self-healing. Yang et.al [51] 
also introduces an IoT topology that supports the streaming of 
ultrasound videos through an interconnected network with 
worldwide interoperability for microwave access (WiMAX), an 
internet protocol (IP) network, and a global system for a mobile 
(GSM) network as well as usual gateways and access service 
networks. Jara et.al [52] also introduces a topology that 
considers an intelligent medicine box as a gateway to connect 
various wearable sensors, health-IoT cloud and heterogeneous 
network for supporting clinical diagnosis and analysis. The role 
of gateway in this IoT topology can examine, store and display 
all collected health data.  
    Regarding IoT architecture, SoA has been considered as a 
key technology in integrating heterogeneous systems or devices. 
In IoT enabled PHS, the design of architecture needs to treat a 
lot of issues, including architecture style, communication, 
sensors, web services and health applications, health data 
processing and protection, etc. Many researchers have explored 
the role of SoA in e-healthcare systems. For instance, Kart et al. 
[86] has applied SOA as a foundation to design, implement, 
deploy and manage health services in a distributed network 
system. Omar and Teleb-Bendiab [53] developed an 
experimental e-health monitoring system thatuses an SOA as a 
model for deploying, integrating, implementing and managing 
e-health services. The above studies show that SOA is an 
effective approach for IoT enabled PHS to reach 
interoperability between heterogeneous devices and deliver 
cost-effective healthcare services.    

    Lastly, after collecting diverse health data, security and 
privacy issues are critically important to IoT enabled PHS. 
Zhang et al [107] reviews these two issues for mobile healthcare 
networks from a quality of protection perspective: privacy 
leakage, secure data access and processing, malicious attacks 
and misbehavior. In order to solve these issues, a number of 
researches have been carried out. Zhang et al [55] proposed a 
priority based health data aggregation method for cloud assisted 
WBANs. It can aggregate different types of health data within 
tunable delay requirements, and also protects data and identity 
privacy during transmission. Zhou and Ren [87] suggest a 
scheme to securely and efficiently outsource the 
computationally intensive access control operations of ABE 
(Attribute Based Encryption) to the shared cloud, thus further 
providing a fine-grained access control to users’ important data. 
With this scheme, in a high level view, data owners only need 
to specify access policies on the encrypted data; and their access 
control can be done automatically by the cloud. For preventing 
misbehavior detection in IoT enabled PHS, Zhang et al [89] also 
developed a social-based mobile Sybil detection scheme for 
exploring mobile user’s pseudonym changing behaviors and 
contact statistics to differentiate Sybil attackers from normal 
users.  

C. Data Processing Techniques 

Data processing techniques for healthcare contains a quite wide 
scope regarding different types and format of data, different size 
of data, different purpose of applications. So here we only give 
a brief introduction of computational methodologies for health 
related data processing mentioned in section II, with a 
classification of data-driven approaches, knowledge base 
approaches and hybrid approaches, as shown in Table.3.  

Table .3. Data processing techniques in IoT enabled PHS 

Category Sub-Categories Algorithms References 
Data-driven 
approaches 

Supervised 
learning 

ANNs [23],[90], [150] 
HMMs [93]–[100] 
SVM [34], [96], [42], [111], 

[123], [124]   
Decision 
tree 

[36], [126]–[130] 

Semi-
supervised 
learning 

Co-training [133], [38], [109], [110] 

Unsupervised 
learning  

Expectation 
maximum 

[111], [112], [95] 

K-means  [161], [165] 
Knowledge-
based 
approaches 

 Semantic 
modeling 
andreasonin
g 

[114]–[116][117]  

Hybrid 
approaches 

Data-
driven+Knowle
dge-based 

 [118],[119] 

1. Data-driven approaches 

In IoT enabled healthcare field are based on a mechanism that 
makes use of a large volume of health related data from different 
subjects for training general models. Regarding the types of 
training or learning, it can be classified into supervised, semi-
supervised and unsupervised algorithms. A number of 
mainstream of algorithms are reviewed below:  

