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1. Introduction 

Physical inactivity is a well-known severe health risk leading to a 

variety of chronic and obesity related diseases [2]–[6] in modern society. 

As an intuitive reflection of their underlying pathophysiology, continuous 

physical activity (PA) measurement in daily life is increasingly crucial to 

these patients for designing specific rehabilitation programs to promote an 

active lifestyle. Thus, the accuracy and stability of access to PA related 

information is of significant interest to the research community. 

Traditionally, PA measurement recognizes the type, duration, and 

intensity of a broad range of activities and quantifies energy expenditure. 

For the purpose of assuring  

 

accuracy in accessing PA associated energy expenditure, typical PA 

measurement solutions require subjects to wear special devices in lab or 

clinical environments to acquire sensory signals, and then analyze them 

with advanced machine learning algorithms for recognizing different 

types of PA [7]–[9]. While these solutions deliver relatively high accuracy 

of PA measurement they are less feasible for long-term measurement in 

free-living conditions, often termed as ‘life-logging’ PA measures. The 

reason is because analysis of raw sensor data consumes too much energy 

on the portable/wearable device. Battery and storage capacity are key 

limiting factors when assessing one’s PA pattern in a free-living 

environment [10], [11].  

As PA measurement devices are becoming more affordable, 

lightweight and portable, the prevalence of commercial wearable devices 

and mobile apps with processed outcomes in smart healthcare fields [12]–
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Physical activity (PA) measurement is a crucial task in healthcare technology aimed at monitoring
the progression and treatment of many chronic diseases. Traditional lifelogging PA measures
require relatively high cost and can only be conducted in controlled or semi-controlled 
environments, though they exhibit remarkable precision of PA monitoring outcomes. Recent 
advancement of commercial wearable devices and smartphones for recording one’s lifelogging PA 
has popularized data capture in uncontrolled environments. However, due to diverse life patterns 
and heterogeneity of connected devices as well as the PA recognition accuracy, lifelogging PA 
data measured by wearable devices and mobile phones contains much uncertainty thereby limiting 
their adoption for healthcare studies. To improve the feasibility of PA tracking datasets from 
commercial wearable/mobile devices, this paper proposes a lifelogging PA intensity pattern 
decision making approach for lifelong PA measures. The method is to firstly remove some 
irregular uncertainties (IU) via an Ellipse fitting model, and then construct a series of monthly
based hour-day density map images for representing PA intensity patterns with regular 
uncertainties (RU) on each month. Finally it explores Dempster-Shafer theory of evidence fusing 
information from these density map images for generating a decision making model of a final
personal lifelogging PA intensity pattern. The approach has significantly reduced the uncertainties 
and incompleteness of datasets from third party devices. Two case studies on a mobile 
personalized healthcare platform MHA [1] connecting the mobile app Moves are carried out. The 
results indicate that the proposed approach can improve effectiveness of PA tracking devices or 
apps for various types of people who frequently use them as a healthcare indicator. 
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[16] make monitoring and tracking lifelogging PA associated information 

possible (such as walking, running, intensity, duration, etc.) to objectively 

ensure consecutive care for users. Particularly, the intensity of lifelogging 

PA data observed by such inertial sensors is often categorized into five 

levels: sedentary, light, moderate, vigorous and high intensity based on 

the metabolic equivalents (METs) cut-offs  [17], which has been broadly 

adopted as a standard of PA levels for achieving healthcare life styles. 

However, the classification simply offers a generally instantaneous 

measure that exhibits deficiency of accumulated evaluation and 

assessment for lifelogging personal PA intensity patterns thereby 

restricting its usefulness.  

Research as to how we can better take advantage of these scattered 

and heterogeneous data has become a critical issue when used in long-

term observation for healthcare prevention and research purposes. The 

difficulty is that a certain amount of indicative PA data collected from 

existing inertial sensor-based wearable devices and mobile phones 

contains a variety of uncertainties. For instance, PA intensity observed by 

the app Moves [13] indicates that it often turns itself off to conserve 

energy for mobile devices.  The wrist band Withings [14] produces 

erroneous PA recognition results occasionally since PA related human life 

patterns in free-living conditions are dynamic, diverse and noise-sensitive. 

Such results have a negative impact on the energy expenditure and PA 

intensity evaluations. The uncertainties are quite common but can prove 

challenging to eliminate. Nonetheless, based on existing works, to our 

best knowledge, almost none contributes such wrapped and scattered 

datasets from commercial devices to lifelogging PA intensity analysis for 

healthcare support. This work is the first attempt to address these 

uncertainties and, one step further, to improve the efficiency of low-cost 

wearable and mobile devices for one’s PA intensity pattern in a long range 

effort.  

The remainder of this paper is structured as follows. Section II 

presents the literature review of related work. Section 3 describes the 

proposed PA intensity pattern decision making approach. Section 4 

reports two case studies for evaluating the proposed method in the MHA 

platform [1], [1]. Finally, the conclusions and future work are presented in 

Section 5. 

2. Related work 

        Lifelogging, refers to the process of capturing one’s entire life using 

digital devices for health and wellness, e.g. medical intervention or 

physical activity recommendation. In early attempts, lifelogging PA 

monitoring was preliminarily surveilled by image capturing via an 

external camera [19]–[21]. However, this approach could be deemed an 

invasion of privacy for the general public other than the subject and this 

has made it a less popular mechanism. Modern technology extends the 

definition of lifelogging into broader ranges. Wearable devices nowadays 

have been widely utilized to continuously track one’s PA such as 

wearable camera, wristwatch and mobile phone [22]. The SenseCam 

wearable camera, a form of visual lifelogger, worn over one’s neck, has 

been explored as an everyday activity data recorder in [23]–[25] by the 

means of analysis of a series of captured photos. Compared with 

traditional indoor/outdoor cameras, personal privacy of this wearable 

camera has a higher level of protection. Although there is general 

consensus that the device is appropriate for healthcare purpose, in most of 

cases, its cost is somewhat prohibitive for patients or researchers in a 

controlled lab environments. Recording and storage of a high volume of 

lifelogging pictures is also a big challenge for SenseCam.  

