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Abstract  12 
Ecosystems can buffer against adverse events and, by so doing, reduce the costs of risk-bearing 13 
to society; benefits which have been termed ‘insurance value’. Although the terminology is 14 
recent, the concept is older and has its roots in ecological resilience. However, a synthesis of 15 
studies through the lens of the insurance value concept is lacking. Here we fill this important 16 
knowledge gap by conducting a rapid evidence assessment on how, where and why the 17 
insurance value of ecosystems has been measured. The review highlighted the often substantial 18 
positive values that were associated with restoration, rehabilitation or avoidance of loss of 19 
natural ecosystems. However, many regions, ecosystems and hazards are not widely 20 
researched. Most studies focused on forests, agriculture and wetlands, often with an emphasis 21 
on habitat restoration to reduce flood risks. Over half the studies provided non-monetary or 22 
monetary estimates of value, reporting, for example, improved ecological function, 23 
achieved/achievable cost reductions or willingness-to-pay. Nevertheless, the evidence-base 24 
remains fragmentary and is characterised by inconsistent reporting of valuation methodologies. 25 
This precludes drawing general conclusions. We recommend that future studies of insurance 26 
value adopt a common approach to facilitate the development of a more robust evidence-base. 27 
 28 
 29 
 30 
 31 
 32 
 33 
Keywords 34 
Ecosystem services; insurance value; natural hazards; risk; resilience; rapid evidence 35 
assessment 36 
 37 
Highlights 38 

 We assess the existing empirical research on the insurance value of ecosystems; 39 

 There is a mismatch between research topics and hazard types, location and severity;  40 
 Values can be substantial, but there is little consistency in how they are calculated; 41 

 We recommend a common approach to facilitate mainstreaming of insurance value. 42 
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Introduction 1 

Globally, the frequency and severity of natural hazards is increasing (e.g. Royal Society, 2014), 2 
exposing a growing number of households, businesses, public authorities and infrastructure to 3 
multiple and new risks (e.g. Guha-Sapir et al., 2017; United Nations, 2016). This trend has 4 
been, and will continue to be, aggravated by climate change (IPCC, 2014), human population 5 
growth, demand for food and urbanisation, all of which can result in land use change, 6 
environmental degradation and biodiversity loss. Mitigating and adapting to new levels of risk 7 
will require novel ways to ensure that the positive aspects of ecosystems for human societies 8 
are integrated into decision and policy-making. One such possibility is to recognise how 9 
ecosystems can buffer against adverse events (Baumgartner, 2007) and thus reduce the costs 10 
of risk-bearing to individuals and wider society (Quaas and Baumgartner, 2008). This so-called 11 
‘insurance value’ of ecosystems (Baumgartner, 2007) has emerged from the study of resilience, 12 
which is defined in the ecological literature as the capacity of a system to absorb shocks and 13 
reorganize itself to maintain its structure and functions, (Ehrlich and Becker, 1972). The term 14 
has been used to denote an ecosystem’s ability to maintain function (and by extension the 15 
provision of ecosystem services to humans) under abrupt and gradual disturbances (Carpenter 16 
et al., 2001; Holling, 1973). As Baumgartner and Strunz (2014, p21) state “The economic 17 
relevance of ecosystem resilience is obvious as a system flip may entail huge welfare losses”. 18 
Ecosystem resilience has, therefore, been recognised as an important ecosystem service (e.g. 19 
Maler, 2008; Maler and Li, 2010; Perrings, 1995). 20 
 21 
However, insurance is not solely against catastrophic changes between system states. For 22 
people, reducing the severity, intensity and frequency of natural hazards is also of value, 23 
whether or not those hazards are associated with an abrupt system change. For example, 24 
maintaining a biodiverse and resilient forest ecosystem can provide ‘natural protection’ if it 25 
reduces the likelihood of a pest or disease outbreak within the forest itself and thus maintains 26 
the range of ecosystem services it provides. If the biodiverse, resilient forest is located upstream 27 
of an urban area, such services could reduce the adverse consequences of a flood, which could 28 
have considerable social value. This type of reasoning suggests close linkages between 29 
resilience, insurance value and sustainability (Brand, 2009).  30 
 31 
Ecosystems can offer both protection, which can be defined as measures that reduce the 32 
likelihood of an adverse event, and insurance, which acts to reduce losses caused by an adverse 33 
event (Ehrlich and Becker, 1972). Baumgartner & Strunz (2014) refer to insurance value as the 34 
value of a specific function of resilience, namely the reduction of an ecosystem user's income 35 
risk from using ecosystem services under uncertainty. Thus, the insurance value of resilience 36 
is one additive component of total economic value (TEV) (Baumgartner and Strunz, 2014). 37 
Similarly, Pascual et al. (2015) consider ‘natural insurance value’ as a distinguishable 38 
component of the TEV of an ecosystem. Insurance value can then be further decomposed into 39 
self-protection (mitigation of risk) and self-insurance (adaptation to risk). The 40 
conceptualisation of insurance value, and the development and testing of solutions for 41 
measuring it, are, therefore, still being debated (Bartkowski, 2017; Baumgartner and Strunz, 42 
2014; Mäler et al., 2007). Indeed, in studies reporting TEV it may not prove possible to 43 
disaggregate insurance value specifically. Therefore, while acknowledging its component 44 
parts, for the purposes of this review of existing empirical research, we use the term insurance 45 
value of ecosystems to refer to both insurance and protection components (Baumgartner and 46 
Strunz, 2014; Ehrlich and Becker, 1972; Pascual et al., 2015). 47 
 48 
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The economic conceptualisation of how we might value the protection and insurance 1 
contribution of ecosystems is rapidly evolving. However, there remains a gap between the 2 
theory of insurance value and the existing empirical research. Looking across the existing 3 
research base could reveal pointers as to how the concept could be mainstreamed and 4 
operationalised across a wide range of contexts. For instance, although the term ‘insurance’ is 5 
rarely used (but see The Nature Conservancy, 2018 for a recent example), the importance of 6 
insurance value of ecosystems is increasingly acknowledged in many related concepts. This is 7 
exemplified by a growing emphasis on “nature-based solutions” (NBS) in urban regeneration, 8 
flood risk management and other natural disaster risk reduction (Nesshover et al., 2017). Such 9 
NBS often provide co-benefits of which insurance value is just one (see Sukhdev et al., 2010). 10 
The International Union for Conservation of Nature (IUCN) also promotes NBS as an umbrella 11 
concept for a range of ecosystem-related approaches to address societal challenges (Cohen-12 
Shacham et al., 2016). NBS, and related terms such as ‘nature-based infrastructure’, ‘working 13 
with natural processes’ and ‘engineering with nature’ (Nesshover et al., 2017) refer to 14 
interventions “which are inspired by, supported by or copied from nature” (European 15 
Commission, 2015, p. 4). An example of ecosystem-based approaches and NBS is natural flood 16 
management (NFM), which uses natural hydrological and morphological processes, features 17 
and characteristics to manage sources and pathways of flood waters (SAIFF, 2011) instead of 18 
hard-engineered flood defence infrastructure (Lane, 2017). Finally, ecological engineering has 19 
emerged as an approach to ecosystem restoration (e.g. Nesshover et al., 2017), for enhanced 20 
resilience of habitats and the communities that depend on them.  21 
 22 
While the evidence base on ecosystem services and their values is growing (see e.g. Costanza 23 
et al., 2014), the focus thus far has been on provisioning and cultural ecosystem services. In 24 
contrast, insurance value is often related to regulating ecosystem services, such as the ability 25 
of biodiverse forest ecosystems to buffer risks from floods, fire, disease spread and other 26 
hazards. Despite the increasing interest in the buffering capacity of ecosystems and NBS to 27 
mitigate risks and to provide a range of other co-benefits, the evidence base on the ability of 28 
ecosystems to actually provide insurance value remains limited (e.g. Dadson et al., 2017). 29 
 30 
Some caution is also needed when calculating monetary values for the extent to which 31 
ecosystems ‘insure’ against natural hazards. As climate and environmental changes continue, 32 
the resilience of ecosystems will be undermined, increasing the likelihood of systems tipping 33 
into new and unknown states. This has already happened in several cases (e.g. Rockstrom et 34 
al., 2009; Steffen et al., 2011), which suggests an emphasis on managing natural environments 35 
should be a priority to avoid hazards and regime shifts in the first place (e.g. Green et al., 2016). 36 
Regardless, the two are not incompatible, and the additional value of the insurance provided 37 
by well-functioning ecosystems could add to the strength of both monetary and non-monetary 38 
arguments for their preservation. 39 
 40 
Acknowledging the difficulties of relying on past evidence to value the avoidance of unknown 41 
and complex shifts in system properties, it is nevertheless important to understand and quantify 42 
the current knowledge base. Interrogating the existing evidence on the quantification, 43 
qualification and valuation of the insurance value of ecosystem services across multiple 44 
contexts and ecosystems is a necessary starting point for mainstreaming and operationalising 45 
the concept. This could involve integrating an ecosystem’s role in protection and insurance into 46 
insurance policies and developing new public and private insurance models for resilience. 47 
 48 
To understand the current state of knowledge, we assessed the existing evidence on the 49 
insurance value of ecosystems, asking the following questions: (i) What existing empirical 50 
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evidence exisits? (ii) Where has the research been carried out? (iii) How large are values 1 
associated with insurance as an ecosystem service, and how have they been measured? and, 2 
(iv) What lessons can we learn to ensure that future research allows us to more systematically 3 
‘value’ the protection against, and avoidance of, natural hazards that ecosystems can provide? 4 
Although there is some literature explicitly discussing, or referring to, insurance value, it is 5 
relatively recent and limited. Therefore, we carried out a rapid evidence assessment using a 6 
suite of terms intended to capture the breadth of the existing relevant literature on valuing 7 
ecosystem services.   8 
 9 