1) Supervised learning methods 
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Dataset is often divided into training sets and testing set in the 
procedure of conducting supervised learning algorithms. 
Training dataset, also called labelled data samples is made use 
for building the prediction model, whilst a testing dataset is for 
validating the model. For most occasions, larger datasets are 
used to train models, while smaller ones are for validating the 
prediction results. Supervised learning are widely and 
effectively applied in computer-aided systems for activity 
recognition, clinical decision making and symptom 
rehabilitations.  Typical supervised learning approaches are 
artificial neural networks (ANN), Bayes networks (BNs), 
decision tree (DT), support vector machine (SVM), K-near 
neighbor (KNN), etc. For example, ANNs have been used by 
many researchers for identifying and classifying different types 
of human physical activities and diseases diagnostic systems. 
Gyllensten and Bonomi [64] proposed a feed-forward neural 
network with 5-fold cross validation to train the data of free-
living subjects in daily life from a single accelerator. Nii et al 
[47] proposed a fuzzified neural network to train ECG data for 
estimating human physical activity. R. Das et al. [120] build 
heart disease diagnosis model with multi-layer feedforward 
neural networks achieving 89.01% accuracy classification. DT 
also is also a typical algorithm widely used in healthcare 
applications, especially for physical activity monitoring related 
disease diagnosis and treatments [108]. Likewise, SVM is 
capable to address the issue of either wearable sensors for 
precisely observing abnormal activities [121], or static postures 
detection for healthcare measurement [102], as well as in clinical 
outcome classification and prediction (e.g., disease diagnosis) 
[31]. In recent years, deep learning has gradually became a 
popular method in medical diagnosis and health state 
classifications due to its high efficiency and accuracy. Though 
deep learning techniques are traditional used in medical image 
analysis, a few works also operate them in terms of sensor 
signals. Tamilselvan P. et al. [122] applied deep belief network 
(DBN) constructing a hierarchical layer model with deep 
network for health  diagnosis method. The experiment results 
outperform traditional machine learning methods like SVM 
especially in high dimensional data inputs. 

    To achieve more satisfactory and practical performance, 
many researches combine different classifiers for the same 
purpose as standalone classifier, which are efficient to process 
data from both a single accelerometer [107] and from multiply 
wearable sensors [25]. For instance, DT and ANN are combined 
in the study [25] for unconditional physical activity detections, 
and the results was prominently improved by being replaced 
every node in DT models with ANN.  In the same manner, naïve 
Bayes classifier was fused into each node of Hidden Markov 
model (HMM) proposed by [123] for AAL in a context-
awareness environment. HMM was incorporated into Gaussian 
Discriminant Analysis (GDA) classifier presented in [124], 
achieved a considerably satisfactory result to naïve Bayes and 
single GDA classifier in accuracy.  On the other hand, it is the 
combination of several algorithms that causes high 
accumulation of complexity of each classifier. Hence, such 
hybrid classifier would weaken system performance on capacity 
and time. 

2) Semi-supervised learning methods 

Above supervised learning methods have their advantages on 
processing data in healthcare or clinical applications. But in 
practice, labelling every sample in supervised learning methods 
is quite expensive and requiring lots of human efforts. Some 
health datasets provided by unknown third party may exclude 
user annotations. So in these practical cases, semi-supervised or 
unsupervised learning methods are more popular. Some IoT 
enabled healthcare studies investigated the performance of 
applying semi-supervised methods in practical healthcare 
applications is to only train a small amount of labelled data, and 
leave a large amount of unlabeled data for an improved 
feasibility and reduce cost. Co-training is a classic semi-
supervised setting that takes advantage of two classifiers 
independently to train and update data from multi-view using 
unlabeled samples with high degree of confidence [125]. Stikic 
et al. [109] made use of accelerometer and infra-red, compared 
different semi-supervised techniques, found that co-training and 
self-training methods are the most adaptive methods for physical 
activity models. Furthermore, En-Co-training is an improved 
version proposed by  Guan et al. [126] which is more flexible 
for physical activity measurements, since compared to Co-
training with two separately strong classifiers, En-Co-training 
trains data as a whole without requirement for confidence of the 
labelling of each classifier. The study showed with 40 wearable 
sensors on the individual’s legs, results of static postures and 
ambulation obtained better performance than supervised 
methods when 90% samples are unlabeled.  [127] 

3) Unsupervised learning methods 

A few studies investigated typical unsupervised clustering 
methods like K-means cluster [111] and Gaussian mixture 
model (GMM) [128]. For example, Maekawa et al. [128] 
proposed a probabilistic model employing GMM to calculate the 
similarity of physical characteristics between a new user and 
source users and hence find the closest activity pattern. On the 
other hand, Alshurafa et al. [111] pointed out that GMM is the 
better algorithm compared to K-means clustering in different 
levels of activity intensity which would benefit intersubject 
variability. In addition to these, minority unsupervised learning 
methods have the aid of Intermediary to analyse abundant data 
resources from the web rather than directly labelling raw signals 
collected by the researchers.  For instance, the “bag-of-words” 
model [129] is a text processing technique, while  HuǤnh et al. 
[130] employed in activity observation where a series of sensor 
data were converted into documentation for inference of 
different types of activity. As such, sensor-based activity data 
are regarded as stream of natural language terms to match 
objects for mining models from the web [131]. 