       In recent years, low-cost costumer wearable PA trackers with 

embedded inertial sensors are generating increasing public attention. 

Popular products, such as Fitbit Flex [26], Nike+ Fuelband [27], 

Endomondo [28] etc., are wristband devices that record PA information 

(e.g. steps, distance, and calories burnt) and other physiological 

information (e.g. heartbeat rate).  Some third party Application 

Programming Interfaces (or APIs) of wearable devices have provided the 

functions to assess the intensity of PA walking speed. For instance, Fitbit 

[26] classifies the intensity of daily activities into very active, moderately 

active, lightly active and sedentary. Mobile apps, such as Moves [29] is 

based on smartphone 3D accelerometer data and GPS information which 

allows tracking the user’s movements including location, distance and 

speed. Moves records a series of walking segments containing duration, 

distance and speed.  

        Evidently, customer PA monitors have addressed some practical 

issues such as storage, battery life and cost, especially mobile apps which 

are often free. Nevertheless, PA recognition results offered by mobile 

devices are widely divergent as a result of different places being carried 

by different users such as pocket or handbags [30], [31]. Furthermore, the 

diverse life pattern of an individual person may cause huge 

indeterminateness, as they perform PA in varying ways owning to age, 

gender, weight, etc. Hence, a specific PA tracking model that fits one 

group of user may not fit another one [32]. In addition to that, some 

applications often automatically switch off themselves for energy 

efficiency which has contributed to missing data. In general, the 

uncertainties of lifelogging PA from customer devices here is divided into 

two types as our previous work investigated [33]: 

        Irregular Uncertainty (IU):  randomly and accidently occurs in 

lifelogging PA data. The causes of these uncertainties include device 

malfunctions or faults, breakdown of a third party server, misuse of 

devices or sudden change of personal circumstance. The occurrence of IU 

will appreciably impact the efficiency and accuracy of assessing personal 

health.   

        Regular Uncertainty (RU): frequently and persistently occurs in 

lifelogging PA data. The causes resulting in these uncertainties are mainly 

from some regular influencing issues, like intrinsic sensors’ errors, 

differentiation of personal physical fitness and changes of environment. 

The occurrence of regular uncertainty in physical activity data is 

inevitable so that it is impossible to completely eliminate these 

uncertainties. 

        Accordingly, these uncontrolled conditions are the key issues that 

cause relatively low accuracy of wearable device or mobile phone data 

logger compared with traditional non-naturalistic experiments. The 

encapsulated datasets, consequently, tend to be scattered, erroneous and 

unserviceable for long range healthcare studies. 

        To address the aforementioned challenge, our work attempts to take 

on these uncertainties for lifelogging PA intensity observation. To 

enhance device performance, we first use an ellipse fitting model for 

reducing IU of life-logging PA measures in an Internet of Things (IoT) 

environment. Secondly, hour-day density map images are constructed to 

represent the RU pattern on each month. We then propose Dempster-

Shafer theory of an evidence based lattice model applying to these density 

map images fusion for determining a robust lifelogging PA intensity 

pattern. Unlike the five categories based on MET, in this work, only two 

basic standards of intensity (active and sedentary) are considered for long 

term observation. We believe that our work will help bring attention to the 

opportunities available for using datasets from commercial wearable 



3 

 

devices and mobile phones for the purpose of healthcare studies and will 

stimulate additional work in this area. 

The ellipse fitting algorithm is represented as a circular form via 

projection to an image plane, which is often used to remove scattered or 

noisy data samples through setting points to the best fit or geometric fit 

[34], [35]. In comparison with a curve fitting function such as Gaussian 

fitting [36] or smoothing fitting [37], the ellipse fitting method is more 

suitable for the aggregative samples that belong to elliptical conic and 

excluding non-elliptical data [38]. Furthermore, the method has low 

computation cost and is easy to implement.  

The density map is a visualization technique that uses different 

colors for presenting different activity levels in the image. In the work 

[39], an activity density map based visualization method is proposed for 

analyzing passive infrared motion sensor data for monitoring the elderly. 

Due to the similarity of motion sensor data and lifelogging inertial sensor 

data, density maps are used in our work to generate uncertainty patterns of 

lifelogging PA intensity measures.   

The Dempster-Shafer Theory (DST) of evidence was proposed for 

the first time by Dempster in 1968 and improved by his student Shafer in 

1971. The most important facet of this theory is the capability to deal with 

uncertainties from incomplete pieces of evidence in a way that multiple 

criteria facilitates an information fusion procedure, and then make a better 

decision by reducing this uncertainty and imprecision. The application of 

evidence theory has been widely regarded in various areas to effectively 

improve the overall performance by fused sources. For example, multi-

sensor fusion based on DST has been applied to engine fault diagnosis 

[40] and activity recognition [41]. Similarly, multiple image fusion has 

been used for image restoration in [42], [43]. The applicability of this 

theory is relatively useful to our work and is used to create the dataset 

with RU from low-cost wearable and mobile devices.    