Methods 10 

Rapid Evidence Assessment 11 
To capture relevant knowledge from the existing literature, we undertook a configurative Rapid 12 
Evidence Assessment (REA). An REA is a constrained form of systematic review, which is 13 
limited to comprehensive database searches of the peer-reviewed literature and omits other 14 
forms of evidence gathering, such as manually searching the grey literature (Burton et al., 15 
2007). REAs follow a transparent and reproducible procedure, decided on and articulated in 16 
advance, which minimises the chance of bias. The utility and value of REAs, and the evidence-17 
based approach, is well established in the health, environmental and social policy sectors 18 
(Pullin and Stewart, 2006). Whereas classic quantitative aggregative reviews are likely to meta-19 
analyse similar forms of data, configurative reviews seek to identify patterns provided by 20 
heterogeneity (Barnett-Page and Thomas, 2009). As such, they are ideal for synthesising 21 
evidence from different disciplines or methodologies. 22 
 23 
REAs use published quantitative research data and centre on exploring frameworks, 24 
investigating complexity and placing research within its environmental and societal context 25 
(Greenhalgh et al., 2005). Through a detailed evaluation of existing conceptual, theoretical, 26 
modelling and empirical studies, an REA can explore whether the notion of insurance value of 27 
ecosystems offers novel ways to assess the value of natural environments for humanity. The 28 
objective of our REA was to synthesise findings from the existing literature on what value 29 
change in the quantity or quality of ecosystems has either in monetary or non-monetary terms 30 
that can be linked to any of the definitions of insurance value described above. Given that the 31 
notion of the insurance value of ecosystems is relatively recent, literature explicitly using the 32 
term has only emerged in the past decade. Nevertheless, the conceptual links between insurance 33 
value and resilience (e.g. Baumgartner and Strunz, 2014; Perrings, 1995), should mean that 34 
research which could underpin a better understanding of the quantification, qualification and 35 
valuation of the insurance value of ecosystems is likely to exist. To ensure that the review 36 
captured the breadth of existing studies, we developed a set of search terms to cover four main 37 
areas, namely: concepts of insurance and resilience, metrics of value, types of ecosystems and 38 
natural hazards (Table 1 and below).  39 
 40 

Insurance, resilience, risks and ecosystem restoration 41 
Search terms covered two of the main concepts of insurance value developed in the literature 42 
thus far, namely protection and insurance (Baumgartner and Strunz, 2014; Pascual et al., 2015). 43 
Given these concepts are directly related to resilience (Pascual et al., 2010) and the capacity of 44 
a system to remain at a given ecological state or avoid regime shifts (Walker and Meyers, 45 
2004), search terms included ‘resilience’ and ‘regime shift’ in addition to ‘insurance’, 46 
‘protection’ and their synonyms. A further concept of insurance relates to how ecosystems can 47 
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internalise risk, and reduce the costs of risk-bearing to individuals and society (Quaas and 1 
Baumgartner, 2008). This argument has been developed around the idea that ecosystems 2 
provide insurance against the uncertain provision of ecosystem services in the same way that 3 
diversity in an asset portfolio does in financial markets investments (Baumgartner, 2007). 4 
Search terms also included various formulations of risk reduction, risk mitigation and risk 5 
management ( 6 

Table 1). Finally, given our specific interest in how ecosystems can be managed to prevent or 7 
reduce the occurrence and severity of risks and hazards, searches included terms such as 8 
ecosystem restoration and rehabilitation. 9 