2. Knowledge-based approaches 

Knowledge-based approaches represent and transfer knowledge 
from human expert (e.g., healthcare personnel and medical 
experts) into computer algorithms to establish computer-aided 
decision support system. For example, a knowledge-based 
system can deliver tailored information and advice to patients, 
carers and family members of the patient, taking decisions that 
are described in the treatment plan. Equally it can recommend 
diagnosis and clinical decisions to health personnel who will 
make changes in medication, and thus significantly improve the 
quality of live (QoL) for patients of chronic disease and elderly 
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people living independently [1]. Organizational knowledge 
model construction and rule-based inference are two main stages 
for carrying out knowledge-based methods. The structure of 
models is built in a way that allow systems to automatically 
process reasoning, whilst the inference is made of a set of IF 
(premise) THEN (action) rules from domain expert. 
    The knowledge model is expressed in some knowledge 
representation language or data structure that enable computer 
to execute the semantic rules. Knowledge-based approaches 
mainly consist of syntax-based, logic-based and ontology-based 
approaches. Syntax-based approach makes use of grammar that 
express the structure based on language modelling. It follows 
hierarchical structure containing two layers which are HMMs 
(Hidden Markov Models) and BNs (Bayes Networks) on the 
bottom and CFGs (Context Free Grammars) on the top. Logic-
based method such as description logic describes entities and 
then make logical rules for high-level reasoning. Among 
knowledge-based approaches, ontology is the most flexible and 
used approach in IoT enabled healthcare filed due to its 
reusability, computational completeness, decidability and 
practical reasoning algorithms. Its organizational structure for 
knowledge not only define concepts, properties, and 
relationships among them, but also supports instance-based 
reasoning. Some ontology based open resources of AAL 
systems that can share and reuse domain knowledge are already 
available such as SOUPA [114], SOPRANO [115], and GAIA 
[116].  
    Rules are defined in the form of an implication between an 
antecedent and consequent based on the structured model. The 
conditions are specified in the antecedent, and the results of the 
reasoning are declared in the consequent. Many researches have 
been conducted detecting ADLs in IoT environment for assisted 
living using knowledge reasoning. Also, knowledge-based 
decision support systems have been studied and deployed in 
various scenarios of remote health monitoring, reminding 
patients to visit physicians when their conditions are under 
severe situations. For example, Abidi et al. [132] developed 
clinical practice guidelines and a decision support system to 
support family care for breast cancer patients in terms of 
semantic and logic inference. Riaño et al. [28] used an ontology 
based approach to develop two personalized procedures for 
chronical patient healthcare, including anomaly detection, 
missing data and preventive actions. Another example is shown 
by Paganelli and Giuli [133] which provided the context 
semantic reasoning as monitoring system for chronic patients. 
Thomas et al. [134] made use of asthma treatment guidelines to 
provide the physician with disease assessment and 
recommendations on the basis of objective functional patient 
testing and case based treatment. Martínez-García et al. [135] 
discussed a knowledge inference engine to support healthcare 
personnel to help patients manage depression.  

3. Hybrid Approaches  

Since the training data samples and labels in nature environment 
are very difficult to obtain. Although unsupervised and semi-
supervised learning methods have their advantages in reducing 
the requirement of data sample, the immature foundations often 
lead to erroneous predictions. While ontological methods are 
incompetent in handling a variety of uncertainties in real 
healthcare environment. So the combination of both the data-

driven and knowledge-based approaches has the potential to 
make up the respective shortcomings of each other and thus 
taking advantage of advances in semantic reasoning with 
probabilistic models. COASR [118] is the typical case of 
combining two approaches in ADL detection for self-
management of elder people at their own homes. Collecting tens 
of thousands of training data for a large amount ADL 
classification is almost an impossible task in such environment, 
but based on mature techniques of classifying a few physical 
activities, with high level ontological reasoning, allows the issue 
well studied and application simply conducted. The same 
principle is also adopted by  R. Helaoui et al. [119] for 
interleaved and concurrent activity recognition (one of the AAL 
researches) with Markov logic framework and a set of 
contextual information acquired from ambient sensory data. 