3. Proposed approach 

        In this section, we propose a lifelogging PA intensity pattern decision 

making approach to assess the feasibility of specific mobile devices. The 

procedure is presented in Fig.1. Since lifelogging PA measures by mobile 

devices contain an amount of uncertainties including IU and RU as 

mentioned earlier, an Ellipse fitting model will firstly be used to 

preprocess the data and remove these IU through the projection of 

distribution of IU by defining a walking speed related score named as 

Daily Activity in Physical Space (DAPS). Secondly, a sequence of hour-

day PA grey-levelled density maps will be manually constructed on a 

monthly basis. The features then can be extracted from the map for 

measures of the RU. If the result shows one’s unstable states monthly, the 

histogram distribution of the map will be acquired, with capability of the 

pixel classification for grey levels corresponding to the images. In the end, 

the DST-based lattice model will be utilized to reduce the RU and thus 

produce a lifelogging PA intensity pattern.  

3.1. Ellipse fitting model handle with irregular uncertainties (IU)  

        While IU occurs accidently and is hardly quantified by impacting 

factors, their occurrence frequency is relatively low over time. A 

statistical analysis in historical data can detect threshold parameters to 

filter them. Daily physical activity is mainly measured as daily steps (𝑆!),  

daily walking distance 𝐷!"  and daily average walking speed (𝑉!"#). It is 

believed that the majority of daily steps and daily average walking speed 

have to be in a specific range. two threshold parameters which are 𝑇! and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Flowchart of proposed approach 

 

𝑇!  are defined to filter the IU regarding a probabilistic distribution. 

A benchmark is needed to represent a person’s physical fitness from 

completed data sources. Here a walking speed related score is defined to 

represent a person’s physical fitness, named as Daily Activity in Physical 

Space (DAPS). This score takes inspiration from the work [44] in which  

Herrmann et. al. proposes a Movement and Activity in Physical Space 

score as a functional outcome measurement for encompassing both PA 

and environmental interaction.  

Fig.2. Distribution of Irregular Uncertainty (IU) 

 

Here, we classify the intensity of daily PA into N levels in terms of the 

ranges of walking speeds (𝑉!,𝑉!⋯𝑉!). The DAPS formula is created by 

summing these different level walking speeds: 

 

𝐷𝐴𝑃𝑆 = 𝑉!
!

!      (1) 
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Using the data of DAPS and Daily Steps, we can calculate 𝑉!"# , and plot 

𝑆!  and 𝑉!"#in with Ellipse fitting model presented as Fig.2.  

        In order to enclose points 𝑃: {𝑃!,𝑃!,⋯ ,𝑃!} in the 2D plane, we use 

an Ellipse 𝜀 to cover all the regular points 𝑃!. The Ellipse with centre 

point (𝑚,𝑛) and semiaxes a and b are defined in equation (2): 

 
(!!!)!

!!
+

(!!!)!

!!
= 1     (2) 

 
Where:  

h : Average daily walking speed 

k : Average daily walking steps 

m : Error range of average daily walking speed 

n : Error range of average daily walking steps 

In Fig.2, the red dots fall out of the Ellipse circle represents the IU, the 

hollow dots are the regular physical activity data covered by the Ellipse 

algorithm. A noticeable issue here is that we only consider the lower 

limits of walking steps and the upper limits of walking speeds as threshold 

parameters. On some days users might walk distinctly more steps than 

usually, while the other days might be more sedentary. The threshold 

parameters are represented in equation (3) 

 
𝑇! = 𝑚 + 𝑎; 
  𝑇! = 𝑛 − 𝑏     (3) 
 

Thus, the strategy for removing IU follows following steps:  
• To calculate the parameters𝑆! , 𝐷!" , 𝑉!"#with raw data. 
• To plot the data of 𝑆! , 𝐷!" , 𝑉!"#  and calculate the value of 𝑇! 

and 𝑇!with an Ellipse filtering equation to cover data with a 
confidence interval of 95%-98%.   

• To use 𝑇! and 𝑇!for removal of IU. 

• To iterate the above process in another time period with 
updated raw data. 

3.2. Determine Regular uncertainties (RU)  

3.2.1 Density map visualization  

We use a density map proposed in [39] to construct longitudinal PA 

monitoring data distribution. An example of a density map derived from 

the mobile device is presented as Fig. 3. Here we only select steps (e.g. 

walking, jogging and running) as the validation standard for the 

individual’s PA density and represent this on the density map, since they 

are highest frequency PA recorded by the mobile trackers. Such PA 

density is shown in Eq.(4), 

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
!"#$%

!"#$%&'(
×𝑝𝑖𝑥𝑒𝑙    (4) 

 
Where steps refer to the total steps value of each hour of a day; maxSteps 

refer to the maximum steps value of the month; image pixel ranges from 0 

to 255, which means the image is in the grey level. In the density map, the 

vertical axis indicates 24 hours a day from 0:00 to 23:00, while horizontal 

axis indicates days of each month from 1st to 30th or 31st. PA intensity 

ranges from light colour to dark colour, where dark colour denotes very 

high intensity and vice versa.  The white part in the map represents 

sedentary and uncertain patterns. 

3.2.2 Feature extraction  

A grey-levelled histogram is able to explicitly reveal accociated grey  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. An example of PA density map from the mobile device’s dataset 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. An example of histogram distribution for the density map 

 

levels of the image, and to cover abundant statistical distribution 

information that can well reflect the percentage and frequency of 

appearance for pixels in a image. Fig. 4 is a typical example of the 

histogram distribution of PA density map recorded by mobile device. We 

selected six features extracted from it: mean, variance, skewness, kurtosis,  

energy and entropy. The fomula are shown as the following: 

 

𝑀𝑒𝑎𝑛(𝑥!⋯ 𝑥!) =
!