 10 

Metrics of value and valuation methods  11 
A common approach to understanding the importance of ecosystems for human well-being is 12 
to assign monetary values to changes in ecosystems and the services they supply (e.g. Hanley 13 
and Barbier, 2009). This helps in making direct comparisons with other costs and benefits in 14 
decision-making processes (Kahneman and Sugden, 2005; Kumar, 2010). The notion of 15 
monetary value has been conceptualized in various ways; for instance, assigned values can be 16 
thought of as the measurement of a certain quality or level of importance (Schulz et al., 2017). 17 
This concept of value is rooted in neoclassical economics which considers humans as rational 18 
actors who seek to satisfy their preferences and maximise their personal utility through their 19 
choices (Dietz et al., 2005; Pearce and Turner, 1990). Accordingly, value is defined as “the 20 
change in human wellbeing arising from the provision of [an environmental] good or service” 21 
(Bateman et al., 2002; p1). These welfare changes can be compared by conducting monetary 22 
valuation studies that estimate people’s willingness to trade-off scarce means (usually money) 23 
to achieve an environmental change, such as reduced flooding.  24 
 25 
People’s perceptions of nature’s value, and shared or social values, often differ from standard 26 
economic models, and a broader range of values needs to be considered. Conventional 27 
economic valuation may not be appropriate for all facets of environmental goods such as non-28 
use values (Nunes & van den Bergh 2001). Further aspects of ecosystem services are still more 29 
difficult to address, and the monetary amounts generated through an economic valuation 30 
framework may not capture the full value of ecosystems to beneficiaries (e.g. the role of intact 31 
ecosystems in maintaining system resilience; García-Llorente et al., 2011; Walker et al., 2008). 32 
For example, the Common International Classification of Ecosystem Services (CICES) 33 
identifies at least 11 groups of cultural ecosystem services (Haines-Young and Potschin, 2018), 34 
suggesting that a  full account of the cultural value of ecosystems would require the 35 
consideration of them all (Dallimer et al., 2014). Understanding the multi-dimensionality of 36 
value increasingly requires the application of deliberative and participatory approaches (Kenter 37 
et al., 2015; Raymond et al., 2014). Our search terms reflected all these concepts, and are 38 
specifically intended to ensure that studies that have not valued benefits in monetary terms are 39 
included (Table 1).  40 
 41 
Monetary and non-monetary measurement is one step in ensuring that values are recognised 42 
and, when appropriate, captured in decision making. Monetary values of ecosystems can be 43 
incorporated into decision-making through specific mechanisms such as incentives and price 44 
signals or via decision-making frameworks such as cost-benefit analysis or payments for 45 
ecosystem services (PES) schemes (Kumar, 2010; Martin-Ortega et al., 2019; Primmer et al., 46 
2018). They have been criticised for converting nature into a tradable commodity, often 47 
associated with a process of privatisation (Gomez-Baggethun and Ruiz-Perez, 2011), thereby 48 
marginalising other frameworks for ecosystem conservation (Raymond et al., 2013). However, 49 
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value capture does not have to lead to commodification (Hahn et al., 2015) or privatisation as 1 
property rights can be held collectively (Farley and Costanza, 2010), nor do schemes have to 2 
be driven by profit (Muniz and Cruz, 2015). In fact, public or self-provision of insurance value 3 
is a more likely scenario than market-like arrangements for the provision of insurance value 4 
(Paavola and Primmer, 2019). By exploring whether insurance values have subsequently been 5 
used to support instruments/tools/policies or other form of management arrangements we 6 
examined the extent to which measuring insurance value has thus far had an applied purpose, 7 
rather than being largely a result of scientific curiosity. 8 
 9 

Ecosystems  10 
An ecosystem is “a biological community of interacting organisms and their physical 11 
environment” (Millennium Ecosystem Assessment, 2005). In order to keep the review 12 
manageable, we focused on terrestrial and freshwater ecosystems and excluded coastal and 13 
marine ecosystems. Our search terms cover generic concepts (e.g. ecosystem, nature, 14 
environment, habitat, catchment), as well as specific habitats and land cover types (e.g. forest, 15 
city, grassland), taken from the IUCN definitions of terrestrial and freshwater habitats (IUCN, 16 
2012). Previous reviews (e.g. Pascual et al., 2015; Perrings, 1995) and research (e.g. Chavas 17 
and Di Falco, 2012; Di Falco and Chavas, 2008; Isbell et al., 2015) have demonstrated the 18 
importance of biodiversity in ecosystem resilience, and its potential economic value. However, 19 
the focus of our review is on the impacts of ecosystem degradation/loss and 20 
rehabilitation/restoration, rather than associated changes in biodiversity. Our search terms, 21 
therefore, explicitly excluded biodiversity, its synonyms and mention of specific taxonomic 22 
groups.  23 
 24 

Natural hazards  25 
The framework was further bounded by a focus on natural hazards only. Geophysical and 26 
anthropogenic hazards were excluded with the exception of landslides and other mass 27 
movement events, as they are frequently managed through ecosystem-based approaches, such 28 
as the retention or restoration of forests. The list of search terms for hazard types was based on 29 
Guha-Sapir et al. (2017). Initial searches using generic terms for disease were refined based on 30 
a list of vector-borne diseases (WHO, 2017; Supplementary Material Table S1).  31 
 32 

Table 1. Search terms used within the rapid evidence assessment of the insurance value of 33 
ecosystems. The list of vector-borne diseases is given in the supplementary material (Table 34 
S1). UK and US spelling variants, wildcards (*/?), common acronyms (e.g. WTP) and word 35 
stems were used in the database searches, but are not shown here for readability.  36 

Insurance, 
resilience, risks and 
ecosystem 
restoration 

Metrics of value 
and valuation 
methods Ecosystems Natural hazards 

Risk 
Hazard 
Regime shift 
Prevention 
Mitigation 
Protection 
Reduction 
Avoidance 

Value 
Benefit 
Cost 
Price 
Monetary 
Economic 
Non-monetary 
Willingness to pay 

Ecosystem 
Nature 
Environment 
Habitat 
Catchment 
Watershed 
Forest 
Savannah 

Flood 
Erosion 
Waterlog 
Inundation 
Drought 
Avalanche 
Fire 
Landslide 
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Defence 
Restoration 
Management 
Resilience 
Insurance 

Willingness to 
accept 
 

Shrub 
Grassland 
Meadow 
Tundra 
Wetland 
River 
Stream 
Bog 
Marsh 
Swamp 
Fen 
Peatland 
Lake 
Desert 
Arable 
Pasture 
Plantation 
Farm 
Agriculture 
Urban 
City 

Storm 
Eutrophication 
Vector-borne 
Disease (see list 
Table S1) 
Pest 
Extreme temperature 