IV. IOT APPLICATIONS AND CASE STUDIES IN PHS 

While the technologies applied in IoT enabled PHS are still in 
its early stage, the potential use in industry is rapidly evolving 
and growing. A lot of research projects and industrial cases 
related to IoT enabled PHS has been developed and deployed. 
In this section, we review some successful platforms and 
applications including European projects, individually national 
projects and research approaches.  

A. Physical activity platforms and applications 

MSP (Mobile sensing platform) [136] designed a lightweight 
wearable device placed on the waist to recognize a variety of 
physical activities and ADLs through connecting to the mobile 
phone. The standalone device presented in the work was one of 
the most state-of-the-art techniques in early stage of activity 
monitoring investigation using wearable sensors. The platform 
comprises of sensing model, feature processing model and 
classification model within the version 1.0, 2.0 and 3.0. 
Accelerometer and microphone are the two distinct sensors for 
measure different type of activities. The platform version 2.0 
resolves some practical issues such as storage, processor and 
battery life compared with version 1.0.  MSP 1.0 and 2.0 
implemented supervised training approach and achieve accuracy 
rate of activity recognition to 83.6% and 93.8%, respectively, 
while labelled training data is reduced in the version 3.0, and 
semi-supervised training method is taken to automatically 
cluster activity patterns. The result of recognition accuracy is 
also up to 87.4%. The system trains data offline, but provides 
real-time feedback.  
    WISDM (Wireless Sensor Data Mining) [137] is a typical 
platform that detects human physical activity based on Android 
phone sensors placed in one’s pocket. Data is from the 
accelerometer, features are extracted according to the 
identification of time between signal peaks, and activities of 
walking, jogging, ascending stairs, descending stairs, sitting and 
standing are selected in this work due to their repetitive 
characteristics. Supervised training algorithms are investigated 
and compared in the system using J48, logical regression, 
multilayer perceptron and straw man. The result exhibits that 
ascending and descending stairs are the most difficultly 
recognized PA. Besides, the work plans to involve more 
activities and users, as well as carrying the phone in different 
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part of one’s body as the results may diverse from phone putting 
from tops to trousers.  
    mHealthDroid (Mobile Health Android) [138] is an open 
source framework  designed to facilitate the rapid and easy 
development of biomedical android application which is 
available on Google Play [139]. The platform is able to collect 
data from connecting heterogeneous commercial devices (e.g., 
smart watch, belt and mobile device) for both ambulation and 
biomedical signals. The system contains communication 
manager, data storage manager, data processing manager, 
visualization manager and system manager. Especially, data 
preprocessing, segmentation, feature extraction and 
classification using Weka [140] are operated in the data 
processing manager.  It also provides healthcare interventions 
such as alerts and guidelines. The most important aspect is its 
extensibility, which supports diverse modes and ways to 
facilitate new system implementation for time and cost saving. 
For instance, mDurance[141], a mobile healthcare support 
system for assessment of trunk endurance, is implemented in 
terms of the core functionalities of mHealthDroid.  
    WearIT@Work [142]is an European project to investigate 
wearable computing technology in different areas. In healthcare, 
it studied gesture determination, including open/close hood, 
doors and trunk, checking steering wheel, etc. to assist doctors’ 
diagnosis [123]. Multiple small and cost-effective acceleration 
sensors are distributed on patient’s arms for gesture 
classification. Data dimensionality are reduced by using 
supervised learning method dynamic time warping (DTW), and 
hybrid supervised learning is selected as a recognizer. For each 
accelerometer axis, HMM is exploited for metaclassifier, while 
its outcomes are sent to a Naïve Bayes model in order to improve 
the ultimate result. The experiments proved that using fusion of 
classifiers achieved high accuracy in the condition of extension 
of sensor network life time.  
    Apart from some typical projects above, there are also many 
other successful IoT enabled healthcare applications, like 
rehabilitation, persuasive wellbeing, emotional wellbeing and 
smart hospital.  For example, Jarochowski et al. [184] propose 
the implementation of a system, the ubiquitous rehabilitation 
center, which integrates a Zigbee-based wireless network with 
sensors that monitor patients and rehabilitation machines. 
Etiobe [185] is another project devoted to treat child obesity. Its 
architecture merges ubiquitous, intelligent, and persuasive 
features for implementing a cyber therapy approach. It is based 
on virtual and augmented reality, and attempts to persuade 
children to avoid poor eating habits. The system uses a 
collection of environmental sensors for capturing important 
information such as contextual, physiological, and 
psychological data. McNaney et al. [186] have designed a 
wearable acoustic monitor (WAM) device, which provides 
support in various aspects of social and emotional wellbeing by 
inferring levels of social interaction and vocal features of 
emotionality. Rodriguez et al. [187] describe development of 
SALSA, an agent-based middleware to facilitate responding to 
the particular demands of patients and hospital’s personnel. 