!
𝑥!

!

!!!     (5) 

𝑉𝑎𝑟(𝑥!⋯ 𝑥!) =
!

!!!
(𝑥! − 𝑥)

!!

!!!       (6) 

𝑆𝑘𝑒𝑤(𝑥!⋯ 𝑥!) =
!

!

!!!!

!

!
!

!!!     (7) 

𝐾𝑢𝑟𝑡 𝑥!⋯ 𝑥! =
!

!

!!!!

!

!
!

!!! − 3    (8)  

𝐸𝑛𝑔 = (
!!

!
)!!

!!!      (9) 

𝐸𝑛𝑡 =
!!

!
log!

!!

!

!

!!!      (10) 

 

The mean, variance and skewness present the degree of average, discreted 

and asymmetrical distribution in a grayscale histogram, respectively. 

Kurtosis measures the realtive peakness or flatness of the distirbution to a 

normal distribution. Energy and entropy represent the average degree of 

gray distribution. 

3.2.3 Distance measure  

In order to assess the subject’s PA intensity state, Euclidean distance 

is adopted to measure the dissimilarity among density maps, as Eq. (11). 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒!,! = (𝑥!,! − 𝑥!!!,!)
!!

!!!,!!!    (11) 
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Where x reprensts the vectors of extracted features. 𝑥 = [𝑥! … 𝑥!]. The 

smaller the distance, the similar the two map images, and vice versa. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.  Euclidean distance measures dissimiliary of density map with RU for four subjects of five 

months dataset from the mobile device 

 

        The validation dataset features four randomly selected healthy 

individuals using the mobile devices for 5 months. The subjects 

investigated are staff and reseach students at a university. They are 

working 6 to 8 hours in front of a computer every work day, whilst 

intensity and time for workout are relatively stable each month, thus 

distance of density maps should be highly similar with small fluctuations. 

However, as we can see in Fig. 5, only the first subject present a normal 

PA pattern shown as the solid blue line, while others suffer from large 

distance changes, which demonstrates that there are major RU of PA types 

and durations recorded by the mobile devices.  

3.3. DST decision making model  

Due to the uncertainties and incompleteness of the existing dataset, 

the intensity and quantities emergent on the density map are considerably 

unstable. Using DST therefore, different prior knowledge from different 

density maps will arrive at a degree of belief that takes into consideration 

all the available evidence as well as to reduce the RU. Moreover, based on 

the concept of DST, we construct a three layer hierarchical lattice model 

to conduct a decision making process for the subject’s long-term PA 

intensity pattern. 

In Fig. 6, the three layers within the model are a visualization layer, 

data fusion layer and decision making layer. In the visualization layer, PA 

density, duration and category of each subject’s wearable/mobile device’s 

datasets are produced as density maps. DPA and SPA sets are also 

extracted as individual evidence presented as dash line round node. The 

data fusion layer composes of combinations of the information presented 

as a dash line oval node in Fig.6. The decision making layer provides the 

final outcomes of the subject’s lifelogging PA intensity decision from 

prior knowledge revealed on density map and mass values from 

combination rules.   

3.3.1 Dempster-Shafer theory of evidence (DST) 

        DST allows for direct representation and reasoning of uncertainties 

in a way that fuses accumulative evidence and changing prior knowledge 

in the presence of new evidence, where the input can be an imprecise or 

incomplete set or an interval, while the output is also a set or an interval. 

DST assumes that there are all possible elements denoted as  Θ. A basic 

probability assignment (BPA) is represented by mass function2! ⊆ [0,1], 

where  𝑚 ∅ = 0, 𝑚 𝐴 = 1!⊂! . Set mass functions 𝑚!,𝑚! are the 

BPA in Θ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Lattice model of DST for personal lifelogging PA pattern decision (DPA-Dynamic Physical 

Activity, SPA- Sedentary Physical Acitivity) 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Histogram distribution with the threshold setting 

 

Upper and lower bounds of an interval are defined as belief function and 

plausibility function, expressed as Bel() and Pls(), denotes as: 

 

𝐵𝑒𝑙 𝐴 = 𝑚(𝐵)!⊂!       (12) 

𝑃𝑙𝑠 𝐴 = 𝑚(𝐵)!∩!!!     (13) 

 

Where 𝐴 ∈ 2! and 𝐵 ∈ 2!, 0 ≤ 𝐵𝑒𝑙 𝐴 ≤ 𝑃𝑙𝑠 𝐴 ≤ 1. 

        The plausibility is defined as the degree of objection or no objection 

towards A, which denotes as: 

 

𝑃𝑙𝑠 𝐴 = 1 − 𝐵𝑒𝑙(𝐴)      (14) 

 

Therefore, the degree of belief is in the interval [𝐵𝑒𝑙 𝐴 ,𝑃𝑙𝑠(𝐴)], in terms 

of the total interval [0,1]. 

        Dempster’s combination rule [45] is a way to aggregate information 

from uncertain context whether data is a single source or multiple sources. 

The formula of fusion independent sources is defined as: 

 

𝑚 𝐶 =

!!(!)!!(!)!∩!!!

!!!