 1 
 2 

The search process  3 
Searches were carried out in July 2017, with no other time restrictions applied. Searches were 4 
conducted using Web of Science, which is one of the largest and most comprehensive 5 
publication databases covering both natural and social sciences, providing a powerful tool for 6 
identifying relevant literature. Search terms ( 7 

Table 1) were actioned in two steps. We first conducted a joint search of “risk / hazard / regime 8 
shift & prevention / mitigation / protection / reduction / avoidance / defence / restoration / 9 
management” and then of “resilience / insurance”. The results from the two searches were 10 
aggregated into a single library and duplicates were removed. Search queries yielded 10,371 11 
results. To ascertain the relevance of individual studies, all papers were subjected to three 12 
sequential filters: i) examination of title; ii) examination of abstract; and iii) examination of 13 
full paper. After titles were checked for relevance, 1,171 papers were retained; this was reduced 14 
to 302 papers after reading the abstracts. After full papers were read, 154 were retained for data 15 
extraction (Supplementary Material Table S2).  16 
 17 
Papers excluded at the full text stage consisted of studies: (i) of attributes that affect adoption 18 
of innovative practices, e.g. by farmers of biological control; (ii) solely of perceptions or 19 
attitudes to natural hazards and their management; (iii) on community involvement in disaster 20 
prevention; (iv) on technical engineered interventions; (v) of governance and procedures to 21 
reduce risk; (v) which estimated economic losses without discussing risk reduction; and (vi) 22 
those which only included notions of insurance value as part of their introductory context. An 23 
additional suite of papers had an ecological focus or only discussed environmental 24 
management, such as the expansion of vegetation, forest thinning, storm water drainage, 25 
societal impacts of hazards and spatial planning.   26 
 27 
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Data extraction and analysis 1 
Due to the heterogeneity of the retained articles, in terms of research design, measures, and 2 
involvement of stakeholders or other participants, data were analysed using narrative synthesis. 3 
Its purpose was to identify the approaches that have been used to study concepts of the 4 
insurance value of ecosystems in the existing literature (Popay et al., 2006). Data were 5 
extracted covering four information categories: 1) study description; 2) insurance, hazards and 6 
ecosystems; 3) valuation, and; 4) wider context. In addition, vote counting was used to describe 7 
the frequency of specific approaches used to examine insurance value of ecosystems. While 8 
vote counting has deficiencies (e.g. giving equal weight to studies of different types, with 9 
different strengths of evidence, not accounting for publication biases), it is useful for 10 
preliminary interpretation of results across studies (Popay et al., 2006).  11 
 12 

Study description 13 
The study description included the year of publication and the year when the study took place; 14 
the type of study (whether it was a conceptual, theoretical, empirical or modelling work or a 15 
review); country/countries or global regions on which the research focused; and the specific 16 
location (as defined in the study itself).  17 
 18 

Insurance, hazards and ecosystems 19 
For each paper, we characterised how the notion of insurance was conceptualized, e.g. whether 20 
it referred to risk or hazard prevention, mitigation, avoidance or resilience. We also 21 
characterized the ecosystem and spatial scale (e.g. global, regional, national, or catchment) of 22 
the analyses, as described in the study itself. Information on the type of hazard was extracted 23 
and categorised based on Guha-Sapir et al. (2017), together with any further details, such as 24 
the frequency or timescale of the hazards. Hazards were classified into five broad categories: 25 
geophysical (for the purposes of this review, landslides and other mass movement events only), 26 
hydrological (flood, landslide, wave action), meteorological (storms, extreme temperature, 27 
fog), climatological (drought, lake outbursts, wildfire) and biological (animal accidents, 28 
epidemics, insect infestation).  29 
 30 
We considered insurance with respect to ecosystem-based interventions or approaches. These 31 
included any changes in the ecosystem that result in a change in exposure to/protection from 32 
natural hazards or the mitigation of, or increase in, risk. Interventions that could mitigate a risk 33 
include, for example, the restoration or establishment of a habitat type and could include NBS 34 
and NFM (Dadson et al., 2017; Nesshover et al., 2017). In contrast, alterations to ecosystems 35 
such as habitat fragmentation, land-use conversion, river morphology alteration could result in 36 
increased exposure to hazards. We recorded the ecosystem services that these changes referred 37 
to (e.g. reduced water levels mitigating flood risk; soil loss abatement reducing erosion). 38 
Ecosystem services were classified using CICES (Haines-Young and Potschin, 2018) in order 39 
to identify which services are mentioned in the publication in relation to insurance value. 40 
CICES itself consists of three ‘sections’ of services (Regulating and Management, 41 
Provisioning, Cultural) which are further divided into 90 categories.  42 
 43 
Undisturbed ecosystems offer in most, if not all, circumstances greater overall benefits than 44 
highly modified ecosystems (Balmford et al., 2002), albeit via a combination of a greater 45 
number of narrower benefit streams than ecosystems converted to intensive production (see 46 
also Turner et al., 2003). A similar argument for retaining and/or restoring ecosystem properties 47 
is central to global initiatives to achieve land degradation neutrality (Akhtar-Schuster et al., 48 
2017) and mainstreaming the economic benefits of more sustainably managed agricultural 49 
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lands into policy (ELD Initiative, 2015). We might expect that a similar rationale would apply 1 
to the role that ecosystems play in protection against, and avoidance of, natural hazards. We 2 
therefore categorised papers according to whether the alteration of ecosystems was an increase 3 
in extent/quality, a decrease in extent/quality, both or neither. Increases could include 4 
rehabilitation and restoration of habitats, enhanced vegetation complexity or improved 5 
diversity of habitats. Decreases could cover varieties of habitat loss, such as the conversion of 6 
natural habitats to agricultural production or urbanisation.  7 
  8 

Valuation 9 
We recorded whether studies associated changes in ecosystem service provision with a metric 10 
of value, even when the term ‘value’ was not explicitly used. We recorded if ‘value’ was 11 
expressed in non-monetary or monetary terms. When monetary values were reported, we 12 
recorded how the value was estimated (i.e. what type of valuation technique was employed), 13 
figures and units of those estimated values, as well as the year of the estimated values, and time 14 
scale of the value analysis (e.g. if the paper included an estimation of WTP for the delivery of 15 
ecosystem services over, for example, 30 years). We also noted whether values referred to 16 
marginal or total values. Studies differed as to whether they reported realized or anticipated 17 
values, where realised values were defined as those calculated as an estimation of the impact 18 
of an event that had already taken place (e.g. flood damage), and anticipated values as those 19 
calculated in anticipation of a future event (e.g. WTP to prevent future floods). Finally, we 20 
recorded whether the valuation exercises were associated with any policy instrument, such as 21 
a PES scheme, through which the value of the ecosystem, which is associated with insurance 22 
against natural hazards, could then be used to inform or underpin decision making. 23 