B. Healthcare service with human interaction 

In recent years, self-management services in tele monitoring and 
AAL settings have been becoming a heated research and 
application facial point designed for satisfying user’s specific 

requirements to improve the efficiency and success of a therapy 
(e.g., changing patient’s dosage). The systems provide an 
alternative approach to improving the quality of live (QoL) of 
the patients through interaction among patients, physicians and 
caregivers. Such systems are able to deal with a variety of patient 
conditions using sensor technologies, objective and subjective 
assessment methods, treatment plans and guidelines, with 
tailored information and advice being delivered to patients based 
on their feedbacks. While the procedure of the service is to 
collect and storage of relevant health data and then send 
feedback to the patient, which designated the “Closed Loop 
Principle” [143]. 
    EMERGE (Emergency Monitoring and Prevention) [144] 
targeted on emergency medical services (EMS) system to assist 
elderly living independently through automatic detection of 
ADLs in an IoT environment. Data from wrist devices with 
embedded-in wearable sensors and ambient sensors at home 
were collected for activity detection as well as vital data 
measurement. The proposed framework made attempt to 
classify different types of activities such as short-term 
emergencies (e.g., fall, helplessness) and long-term clinical 
assessment (e.g., toilet usage, sleep) with the knowledge-based 
approach, and highlighted weight as a characteristic to carry out 
the fuzzy reasoning. Furthermore, relationships between facts 
are described orderly for the temporal inference. Knowledge-
based model is used as an inference agent describes objects and 
relationships in the sensing layer and hierarchically constructed. 
The approach was tested by a few elderly people and caregivers 
in Europe following the close loop principle. 
    MOSKUS (Mobile Musculoskeletal User Self-management) 
[1], [145]is a  to develop a smart ICT solution to support self-
management for patients suffering from arthritis, a prevalent 
and debilitating chronic disease, and thus, saving costs in the 
health care sector and improving the clinical outcome. A 
personalized chronic patient’s self-management system 
(CPSMS) proposed in MOSKUS is a knowledge-based 
decision support and evidential reasoning system that makes 
use of a set of reasoning rules, providing non-pharmacological 
treatment plans to assist patients keep better control on the 
chronic disease and reduce the frequency of hospital visits. The 
states of self-report (questionnaires) measurements are divided 
into four categories: High, Medium, Low and None. Due to the 
imprecise concepts, fuzzy rule reasoning mechanism are 
defined for the multiple assessment fusion [145] in CPSMS. 
This platform delivers patient’s conditions, medical and 
behavioural assessments and inference mechanisms for 
decision recommendations. 
    SMART (Self-Management supported by Assistive, 
Rehabilitation and Telecare Technologies) [146] is a 
personalized self-management and monitoring platform for 
some health conditions namely chronic heart failure, chronic 
pain and stroke using wearable sensing technologies. The aim of 
the project is to assist patients maintain their health condition at 
home through setting life goals based on a number of physical 
activity tracking outcomes, also to provide a series of feedbacks 
according to the process of the therapy plan. In order to monitor 
patients’ physical activities, it made use of accelerometers, vital 
signs like weighing scales and a blood pressure monitor, as well 
as ambient sensors (i.e., bed sensor, door sensor, etc.) to monitor 
patient’s activities and sleeping pattern, TV usage and food 
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preparation. Data-driven and knowledge-based methods are 
both adopted in the SMART.  
    PIA (Personal IADL Assistant) [84] is an AAL JP (Ambient 
Assisted Living Joint Programme) project aiming at assisting 
elderly people to live independently in their homes and perform 
daily activities without external help. It uses simple approach 
that the elderly people can watch instructional videos of how to 
use modern household equipment through interacting with Near 
Field Communication (NFC) tags attached on the equipment 
with their smart devices. There are two main categories of end-
users: elderly people and caregivers. Caregivers are healthcare 
personnel, family or friends, whose responsibility is to record 
and upload the instructional video and link it to the NFC tags via 
PIA app. The end-user then use the smart devices (e.g., smart 
phone or tablet) with the app installed to tap the equipment with 
the NFC tag attached and then the same video automatically 
plays. The ontology-based top-down, goal-driven model is 
developed in PIA that the goals are set as recognition of elder 
people’s ADLs [147]. 