0    ,𝐶 = ∅
,∀𝐶 ⊆ Θ,𝐶 ≠ ∅   (15) 

 
Where 𝑚(𝐶) determines the final mass of 𝑚!(𝐴)and 𝑚! 𝐵 ,and 

𝐾 = 𝑚! 𝐴 𝑚! 𝐵 .!∩!!∅  1 − 𝐾 is a normalization factor which is 

constant for all subsets whilst has no impact on the behaviour of the 

operator.𝐾 = 1 represents 𝑚!and 𝑚! is completely contradictory, so 

combination cannot be executed. When 𝐾 = 0, it refers to that two 
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evidence are completely  compatible. When 0 < 𝐾 < 1, it represents that 

two evidence are partly compatible.  

        Furthermore, multiple mass functions also can be combined to obtain 

the final result in terms of the orthogonal sum defined in Dempster’s 

combination rule, shown as Eq.(16). 

 
𝑚! ⊕𝑚! ⊕ …⊕𝑚! = (((𝑚! ⊕𝑚!)⊕ … )⊕𝑚!)  (16) 

3.3.2  Mass function definition in density map 

A crucial issue in DST inference is to define a mass function for 

each evidence set based on the sourced information, which are the density 

maps from the visualization layer in our work. From the grey levelled 

histogram distribution of the image, as shown in Fig. 7, two classifications 

can be clearly determined based on the threshold 𝑓(𝐶!) presented as the 

red vertical dash lines in terms of the grey levels: in the interval [0,254] 

are grey pixel numbers represented the PA data acquired from 

wearable/mobile device (e.g., steps, distance and duration), whilst the 

value of sedentary and unknown PA are presented as the white pixel equal 

to 255. As there are a majority of blank uncertain information on the map, 

in order to better express its uncertainties, we assume that two stationary 

PA (working and sleeping) duration of an individual is prior knowable. 

Thus the categories can be finally defined as three types: 

 
• DPA: dynamic physical activity, e.g. walking, jogging or 

running, shown as grey and black part on the density map and 
denoted as a set 𝐷𝑃𝐴 . 

• SPA: sedentary physical activity, e.g. sitting, standing or lying, 
shown as white part on the density map and denoted as a set 
𝑆𝑃𝐴 . 

• Ambiguity: not sure DPA or SPA, shown as white part on the 
density map and denoted as a set 𝐷𝑃𝐴, 𝑆𝑃𝐴 . 
 

According to Fig. 7, therefore, the initial mass function based on the 

pixel numbers is defined as: 
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!     (19) 
 

Where i is the density map numbers. 𝑓(𝐶!)  and 𝑓(𝐶!)  are the grey 

levelled pixel numbers of {𝐷𝑃𝐴 } and 𝑆𝑃𝐴   on the density map, 

respectively. 

3.3.3  Evidence combination of density maps 

In the evidence fusion layer, the combination m of two maps of 

information is acquired from Dempster’s rule of combination presented in 

table 1 according to the Eq. (15). Some information may support the same 

conclusion, while others may conflict with each other. As such, different 

evidence will be computed a way to obtain the final mass function m. The 

intervals of belief and plausibility of sets 𝐷𝑃𝐴  and {𝑆𝑃𝐴}  will also be 

ultimately achieved in the decision making layer based on the Eq. (16). 

Meanwhile, fusion of multiple density maps is possible to reduce the RU 

of an individual’s PA records.  

3.3.4 Decision making rules 

Once all the available density maps have been fused, the decision  

Table 1 

Dempster’s rule of combination 

𝑚! 𝑚!   

𝐷𝑃𝐴  {𝑆𝑃𝐴} 𝐷𝑃𝐴, 𝑆𝑃𝐴  

𝐷𝑃𝐴  𝐷𝑃𝐴  ∅ 𝐷𝑃𝐴  

{𝑆𝑃𝐴} ∅ {𝑆𝑃𝐴} {𝑆𝑃𝐴} 

𝐷𝑃𝐴, 𝑆𝑃𝐴  𝐷𝑃𝐴  {𝑆𝑃𝐴} 𝐷𝑃𝐴, 𝑆𝑃𝐴  

 
belief intervals can be consequently achieved by provided evidence, 
which are denoted as: 

 
𝐸𝐼 𝐷𝑃𝐴 = 𝐵𝑒𝑙 𝐷𝑃𝐴 , 1 − 𝐵𝑒𝑙 𝑆𝑃𝐴 ;  
𝐸𝐼 𝑆𝑃𝐴 = 𝐵𝑒𝑙 𝑆𝑃𝐴 , 1 − 𝐵𝑒𝑙 𝐷𝑃𝐴   (20) 
 

Generally speaking, the more evidence fusion, the smaller value of 

RU. As shown in Fig. 8, the lifelogging PA intensity pattern decision 

making strategy is based on whether the value of RU is eliminated. With 

consideration of the two conditions, the lifelogging PA style takes 

advantage of following rules:  

 
• When 𝑅𝑈 = 0 

𝐼𝑓  𝐵𝑒𝑙 𝐷𝑃𝐴 > 𝐵𝑒𝑙 𝑆𝑃𝐴 ,

𝑡ℎ𝑒𝑛  𝑜𝑛𝑒
!
𝑠  𝑙𝑖𝑓𝑒𝑙𝑜𝑔𝑔𝑖𝑛𝑔  𝑃𝐴  𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑖𝑠  𝑎𝑐𝑡𝑖𝑣𝑒;

𝐼𝑓  𝐵𝑒𝑙 𝐷𝑃𝐴 < 𝐵𝑒𝑙 𝑆𝑃𝐴 ,

  𝑡ℎ𝑒𝑛  𝑜𝑛𝑒
!
𝑠  𝑙𝑖𝑓𝑒𝑙𝑜𝑔𝑔𝑖𝑛𝑔  𝑃𝐴  𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑖𝑠  𝑠𝑒𝑑𝑒𝑛𝑡𝑎𝑟𝑦.