  24 



10 
 

Results and discussion 1 

Study description and aims 2 
The 154 articles retained for analysis were published between 1996 and 2017 (Figure 1) with 3 
the majority (86%, 133 papers) published after 2010. The growth of the literature manifests the 4 
uptake of the ecosystem service approach and the concepts that were popularised by the 5 
Millennium Ecosystem Assessment (Millennium Ecosystem Assessment, 2005). The largest 6 
number of studies was published in 2016, the last complete year in our review. Almost all of 7 
the retained articles were empirical (63 papers; 41%), or modelling (59 papers; 38%). The 8 
remainder were conceptual/theoretical (17 papers; 12%) or reviews (16 papers; 10%). 9 
Although the bulk (86%) of empirical and modelling articles was published after 2010, we 10 
could not ascertain whether earlier publication of theoretical work was driving a greater 11 
implementation of empirical studies. As expected because of our search parameters, the final 12 
set of articles did not include key theoretical outputs (e.g. Baumgartner and Strunz, 2014; Maler 13 
and Li, 2010), nor work on biodiversity underpinning ecological resilience (e.g. Isbell et al., 14 
2015; Perrings, 1995).  15 
 16 

 17 
Figure 1. Number of studies addressing the insurance value of ecosystems published each year 18 
up to and including the final full year (2016) covered by the REA. A further 14 studies that 19 
were included in the review process, were published in 2017 prior to the search cut-off date 20 
(July 2017).   21 

 22 
A wide range of aims were pursued in the reviewed studies, but the largest proportion (41%) 23 
investigated the effect of interventions to mitigate risk or to address environmental degradation. 24 
Common interventions were ecosystem restoration, reforestation and changes in land 25 
management practices. The second most common aim (17%) was the assessment of alterations 26 
to the ecological quality of the ecosystems, such as the diversity of forest cover, or the structure 27 
of riverbanks or wetlands. About a half of these included the value of ecosystem services. The 28 
role of forests, and forest cover, was a particularly common subject, as were the effects of 29 
altering river morphology, and the restoration or loss of wetlands. Approximately 6% of studies 30 
provided novel frameworks, conceptualizations or methodological approaches to address or 31 
integrate some of the above aspects of insurance value (e.g. effects of interventions and 32 
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environmental conditions), often with the aim of supporting improved ecosystem or landscape 1 
management.  2 
 3 

Insurance, hazards and ecosystems 4 
Of the retained studies, 24 had a global focus (Figure 2). In the global studies, hydrological 5 
and climatological hazards were most often examined through empirical analyses (e.g. 6 
Bradshaw et al., 2007; Shreve and Kelman, 2014) or conceptual models (e.g. Kiedrzynska et 7 
al., 2015). More studies focus on regions in the Global North than on the Global South. Western 8 
Asia (2), South Asia (2), South-eastern Asia (5) and Eastern Europe and Central Asia (3) were 9 
relatively understudied. This is concerning because these regions experience the greatest 10 
proportion of natural disasters (Guha-Sapir et al., 2017).  11 
 12 
The majority of studies in North America and Africa focused on climatological disasters, 13 
whereas hydrological disasters were the focus of studies on Europe, Eastern Asia, South-14 
eastern Asia and Oceania. For Africa, this reflects not so much the number of events (there are 15 
more hydrological than climatological events) but the fact that climatological disasters kill and 16 
affect more people than do hydrological events (Guha-Sapir et al., 2017). For North America, 17 
the inconsistency between the focus of studies and the type of disaster is greater. 18 
Meteorological disasters are the most frequent and costly; yet climatological disasters were 19 
studied more often. A similar pattern was found in other regions.  20 
 21 

 22 
 23 
Figure 2. Number of studies per hazard type across 10 global regions and for global studies 24 
(inset). Circle size indicates the number of studies and the breakdown indicates the relative 25 
frequency of the five hazard types. Hazards were classified into five broad categories (Guha-26 
Sapir et al., 2017): geophysical (earthquake, mass movement, volcanic activity), hydrological 27 
(flood, landslide, wave action), meteorological (storms, extreme temperature, fog), 28 
climatological (drought, lake outbursts, wildfire) and biological (animal accidents, epidemics, 29 
insect infestation).  30 
 31 
The majority of studies focused on forests, agricultural lands and wetlands/floodplains (Error! 32 
Reference source not found.), with an emphasis on how habitats can reduce flood hazards 33 
associated with rainfall events. For example, forests can mitigate floods because they act as a 34 
“sponge” and slow down the flow of water (e.g. Dymond et al., 2012). The peri-urban and 35 
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urban studies were often on fire management in natural or semi-natural vegetation systems. For 1 
example, Miller et al. (2017) examined a bond-financed wildfire risk mitigation partnership, 2 
which focused on watershed forest management to prevent flood damage and to protect water 3 
supplies from impacts of large-scale and/or severe wildfires. 4 
 5 

 6 

 7 

Figure 3. The number of studies in which a specific habitat or land cover is mentioned. Ten 8 
studies did not indicate a habitat type. Studies that referred to more than one habitat (e.g. a 9 
forest/agriculture matrix) are included in the “Diverse ecosystems” category.  10 

Watersheds or catchments were the most common spatial scale of research (47 studies; 31%), 11 
reflecting the large number of studies focusing on water management and floods. Other scales 12 
included forests (12 studies, 8%), urban areas (16 studies; 10%) or even single hazard events. 13 
Across the reviewed papers, spatial scales tended to reflect relevant governance units, be that 14 
local (Miguez et al., 2015), regional (Holecy and Hanewinkel, 2006) or national (Felton et al., 15 
2016), even though the management of many ecosystems is carried out by private landowners. 16 
However, 39 studies did not provide data on the examined spatial scales, limiting our ability to 17 
assess the financial implications of the threat or the mitigation provided from ecosystem 18 
services. 19 
 20 
Study timescales also varied. Fourteen studies provided evidence about the frequency of events 21 
(flood or fire) whereas 31 studies looked at a single growing season or year. Seven studies 22 
analysed historical data to estimate the benefits of ecosystem services, whereas the largest 23 
number of studies (22) took a forecasting approach, spanning periods of years to tens of years. 24 
The forecasts varied in their determination of the frequency of events in the future, with some 25 
(19) taking into account specific climate change predictions, whereas others (3) used the 26 
historical frequency of events in their extrapolations. 27 
 28 
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Around 80% (124) of the papers referred to more than one ecosystem service, with a total of 1 
243 different ecosystem services mentioned across studies. Of these, six were cultural and 16 2 
provisioning services. However, the majority (221; 220 biotic and one abiotic) were regulatory 3 
and maintenance services. Sixteen of the 22 CICES sub-categories of the regulation & 4 
maintenance services were covered in the papers included in the review. Over a third of studies 5 
(36%) were about “Regulating the flows of water in our environment”, 12% about “Controlling 6 
or preventing soil loss”, 10% about “Protecting people from fire” and 8% about “Controlling 7 
pests and invasive species” (e.g. Cai et al., 2011; Cross et al., 2015; Jones et al., 2016; Miller 8 
et al., 2017 respectively) (Figure 4).  A further group of studies examined improved ecosystem 9 
resilience more generally (e.g. Holman et al., 2011; Li et al., 2015), indicating potential gains 10 
across a wider set of hazards; an approach which might be particularly appealing for 11 
policymakers. 12 
 13 