C. CDSS automated prediction and diagnosis 

PredictAD  (Predict Alzheimer's Disease) [148] is an European 
research project for developing a standardised and objective 
solution that would enable an earlier diagnosis of Alzheimer’s 
disease, improved monitoring of treatment efficacy and 
enhanced cost-effectiveness of diagnostic protocols. The project 
develops a generic decision support software library and 
platform with different classification methods behind with a 
CDSS model composed by data tier for data collection and 
storage, logic tier for data processing and presentation tier for 
user interaction and interface. The special point of this CDSS 
tool is the proposed disease state index (DSI) function and has 
been tested for efficiently assessing and predicting different 
diseases.  
    METEOR (Methodist environment for translational 
enhancement and outcomes research) [149] is an integrated 
clinical informatics framework that contains a data and logic 
storage EDW (enterprise data warehouse) and a clinical outcome 
prediction tool SIA (software intelligence and analytics) for 
physicians, caregivers and other clinical staff. The system is also 
designed to remotely monitor and control the patient’s physical 
state from data collection of blood pressure, spirometry, pulse 
oximetry, temperature, etc. in the way of communications media 
like web browser and thus provide medical interventions and 
reminders. The whole engine integrates many key techniques 
like service-oriented architecture (SOA) and JBoss application 
server (JBoss AS) where manage reasoning rules extracted from 
electronic health record (EHR). Also, the framework is also 
applied in COPD patient remote monitoring, showing its 
feasibilities and universalities.  

V. RESEARCH CHALLENGES AND FUTURE TRENDS 

While empowering the utility of IoT enabled technologies in 
personalised healthcare has huge potential benefits, it is still 
broadly agreed that the IoT technologies are in their infancy and 
face many challenges due to the need of cost-effective sensing 
technologies, advanced algorithms of processing life-logging 
data, methods of coping with uncontrolled environment, high 
volume of data set, security and privacy, etc. Future efforts are 

required to address these challenges and examine of availability 
of existing PARM technologies to ensure a good fit in the IoT 
environment.  

A. Technical Challenges  
Cost effective and non-obtrusive wearable sensing: While 
existing sensing technologies have made a great progress in the 
last decade, it still limits to long-term healthcare monitoring in 
the free living environment, as even only a small single sensor 
attached on a certain part of the body is still uncomfortable for 
permanent monitoring. While wearable devices have been 
proven its popularity among general users, their majority usages 
are limited in the fitness fields. The products simply provide 
processed measurements (e.g., steps, distance or calories) so that 
suffer from further data processing. Raw sensor data can be 
directly acquired from mobile phone, but because of diversity of 
life pattern and environmental impacts, personal data from 
individual wearable device exhibits remarkable uncertainty in 
the natural environment such as battery, capacity issues and 
placed positions. The results are widely divergent when the 
mobile phone is put in the pants pocket from handbags. 
Particularly that inertial sensors are sensitive to any changes in 
position and orientation. Thus, so far, existing wearable sensing 
technologies are limited in terms of their size, fast response, 
continuous monitoring capability, wireless data transmission, 
and non-obstructive user experience. Moreover, there is usually 
a tradeoff between high quality and low cost of developing 
sensing technologies. The idea candidate of future sensing 
technologies for IoT enabled PHS should be a tiny sensor into 
personal daily use items, including but not limited to clothing, 
watches, glasses, shoes, belts, and so on. Moreover, for many 
chronic disease monitoring, non-obstructive sensing devices are 
key to success of IoT enabled PHS, and will potentially bring a 
lot of convenience to patients.  
    Secured and Trustful mobile health platform: Any 
healthcare related applications must consider various security 
and privacy issues. In many IoT enabled PHS applications, 
since health information (e.g., phenomena, health condition, 
emergency) is relatively sensitive for users, any inappropriate 
disclosure may violate user privacy and even result in property 
loss. Users may also concern about their critical health data 
being tampered with when their health data are stored in 
untrusted servers or places. Also some malicious attackers 
misbehave in IoT based health systems to disrupt the 
effectiveness or mislead other users’ preferences. Thus, how to 
provide appropriate security and privacy protections in IoT 
enabled PHS platform is still a challenging issue. Without good 
schemes to protect user’s privacy, users may not accept IoT 
enabled healthcare applications. Another important issue is that 
the costs of security protections vary with users’ diverse 
demands, and may impact users’ experiences of mobile health 
applications. For example, complicated encryption techniques 
may offer users more security guarantees but with higher 
computational overheads and latency than lightweight ones. To 
satisfy users’ diverse security requirements and balance the 
trade-off between the performance and security protections, 
quality of protection has become a newly emerging security 
concept that allows applications to seamlessly integrate 
adjustable security protection.  
    Effective data validation in healthcare: In a IoT enabled 
PHS environment, as we mentioned before, personal health data 
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from individual wearable device exhibits remarkable uncertainty 
in the natural environment. How to validate these data in 
longitudinal healthcare cases is very challenging. As the 
exponential growth of mobile healthcare market, numerous 
similar wearable products have been developed, which will 
significantly increase the heterogeneity and diversity of devices 
connected in IoT based personalized healthcare systems. 
Effective validating these health data from heterogeneous 
devices in IoT enabled personalized healthcare environment is 
difficult, and needs more advanced intelligent algorithms.  
    Intelligent data processing and analytic in healthcare: In 
terms of traditionally adaptive models for different people with 
different physical states, all data-based approaches require large 
number of samples for model training, in which supervised 
learning methods need to be set appropriate categories ahead of 
time, and each sample needs to be labelled. In addition, in the 
cases of abnormal behavior alerts for the elderly (e.g., falling or 
faint), the systems must enable prompt interaction with users 
and caregivers. Considering limitations of existing sensing 
devices which algorithms are normally implemented on the 
remote server, choosing lower complexity of algorithm may 
suffice to the circumstances. Also, for the life-logging physical 
activity monitoring environments like symptom analysis from 
long-term daily activity record, precise offline algorithms tend 
to be more functional. Lastly, only a few attentions are devoted 
to training healthcare model from the sensor signals in 
naturalistic or semi-naturalistic environment. Semi-supervised 
and unsupervised approaches are more eligible in real life with 
many uncertainties, and thereby to resolve the complexity and 
accuracy of the algorithms is a challenging topic can be further 
investigated. 