(21) 

• When 𝑅𝑈 ≠ 0 
𝐼𝑓  𝐸𝐼(𝐷𝑃𝐴) > 𝐸𝐼(𝑆𝑃𝐴),

𝑡ℎ𝑒𝑛  𝑜𝑛𝑒
!
𝑠  𝑙𝑖𝑓𝑒𝑙𝑜𝑔𝑔𝑖𝑛𝑔  𝑃𝐴  𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑖𝑠  𝑎𝑐𝑡𝑖𝑣𝑒;

𝐼𝑓  𝐸𝐼(𝐷𝑃𝐴) < 𝐸𝐼(𝑆𝑃𝐴),

𝑡ℎ𝑒𝑛  𝑜𝑛𝑒
!
𝑠  𝑙𝑖𝑓𝑒𝑙𝑜𝑔𝑔𝑖𝑛𝑔  𝑃𝐴  𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦  𝑝𝑎𝑡𝑡𝑒𝑟𝑛  𝑖𝑠  𝑠𝑒𝑑𝑒𝑛𝑡𝑎𝑟𝑦.

 (22) 

 

 

 

 

 

 

 

Fig.8. Intervals of Belief (Bel) and Plausibility (Pls) of DPA and SPA 

 

When RU has been removed, the precise belief value would be 

derived, so the decision is taken through the comparison between 

𝐵𝑒𝑙(𝐷𝑃𝐴) and 𝐵𝑒𝑙(𝑆𝑃𝐴).When RU has been reduced but still exists, the 

result is determined by the comparison of values of interval. The higher 

confidence is assigned to the hypothesis with maximum belief value in the 

interval. For instance, if the belief interval of the set {𝐷𝑃𝐴} is [0.3, 0.6], 

and the belief interval of the set {𝑆𝑃𝐴} is [0.5, 0.9], the decision will be 

assigned to the set {𝑆𝑃𝐴} with the maximum value for both lower limit 

and higher limit.  

4. Case study 

In order to better illustrate how the proposed approach using wearable 

or mobile devices is applied in the assessment of lifelogging PA intensity 

patterns, two case studies based on the two hypothesises defined earlier 

are introduced next. In the first case study, we use multiple density maps 

fusion to illustrate the long term PA intensity decision making procedure 

under the condition of removal of RU, represented with a certain value 

Bel(DPA)

Pls(DPA)

Pls(SPA)
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Bel. In the second example, two months density maps with confliting 

envidence are fused to state the other hypothesis that the RU still exsits, 

represented as intervals EI. Both subjects used the mobile app Moves [5] 

and its datasets are collected from the mobile personalized healthcare 

platform MHA [6]. 

4.1. Case study 1 

4.1.1 Handling IU 

The subject is a research student at the university, female, aged 29. 

The proposed Ellipse fitting model operates on the individual’s PA 

distribution for pre-processing. Fig. 9 shows the subject’s daily steps and 

speed. The confidence value of Ellipse fitting is 0.98 for the individual, 

which means that 98% of samples fall inside the defined region based on a 

Gaussian distribution.  

 

 

 

 

 

 

 

 

 

 

Fig.9. Case study 1: Ellipse fitting model for IU removal of the subject’s Moves dataset (c= 0.98) 

 

In Fig. 9, 98% of data falling within the oval are below 3000 steps per 

hour. The speed or walking intensity is between 0.5 to 2.7m/s for this 

individual.  

4.1.2 RU confirmation 

Fig. 10 (a) shows the individual’s density map of PA distribution of 

Moves data record from July to Oct., 2015. Although the features of mean, 

variance, energy and entropy from images are quite close, the Euclidean 

distance measures that significant dissimilarity among Sept. and Oct, as 

shown in Fig. 10 (b). This is due to the features of large kurtosis 

difference. Density maps of Sept. and Oct. display more intensive 

distribution of the grey part, which means they have higher kurtosis, tends 

to have distinct peaks near the mean. This also implies that the mobile 

phone recorded more DPA data in most hour cells during this period than 

Jul. and Aug. Nevertheless, the subject’s healthcare condition and activity 

frequency were stable within this period. Furthermore, DPA datasets are 

relatively complete each month, since they are emergent almost every day 

on the images. Hence we can infer that the subject constantly kept her 

phone and  the app on when performing DPA, the RU may come from the 

app’s internal error such as inaccurate activity recognition, the app’s 

mechanism (e.g., automatically off for energy saving) or data transmission 

failure, etc.  

4.1.3 Lifelogging PA intensity pattern inference 

To analyse the individual’s life-long PA intensity pattern, the DST is 

utilized in this situation. The steps are shown as below. 
(1) Define the initial mass functions 

 

 
 
(a) 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

Fig.10. Case study 1. (a) Density maps of four consecutive months’ datasets from Moves; (b) 

Euclidean distance measures dissimiliary of the density maps in (a) displaying RU; (c) histogram 

distribution of four months 

  
A histogram regarding grey and white parts are distinctly determined into 
two classes for the consecutive four months, as presented in Fig. 10 (c). 
During this period, the subject performed routine activities. As determined 
by our face-to-face survey, she usually sat in front of the computer for 7  
hours working every workday and sleeping 8 hours per day, and thus the 
information is regarded as the known SPA duration. 