 14 
Figure 4. Classification of the insurance value of CICES regulation & maintenance ecosystem 15 
services in the reviewed studies. (Supplementary Material Table S3).  16 

Over two thirds of the studies (106, 68%) examined the insurance concepts associated with an 17 
increase in extent/quality of an ecosystem, 21 studies (14%) looked at insurance in the context 18 
of a decrease in extent/quality, and 18 studies (12%) involved changes to both directions: e.g. 19 
the loss and restoration of mangroves (Everard et al., 2014). The remaining studies did not 20 
specify, or were not explicitly concerned with, changes per se. Increases in extent/quality 21 
included: (i) reforestation (Galve et al., 2015); (ii) urban green infrastructure interventions 22 
(Connop et al., 2016); (iii) NFM, such as wetland construction and restoration (Babbar-Sebens 23 
et al., 2013); (iv) increased vegetation complexity (e.g. retaining ground cover in orchards to 24 
enhance populations of natural enemies of pests (Colloff et al., 2013)); (v) sustainable land 25 
management practices (e.g. Speranza, 2013); and, (vi) more diverse systems (Newton et al., 26 
2012; Schlapfer et al., 2002). In all cases, papers studying increases of these types hypothesised 27 
that changes would lead to an increase in protection from, or avoidance of a natural hazard. 28 
Conversely, decreases in extent/quality of ecosystems were associated with increased actual or 29 
perceived risks of exposure to natural hazards. Decreases in extent/quality  included: (i) the 30 
conversion of natural habitats for production purposes (e.g. the conversion of natural forest to 31 
a rubber plantation (De Graff et al., 2012)); (ii) urbanisation (Brandolini et al., 2012); and, (iii) 32 
the loss of natural habitats such as forests (Brang, 2001) and wetlands (Brody et al., 2007).  33 
 34 
Only 24 studies (15%) explicitly related changes in ecosystem properties and service provision 35 
to an insurance value. Although specific references to insurance value were rare, the most 36 
common related concepts included the reduction of a risk or hazard (59 papers; 38%), its 37 



14 
 

mitigation (44 papers; 28%) or how an ecosystem provides resilience against risks or hazards 1 
(41 papers; 26%;  2 

 3 

Figure 5). Studies examining how risks were reduced following changes in ecosystems 4 
included estimating the WTP of downstream agricultural water users for forest restoration to 5 
reduce wildfire risk (Mueller et al., 2013), and modelling how alterations in agricultural land 6 
use could reduce flood risk in large catchments (Schilling et al., 2014). The deterioration in 7 
ecosystem resilience as result of vegetation losses was investigated in drylands using a spatially 8 
explicit model (Mayor et al., 2013). Brown et al. (2012) examined the importance of mitigating 9 
flood risk in a conceptual paper on building urban resilience against climate change. Another 10 
study explored whether ecosystem properties could provide a hedge against future uncertainty 11 
(Boughton and Pike, 2013). It conceptualised insurance as the hedging role that floodplain 12 
restoration plays against climatic uncertainty (storm size, frequency, intensity). Rehabilitation 13 
expanded the opportunity fish had to migrate by 16-28%, and lessened the risk to fish migration 14 
of fewer, larger storms. Barbedo et al. (2014) modelled the effects of river restoration on flow 15 
rates around the city of Paraty, Brazil, in order that the benefits of river restoration could be 16 
considered in decision-making. However, overall Few studies were linked to decision-making, 17 
indicating an opportunity to better mainstream insurance values in ecosystem restoration. 18 
 19 
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 1 

Figure 5. Number of reviewed studies using different concepts of insurance value of 2 
ecosystems.  3 

 4 

Valuation 5 
In total, 88 studies referred to some notion of value: 55 mentioned at least one monetary value 6 
and 18 a non-monetary value (in dark and light grey respectively;  7 

 8 
 9 
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Figure 6), and 10 both types of value. Studies that referred to non-monetary values assessed 1 
sociocultural, aesthetic or ethical values (10 papers), ecological, habitat or biodiversity benefits 2 
(8 papers), or other non-monetary values (4 papers). Non-monetary valuation represented a 3 
modest proportion (17.9% of the reviewed papers) of the research carried out thus far. This 4 
perhaps reflects the relatively recent understanding of the importance of incorporating the 5 
multi-dimensionality of value in assessments of ecosystem services (Kenter et al., 2015). It 6 
further illustrates the need for more research to ensure that, among other aspects, altruistic, 7 
shared, social and socio-cultural facets of the insurance values of ecosystems are investigated 8 
(Kenter et al., 2015; Raymond et al., 2014; Schmidt et al., 2017).  9 
 10 
Baumgartner & Strunz (2014) refer to insurance value as the value of a specific function of 11 
resilience, which reduces an ecosystem user's income risk associated with using ecosystem 12 
services under uncertainty. In contrast, Mäler and Li (2010) estimate a broader shadow price 13 
for resilience. It was not possible to separate out these theoretical concepts of ‘insurance value’ 14 
in the reviewed articles; this is unsurprising given the relatively recent emergence of the 15 
concepts in the literature. Nor, as expected, was it possible to separate out values specifically 16 
for insurance from calculations of TEV made in the papers (cf. Pascual et al 2015).  17 
 18 
Monetary valuation studies used avoided damage cost, revenue or WTP approaches. TEV, 19 
marginal values and various use and non-use values were all estimated by these means. Ten 20 
studies did not specify which value was used. When monetary values were estimated, 21 
numerous different methods were applied. The most common were avoided cost or damage 22 
cost methods (e.g. using parcel level analysis, production function to estimate the expenditure 23 
needed to mitigate or compensate for the negative effects of a change in the environment), 24 
replacement cost method (e.g. assuming that the costs of replacing or repairing a deteriorated 25 
environmental service provides a reasonable estimate of its value (Logar and van den Bergh, 26 
2013), such as replanting a forest or resettling people), choice experiments and contingent 27 
valuation ( 28 