Monitoring and changing individual human behaviour in 
healthcare: In traditional model of healthcare, a reactive system 
that treats acute illnesses after the fact is recently evolving with 
IoT technologies to one more centred on patients, prevention, 
and the ongoing management of chronic conditions. Thus, it is 
highly important to effectively monitor and change individual 
behaviour with IoT enabled personalised healthcare systems, 
which requires a close collaboration between technical experts 
and clinicians. This need poses a variety of new research issues. 
Firstly, how to integrate behaviour change into new healthcare 
delivery models with IoT enabled PHS is a big issue. Many old 
health systems are putting increased emphasis on primary care, 
especially through the use of integrated care delivery models 
designed to improve the health of the population. To succeed, 
these new models must extend their reach outside of the four 
walls of a clinician’s office so that they can support patient 
behavior change beyond traditional clinician-patient 
interactions. This requires new capabilities, including clinical 
workflow tools to support patient targeting, care alerts sent to 
both clinicians and patients, enhanced communication and care 
management support for patients, and remote monitoring. 
Clinicians must adopt a patient-centered approach when they 
interact with patients, one that focuses on understanding the 
whole person and their barriers to change. Secondly, it is 
worthy to study of utilizing remote and self-care-oriented 
technologies to enhance the communication between patients 
and clinicians. Frequent, real-time communication and 
feedback are important in supporting change efforts. 
Traditional models of care delivery have, at their core, face-to-

face interactions between clinicians and patients. New 
technologies, however, are augmenting this interaction model 
and fundamentally transforming the ways in which clinicians 
deliver and individuals and their friends and family consume 
care. Mobile apps, for example, can facilitate tracking and 
monitoring. 