The ratio presented in table 3 denotes the percentage of duration of 

SPA against to the whole duration of the month (720 or 744 hours).  Thus, 

the initial mass functions assigned for each density map based on 

knowable sedentary duration (table 2) and the pixel number proportion 

(table 3) are as below 
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Table 2 

The subject’s known SPA durations and their ratio per month 

SPA types Duration (hours) 

Jul. Aug. Sept. Oct. 

Work 161 147 140 154 

Sleep 248 248 240 248 

Ratio 0.55 0.53 0.53 0.54 

 

Table 3 

Pixel numbers for density maps of four months 

Classes Pixel numbers 

Jul. Aug. Sept. Oct. 

𝐶!"# 401955 678916 1127961 1077651 

𝐶!"# 879293 734699 403211 440297 

𝐶!"#

∪ 𝐶!"#	
  

2060670 2065140 1888737 1893015 

 

Table 4 

Evidence fusion for Jul. and Aug. 

 𝑚!"#(𝐷𝑃𝐴) 𝑚!"#(𝑆𝑃𝐴) 𝑚!"#(𝐷𝑃𝐴, 𝑆𝑃𝐴) 

𝑚!"#(𝐷𝑃𝐴) 0.07 0.14 0.12 

𝑚!"#(𝑆𝑃𝐴) 0.08 0.15 0.13 

𝑚!"#(𝐷𝑃𝐴, 𝑆𝑃𝐴) 0.07 0.13 0.12 

 
𝑚!"# 𝐷𝑃𝐴 =  0.22  𝑚!"# 𝑆𝑃𝐴 = 0.43  
𝑚!"# 𝐷𝑃𝐴, 𝑆𝑃𝐴 = 0.35; 
𝑚!"# 𝐷𝑃𝐴 =  0.33  𝑚!"# 𝑆𝑃𝐴 = 0.36 
𝑚!"# 𝐷𝑃𝐴, 𝑆𝑃𝐴 = 0.31; 
𝑚!"#$ 𝐷𝑃𝐴 =  0.6  𝑚!"#$ 𝑆𝑃𝐴 = 0.21  
𝑚!"#$ 𝐷𝑃𝐴, 𝑆𝑃𝐴 = 0.19; 
𝑚!"# 𝐷𝑃𝐴 =  0.57  𝑚!"# 𝑆𝑃𝐴 = 0.23  
𝑚!"# 𝐷𝑃𝐴, 𝑆𝑃𝐴 = 0.2; 

 

(2) Using Dempster’s rule to combine them 

According to the DST rule defined as the table 1, we can obtain the 

following new mass functions one by one based on the Eq.(15) and (16). 
Therefore, we can obtain a new mass assignment for Jul. and Aug. shown 
in table 4: 
 
𝑚!"#,!"# 𝐷𝑃𝐴 = 0.07 + 0.12 + 0.07 = 0.28; 
𝑚!"#,!"# 𝑆𝑃𝐴 = 0.15 + 0.13 + 0.13  = 0.41; 
𝑚!"#,!"#(𝐷𝑃𝐴, 𝑆𝑃𝐴) = 0.12; 
 
As such, the new mass will be then combined with initial mass function 
from Sept. as: 
 
𝑚!"#!!"#$ 𝐷𝑃𝐴 = 𝑚!"#,!"#(𝐷𝑃𝐴)⊕𝑚!"#$(𝐷𝑃𝐴) = 0.29; 
𝑚!"#!!"#$ 𝑆𝑃𝐴 = 𝑚!"#,!"#(𝑆𝑃𝐴)⊕𝑚!"#$(𝑆𝑃𝐴) = 0.18; 
𝑚!"#!!"#$ 𝐷𝑃𝐴, 𝑆𝑃𝐴 = 𝑚!"#,!"#(𝐷𝑃𝐴, 𝑆𝑃𝐴)⊕𝑚!"#$(𝐷𝑃𝐴, 𝑆𝑃𝐴) =

0.02; 
 
Finally, we can obtain another mass functions combining with the 
evidence of Oct. as: 
 
𝑚!"#!!"# 𝐷𝑃𝐴 = 𝑚!"#!!"#$(𝐷𝑃𝐴)⊕𝑚!"#(𝐷𝑃𝐴) = 0.24; 
𝑚!"#!!"# 𝑆𝑃𝐴 = 𝑚!"#!!"#$(𝑆𝑃𝐴)⊕𝑚!"#(𝑆𝑃𝐴) = 0.08; 
𝑚!"#!!"# 𝐷𝑃𝐴, 𝑆𝑃𝐴 = 𝑚!"#!!"#$(𝐷𝑃𝐴, 𝑆𝑃𝐴)⊕𝑚!"#(𝐷𝑃𝐴, 𝑆𝑃𝐴) = 0. 
 
(3) Determine lifelogging PA intensity pattern  

With the fusion of four density maps as a consequence of the above,  

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

(c) 

Fig.11. Case study 2. (a) Ellipse fitting model for IU removal of the subject’s Moves dataset (c= 

0.95); (b) density maps of two inconsecutive months’ datasets from Moves; (c) histogram 

distribution of the density maps in (b). 

 

the RU is almost removed. The final mass functions are next normalized 

based on the Eq. (15) and thus achieve the belief and plausibility value for 

DPA and SPA as: 

 

𝐵𝑒𝑙!"#!!"# 𝐷𝑃𝐴 = 𝑃𝑙𝑠!"#!!"# 𝐷𝑃𝐴 = 0.29;  

𝐵𝑒𝑙!"#!!"# 𝑆𝑃𝐴 = 𝑃𝑙𝑠!"#!!"# 𝑆𝑃𝐴 = 0.1; 

 

Therefore, it can be inferred that the individual’s PA intensity pattern for 

the consecutive four months is active with the higher degree of confidence 

according to the rule defined in Eq.(21).  