 29 

Figure 7).  30 



17 
 

 1 
Option and quasi-option values were not explicitly considered in any of the papers, despite the 2 
relationship between insurance and option values (i.e. the value of having the option of future 3 
use of an ecosystem service). An option value is, therefore, an insurance premium or the value 4 
of waiting for the resolution of uncertainty. Although difficult to quantify, quasi-option values, 5 
or the welfare gain associated with delaying decisions when there is uncertainty about the costs 6 
or benefits of a given course of action, may also constitute a significant portion of the value of 7 
retaining resilient ecosystems, in the face of increasing uncertainty driven by environmental or 8 
climate change.  9 
 10 
 11 
 12 
 13 

 14 
 15 
Figure 6. Number of times each notion of value (monetary in dark grey, non-monetary in light 16 
grey) was used in the reviewed studies.   17 

 18 
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 1 

Figure 7. Valuation methods used to assess the monetary value of insurance services provided 2 
by ecosystems. 3 

 4 
Direct comparison of values between studies was difficult as they varied in the theme, spatial 5 
and temporal scale, the consideration of scenarios, units reported, year the study was carried 6 
out and the monetary amounts associated with the insurance service. For instance, Kousky and 7 
Walls (2014) reported avoided flood losses of over $110 million (all values here in 2017 USD 8 
to facilitate comparison) for a 100-year event in a floodplain in Missouri, while Brody et al. 9 
(2007) reported $149.6 million over a 5-year period for 383 floods across counties in Florida. 10 
Similarly, two contingent valuation studies found a mean WTP of $5.22 per month, per 11 
household for hazard protection from wildfires, drought and floods in Arizona (Mueller, 2014), 12 
and a mean WTP of $28.87 - 48.61 per person, per year across seven scenarios for flood risk 13 
reduction in a river basin of Japan (Zhai et al., 2006). The fire prevention WTP values range 14 
from $87.83 per person, per year to $509 per hectare, per year. Avoided flood losses ranged 15 
from $0.02 to $58.2 per household, per year, or avoided flood damage costs from $21.76 to 16 
$21,158 per hectare, per year. Even studies of similar hazards, using similar techniques, 17 
provide radically different estimates of value. This could be for a variety of reasons, not least 18 
because disaggregating insurance value from TEV is not straightforward (Pascual et al 2015).  19 
 20 
The lack of consensus on the minimum criteria for assessing costs and benefits associated with 21 
disaster risk reduction (Shreve and Kelman, 2014) was reflected across the studies. For 22 
instance, while defining time horizons is essential in cost-benefit analyses (CBA), only thirty 23 
studies mentioned a time scale for the values generated, and these ranged from one to 115 years 24 
(median 6 years). There were 35 prospective studies on anticipated values and 11 retrospective 25 
studies estimating realised values of past events. Eight studies estimated both realised and 26 
anticipated values. Long-time scales may be particularly important when considering climate 27 
change, but do not necessarily overlap with relevant policy and decision making timescales. 28 
Bringing in other perspectives on value, and a consideration of long-term environmental and 29 
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climate change and vulnerability processes (Feuillette et al., 2016; Shreve and Kelman, 2014), 1 
may require greater use of participatory decision making and valuation tools, such as Multi-2 
criteria analysis (MCA) (Shreve and Kelman, 2014). 3 
 4 
Scale was an important concept in the reviewed studies, for instance as an argument for 5 
managing entire ecosystems to buffer against hazards (Berger and Rey, 2004). Studies largely 6 
reflected the scale of the ecosystems in question (e.g. catchments, particular high elevation 7 
ecosystems Mariotte et al., 2013) or scales at which relevant policies might operate (e.g. 8 
regional European Union adaption strategy (Holstead et al., 2017). Taking the latter approach 9 
is a pre-requisite for research to inform decision and policy making (Dallimer and Strange, 10 
2015), and might be one reason why so few papers make the link between the values that they 11 
calculated and how these values might be used to influence decisions about land use and 12 
management. Value capture models were mentioned in 21 of the studies that estimated a 13 
monetary value. PES schemes were mentioned most frequently, followed by management 14 
plans and decision support tools, such as CBA or MCA (15 

 16 

Figure 8). Innovative value capture models such as microfinance, crowdfunding and insurance 17 
trusts were not discussed (e.g. Abraham and Fonta, 2018; Beck et al., 2018; Dey et al., 2019; 18 
Gallo-Cajiao et al., 2018).  19 
 20 

 21 
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 1 

Figure 8. Number of reviewed studies (monetary in dark grey, non-monetary in light grey) 2 
distributed according to the value capture model(s) mentioned (n=21). CBA = cost-benefit 3 
analysis; MCA = multi-criteria analysis; PES = payment for ecosystem services. 4 

Climate change and co-benefits 5 
The frequency and intensity of natural hazards, as well as the number of people vulnerable to 6 
suffering losses, is predicted to increase with climate change (Royal Society, 2014). Despite 7 
this, climate change was an integral concern in only about a third of the reviewed studies (57 8 
of the 154); for example, as a driver of biodiversity loss, or increased flood and desertification 9 
risk (Kelt and Meserve, 2016; Kiedrzynska et al., 2015; Kulakowski et al., 2017; Oliver et al., 10 
2015). There were also references to climate change mitigation through, for example, peatland 11 
carbon sequestration and soil management, and to adaptation using green urban infrastructure 12 
(Connop et al., 2016; Gilbert, 2013; Holman et al., 2011). A few studies discussed the insurance 13 
value of ecosystems as part of a strategy for climate change adaptation. For example, forest 14 
restoration could help reverse biodiversity loss, pest outbreaks, and human disease, thereby 15 
addressing cascading risks (Morlando et al., 2012), or resilience could be increased in a 16 
particular biome such as forests (Chapin et al., 2007; Colloff et al., 2016). Adaptation planning 17 
is also referred to in some studies (Koschke et al., 2013) in relation to specific circumstances  18 
such as agroforestry, reforestation (Lasco et al., 2014; Locatelli et al., 2015), and floodplain 19 
management (Kiedrzynska et al., 2015). 20 
 21 
Co-benefits (or the assessment of multiple benefits from ecosystems) are often used as an 22 
argument in favour of ecosystem-based approaches over hard-engineering infrastructure 23 
(Raymond et al., 2017). Co-benefits were referred to in 95 (62%) papers. In common with the 24 
wider literature, papers that did assess co-benefits noted that they can often dwarf the target 25 
benefit, e.g. water quality benefits from improved flood control (Brouwer et al., 2016; Dumenu, 26 
2013; Richert et al., 2011). The potential for mitigating several risks simultaneously or for 27 
generating cascading benefits was a recurring theme (Felton et al., 2016; Morlando et al., 28 
2012). Co-benefits were most commonly described as socio-economic (rather than 29 
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environmental) benefits, such as the protection of public infrastructure, public health and 1 
avoided costs from fire suppression or disruption (Huang et al., 2013; Kelly et al., 2015; 2 
Miguez et al., 2015).  3 