B. Future Research Trends 

Sensing interoperability: multiple sensors with different 
features often coexist in a single biometric system. While sensor 
interoperability refers to the ability of the system to merge and 
adapt data from different types of sensor and device. In IoT-
based PHS, such interoperability is especially distributed in 
network layer and processing layer. Firstly, the battery life and 
bandwidth overhead for low power sensor nodes is a still 
challenge. Second, due to different types of sensors have diverse 
characteristics such as frequency, as such, many approaches and 
biomedical platforms have been proposed for sensing 
interoperability. However, almost every biomedical sensor has 
its interoperability issues, few systems so far are able to handling 
with raw sensor data and feature extractions in pre-processing 
level in real, and thus expected to provided more practical and 
feasible approaches.  
    Lifelogging Mode: One key feature of IoT environment is 
that the collection of life-logging data becomes possible. It 
means that daily health data are monitored and accessed 
continuously and constantly in a life-long term. Due to limited 
memory and power resource in affordable wearable devices, 
life-logging physical activity data will not be milliseconds-based 
raw sensory signal, but minutes/hours-based segmented set. The 
changed typed of raw data leads to different features in a simple 
unchanged subject of physical activities. Existing researches 
cannot apply the same machine learning algorithms into these 
new features for equivalently high accuracy. Thus, how to 
effectively transfer these available machine learning algorithms 
into these new features in life-logging health related data, how 
to explore new feasible algorithms for training these life-logging 
data set, what kind of features in these life-logging data 
potentially leads to the best accuracy, etc. are all valuable 
research topics in this area. 
    Uncontrolled environment: Another feature of IoT enabled 
PHS is to face to completely uncontrolled environment. It 
follows a global trend of population aging, which requires the 
transformation of traditional hospital based healthcare services 
to patient empowered home based healthcare services. In this 
case, the future trend of using IoT technologies in PHS will 
focus on completely real life or namely uncontrolled 
environments. However, existing health related data analyzing 
methods were mostly set up and verified in lab or experimental 
scenarios for the purpose of improving recognition accuracy, 
and suffer from application in unconditional environments (i.e., 
outdoor, real home). The reason for that is lying on the two 
crucial but inevitable issues: short-battery or poor capacity of 
devices and time-consuming of running machine learning 
algorithms. Moreover, the diverse life pattern of individual 
person will cause huge uncertainty on personal health data in 
uncontrolled environment. People performs physical activities 
in varied manners owning to different age, gender, weight, etc. 
Hence, a specific recognition model fits one group of people 
may not fit another one. Thus, how to achieve high accuracy 
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and stability of health data processing using IoT technologies 
in uncontrolled environment is of interest to many researchers 
in future. 
    High volume of data: The heterogeneous devices connected 
in IoT environments and life-logging collection of physical 
activity data will be driving major expansion in big data of 
personal health information. These data contain not only a sheer 
volume of long-term personal lifestyle information, but also 
complex, diverse and rich context of other health information. 
The uncertainty of these data will be much higher than physical 
activity data training by classic machine learning methods in 
healthcare fields. Effectively and efficiently improving validity 
of these health related data and exploring useful knowledge 
becomes a difficult task. Therefore, research work on how to 
explore these big health related data under IoT environments for 
bringing intelligence for more solid clinical decision-making 
and policy formulation will be significance.  
    Security and Privacy: The architecture of IoT environment 
is supposed to be a very complicated heterogeneous network. 
IoT enabled PHS may be a specific application or service in the 
entire IoT environments. But, the personalised health data will 
be stored and managed into the server of IoT systems. The 
typical issues of security and privacy in IoT networking 
architecture will be naturally inherited to IoT enabled PHS 
applications. Compared to existing commercial wearable 
devices with data protection scheme on their standalone server 
like Fitbit, etc. protecting privacy and security in the IoT 
environments is more serious and difficult since the number of 
potential attack vectors on IoT entities is obviously much larger. 
So more research work on how to protect security and privacy 
needs to be carried out in healthcare using IoT technologies.  

VI. CONCLUSIONS 

Internet of Things paradigm represents the vision of the next 
wave of ICT revolution. IoT enabled technology in PHS will 
enable faster and safer preventive care, lower overall cost, 
improved patient-centered practice and enhanced sustainability. 
IoT enabled PHS have the potential to enhance our everyday 
life in many different aspects and, in particular. In this survey, 
we explored the application of IoT in healthcare from various 
perspectives. We reviewed the existing state-of-the-art 
technologies for IoT enabled healthcare applications. From a 
different perspective, we discussed current technology and 
infrastructure, such as sensing, networking and data processing 
technologies. More importantly, we provided a high level 
description of various IoT enabled healthcare applications. But, 
we are aware that the goals set up for IoT in healthcare are not 
easily reachable, and there are still many challenges to be faced 
and, consequently, this research field is getting more and more 
impetus. Researchers with different backgrounds are enhancing 
the current state of the art of IoT in healthcare by addressing 
fundamental problems related to human factors, intelligence 
design and implementation, and security, social, and ethical 
issues. Asa result, we are confident that this synergic approach 
will materialize the complete vision of IoT and its full 
application in healthcare and human wellbeing. 
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