4.2. Case study 2 

        The second subject is a healthy person, male, aged 35. Similarly, he 

worked in a sedentary fashion in front of computer 7 hours per workday, 

and sleeping duration was 7 hours per day on average. The Moves datasets 

are collected for two inconsecutive months of Jun. and Oct., 2015. The  

Ellipse fitting model is firstly conducted to remove IU. The confidence 

degree in this case is set to 0.95, somewhat smaller than in case 1, as most 

of the samples are scattered intensively between 0 to 1000 steps. A few 

samples are still in the normal range such as 2000 to 4000 steps per hour 

(Fig. 11 (a)), but here it is only taken into account estimation of the best 

fit of samples for this individual. 
        As presented in the density maps in Fig.11 (b), a smaller amount of 
data has been collected on May. The subject either tend to be more 
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sedentary or rarely record DPA data with mobile phone that the 
conclusion of active is impaired by the evidence on May. On the other 
hand, more information can be acquired from Oct., which may support 
this decision result. 

 

       Table 5 

       Lifelogging PA pattern comparisons of four subjects 

 Subject1 Subject2 Subject3 Subject4 

𝐵𝑒𝑙(𝐷𝑃𝐴) 0.32 0.2 0.25 0.22 

𝐵𝑒𝑙(𝑆𝑃𝐴) 0.21 0.26 0.08 0.05 

Bel 

comparison	
  

Bel(DPA) 

>Bel(SPA) 

Bel(DPA) 

<Bel(SPA) 

Bel(DPA) 

>Bel(SPA) 

Bel(DPA) 

>Bel(SPA) 

Intensity 

pattern of 

lifelogging 

PA 

 

Active 

 

Sedentary 

 

Active 

 

Active 

 
        Likewise, two classes are also defined associated with histogram 

distribution of the density maps in Fig.11 (c). With the respect of pixel 

numbers in two classes as well as the duration of known sedentary PA 

(working and sleeping), the mass functions are assigned as: 

 
𝑚!"# 𝐷𝑃𝐴 = 0.15;  𝑚!"# 𝑆𝑃𝐴 = 0.42; 
𝑚!"# 𝐷𝑃𝐴, 𝑆𝑃𝐴 = 0.43; 
𝑚!"# 𝐷𝑃𝐴 = 0.4;  𝑚!"# 𝑆𝑃𝐴 = 0.3; 
𝑚!"# 𝐷𝑃𝐴, 𝑆𝑃𝐴 = 0.3. 
 
Applying to the evidence fusion rule, we can obtain that, 
 
𝐵𝑒𝑙 𝐷𝑃𝐴 = 0.28;  𝐵𝑒𝑙 𝑆𝑃𝐴 = 0.38. 
 
        Thus, the interval for {𝐷𝑃𝐴} and {𝑆𝑃𝐴} are [0.28, 0.62] and [0.38, 
0.72], respectively. According to the decision making rules in Eq. (22), it 
can be concluded that the subject’s PA intensity pattern of is sedentary. 

4.3. Lifelogging PA intensity pattern comparisons 

The belief values of four subjects’ PA styles we investigated for five 

months are presented in the table 5. The subject 1, 3 and 4 are more active 

in DPA, as they were often walking around within most of each hour’s 

cells during the day. Apart from walking, for example, subject 3 often 

spent two hours a day playing sports and running. Subject 1 also 

performed jogging at least one hour a day. On the contrary, the subject 2 

either tend to be more sedentary or rarely use a mobile tracker to log his 

DPA that the conclusion is impaired by all the evidence. 

5. Discussion and conclusion 

        In this paper, an approach of lifelogging PA intensity pattern 

measures using datasets of third party devices has been proposed. The 

approach firstly employs an ellipse-fitting model to remove obvious errors 

(IU) from processed PA data based on the best fit of the samples for the 

individual. It then builds day-hour grey-levelled density maps for each 

month to represent the intensity for each hour cell. Finally, in order to 

reduce regular uncertainties (RU), a DST evidence lattice model was 

applied to lifelogging PA decision determination in light of information 

fusion from multiple density images. The decision conclusion is 

categorized into two types which are active and sedentary. The results, 

based on the analysis of Moves [29] data sets from the mobile 

personalized healthcare platform MHA [1], have demonstrated that the 

proposed approach has a strong ability to achieve lifelogging life styles of 

intensity for different individuals who successively take the mobile 

tracker as an evaluation criterion for healthcare. In this paper, we limit 

discussion of PA to only use ‘steps’. The reason for this is firstly the step 

is the most significant lifelogging PA variable. Generally, from the 

perspective of longitudinal duration, individuals spend more time 

walking, jogging and running than other activities such as swimming or 

cycling. Secondly, some non-step activities are rarely automatically 

detected owing to the limitations of existing hardware devices (swimming 

and yoga are particularly problematic for example). We believe the 

proposed approach has extensibility with the technological progress of 

activity recognition techniques and device capability. Furthermore, this 

work typically evaluated healthy subjects. Nonetheless, this principle can 

be applied for detection of PA changes for elderly people and patients 

with chronic disease using such low-cost devices or free apps. Since the 

paper only assessed a few months’ data sets from limited devices, in the 

next stage, we will be collecting larger amounts of data over a longer 

period of time from more subjects for evaluation. More wearable 

commercial devices (e.g., Fitbit [26], Withings [14]) will be also taken 

into consideration as a part of resource for the information fusion.  
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