Conclusions 4 

The rapid development of initiatives such as NBS, NFM, integrated pest management and 5 
ecological engineering exemplify how ecosystems can provide a form of ‘natural insurance’ 6 
by enhancing socio-ecological resilience. Ecosystems can buffer against adverse events and 7 
gradual losses such as flooding and soil erosion, thereby reducing the costs of risk-bearing for 8 
individuals and wider society. These benefits have been conceptualized as the ‘insurance value’ 9 
of ecosystems. We conducted an REA across a heterogeneous body of literature to take stock 10 
of the existing empirical evidence on how, where and why the insurance value of ecosystems 11 
has been measured. REAs have the benefit of being transparent and repeatable, in terms of 12 
search terms used and data extracted. Although our framework had limitations (e.g. the explicit 13 
exclusion of biodiversity and related terms), following a documented process ensures 14 
subsequent reviews can easily build on this review.  15 
 16 
Insurance values provide an additional rationale for the rehabilitation, restoration and 17 
conservation of intact, or relatively undisturbed natural ecosystems. In our review, the values 18 
associated with restoration, or the avoidance of loss, of natural ecosystems were universally 19 
positive, and in some cases, substantial. More nuanced findings were that (i) the number of 20 
studies does not match the frequency or the severity of types of hazards; and, (ii) at a global 21 
scale, the geographical focus of studies is not related to the spatial incidence of hazards. The 22 
existing literature is also dominated by studies focusing on a specific ecosystem or hazard, such 23 
as those based around catchment management and water use planning. These observations 24 
suggest that either the funding of academic research is not aligned with exposure to risks, or 25 
the pattern may reflect the relatively early stage of ecosystem services research and the longer 26 
history of work on water management and floods. 27 
 28 
This study also highlights how little research has been conducted thus far to assess the ways in 29 
which resilience across ecosystems could be enhanced; despite the fact that a more 30 
comprehensive, systems-based approach would be better suited for informing ecosystem 31 
management, policy and planning. Furthermore, in many regions multiple hazards can occur 32 
simultaneously and/or as a cascade from a single original hazard (e.g. a landslide into a 33 
reservoir or glacial lake could lead to dam burst and subsequent downstream flooding). This 34 
suggests that the benefit of preventing or avoiding the initial hazard could be substantially 35 
magnified if subsequent damage from linked hazards is also avoided. In addition, few studies 36 
were explicitly linked to mechanisms through which the insurance value could be ‘captured’ 37 
for wider societal gain (e.g. Jellinek et al., 2013; Mueller, 2014; Mueller et al., 2013). This lack 38 
of applied research is a clear gap that should be addressed in future research.  39 
 40 
Due to the weaknesses in the existing evidence base, drawing more definitive conclusions (e.g. 41 
retaining X ha of forests on mountain slopes delivers $Y per year in avoided damage costs for 42 
Z thousand people) from the reviewed studies is difficult. There is great diversity in the 43 
methodologies used, temporal and spatial scales, and comprehensiveness across the studies. 44 
Many studies did not provide a transparent account of their analytical choices and parameters. 45 
This makes the results difficult to compare, transfer and synthesise.  46 
 47 
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Our review of the existing empirical evidence-base on the insurance value of ecosystems 1 
suggest that, as the field develops further, it will be essential that studies are conducted to: 1) 2 
provide more consistent and coherent statistics, scenarios and methods across studies and use 3 
consistent timeframes to facilitate subsequent reviews and benefits transfer exercises; 2) 4 
develop more integrated valuation approaches focusing on the inclusion of insurance value or 5 
its disaggregation from other values, such as TEV; 3) better account for climate change; and, 6 
4) clearly define the human ”community” benefitting from interventions, as well as the spatial 7 
and temporal scales over which these benefits are realised.  Following these guidelines will 8 
facilitate uptake into policy and practice of insurance value concepts. As the field develops 9 
there may be benefit in researchers drawing on best practice from other fields, such as the use 10 
and definition of a ‘core outcome set’ of metrics that are always reported in standardised ways 11 
(Webbe et al., 2018; Williamson et al., 2012). As ecosystems continue to degrade, and are 12 
relied on by growing human populations for their insurance values, being able to track trends 13 
in values, across a diversity of ecosystems and contexts, will provide a powerful argument for 14 
the retention, rehabilitation and restoration of natural environments.  15 
 16 
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Supplementary Material 1 

Table S1. List of vector-borne diseases included in search terms (adapted from WHO 2 
2017) 3 
 4 
Chikungunya 5 
Dengue fever 6 
Rift Valley fever 7 
Yellow fever 8 
Zika 9 
Malaria 10 
Japanese encephalitis 11 
Lymphatic filariasis 12 
West Nile fever 13 
Leishmaniasis 14 
Sandfly fever 15 
Phelebotomus fever 16 
Haemorrhagic fever 17 
Lyme disease 18 
Relapsing fever 19 
Borreliosis 20 
Rickettsial disease 21 
Spotted fever 22 
Q fever 23 
Tick-borne encephalitis 24 
Tularaemia 25 
Chagas disease 26 
American trypanosomiasis 27 
Sleeping sickness 28 
African trypanosomiasis 29 
Plague 30 
Rickettsiosis 31 
Onchocerciasis 32 
River blindness 33 
Schistosomiasis 34 
Bilharzia 35 
 36 
  37 
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Table S3. Number of studies classified according to CICES Regulation & Maintenance 2 
Ecosystem Services.  3 

Code CICES Regulation and Maintenance simple descriptor Number 
2.2.1.3 Regulating the flows of water in our environment 80 
2.2.1.1 Controlling or preventing soil loss 26 
2.2.1.5 Protecting people from fire 22 
2.2.3.1 Controlling pests and invasive species 17 
2.2.2.3 Providing habitats for wild plants and animals that can be useful to us 13 
2.2.1.2 Stopping landslides and avalanches harming people 12 
2.2.6.1 Regulating our global climate 12 
2.2.5.1 Controlling the chemical quality of freshwater 10 
2.2.4.2 Ensuring the organic matter in our soils is maintained 7 
2.2.3.2 Controlling disease 6 
2.2.6.2 Regulating the physical quality of air for people 5 
2.2.1.4 Protecting people from winds 4 
2.2.4.1 Ensuring soils form and develop 4 
2.2.2.1 Pollinating our fruit trees and other plants  1 
2.2.5.2 Controlling the chemical quality of salt water 1 
5.2.1.2 Physical barriers to flows 1 
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