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Fast and Accurate Retinal Identification System:

Using Retinal Blood Vasculature Landmarks

Abstract—While technological advances in automation have
made life easier, it has introduced major security threats. To
deal with the increasing rate of e-commerce fraudulent activities
and identity theft, it is crucial to elevate automated identi-
fication systems. We present an automatic fast and accurate
retinal identification system with hybrid vasculature extraction.
The proposed approach achieved high recognition accuracy by
using a hybrid segmentation technique. The proposed hybrid
vasculature extraction approach effectively balance the difference
of wavelet response between thick/thin blood vessels. PCA based
feature processing approach is proposed for efficiently reducing
the dimensionality of a large number of vessels features. It
significantly reduces computation time and accelerates the match-
ing process in the retinal identification system. The proposed
technique is validated on DRIVE, STARE, VARIA, RIDB, HRF,
Messidor, DIARETDB0, and a large multi-sample per subject
database created by authors using the images provided by Dr.
Chen (Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital). Experimental results demonstrated that the proposed
approach outperforms other existing techniques. Segmentation
achieves an overall accuracy of 99.65% with the recognition rate
of 99.40% on all these databases.

Index Terms—Biometrics, PCA, retinal identification.

I. INTRODUCTION

THE expansion of automation technologies and increased

risk of identity theft have led emphasis on the need of

automated identification systems. Due to the claimed distinc-

tiveness, biometric authentication approach is widely used for

people identification based on their physical and behavioral

traits [1]. Typical examples of biometric traits include face,

fingerprint, ear, retina, iris, palm print, speech, signature,

keystroke dynamics, gesture, and gait [2]–[7]. While some

commonly commercial biometric identifiers like face or voice

have provided a relatively medium level of security, they all

suffer from various limitations: face recognition is widely

affected by changes in environment variations like light; voice

can be easily recorded and used for the unauthorized network.

Compared to these above biometric traits, the retina is an

internal organ that lies at the back end of the eye which makes

it resistant to forgery. Its morphological structure contains

unique features as shown in Fig. 1. These features provide

the basis for the distinction between different subjects [8],

[9]. Therefore, the retinal image has advantages of the high

uniqueness of vascular pattern across the human popula-

tion, robustness to changes in human physiology, and hardly

accessibility. These advantages, along with improvement in

scanning technology, have contributed to the resurgence of

interest in the retinal biometric in the last few years.

Typical automated retinal identification systems contain two

important stages: 1) utilization of advanced image segmenta-

tion approaches for reliable vasculature extraction, 2) selection

Fig. 1: Human Retinal Vasculature Network. End point, bifur-

cation, and crossing point are used as feature by the proposed

system. Each of these feature points have been highlighted

(Yellow = end point, Blue = bifurcation, Red = crossing over).

and extraction of retinal features points from vasculature

extraction for further algorithm training. The performance and

outcome of two important stages directly decide recognition

accuracy and efficiency of retinal identification systems. Thus,

a variety of existing research work has been carried out on

investigating novel algorithms in these two fields.

Regarding the vasculature extraction, early research on retina

used a matched filtering for blood vessel segmentation [10]. In

[11], tracking methods were proposed to obtain the vascular

structure of the retina. Region-based threshold probing of

the matched filter response [12]. A combination of matched

filters and likelihood ratio vesselness was proposed in [13].

Morphological operations and a combination of nonlinear

filtering and morphological operations were previously used

to segment the vessels from the retinal image [14], [15].

However, automatic accurate segmentation of retinal vessels

is a still very challenging task. The presence of noise, the

low contrast between vasculature and background, brightness,

and the variability of vessel width and shape are all obstacles

further affecting the final recognition accuracy of the retinal

identification system.

As for the selection and extraction of retinal feature points,

many works [4], [16]–[19], have used end points, bifurcations,

crossing over, a combination of end points and bifurcation,

a combination of bifurcations and crossing over, optic disc

location as features from vasculature extraction. With given

accurate and reliable vascular structure, these features have

demonstrated a great success in delivering high recognition

accuracy. But this result requires complex and time-consuming

operations to extract s large amount of feature points in

each image among large sample databases. Also, the massive

number and types of templates in different databases require

much time to compare query images. Thus, how to accelerate

the operations of feature processing into retinal identification

systems is still a key problem.
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Fig. 2: Overview of the proposed approach. Enrollment and identification are two main modules. Enrollment module:-

Segmentation and Post-Processing: The result of the final segmentation and skeletonization is shown. Feature Extraction:

Features are extracted and highlighted using color slicing. Zoomed images depict the result of color slicing. Template Generation:

Feature vector formation illustration: “a” is the candidate feature point. Distance and angle between “a” and its four nearest

feature points “b”, “c”, “d”, and “e” are found to formulate feature vector. Reduced template formulation: PCA is applied

for dimensionality reduction. The reduced template is then stored in the database. Identification Module:- Live-Template

Formulation: Query image template (live-template) is generated. Matching: L2-norm is used to find the distance between live-

template and templates stored in the database. Depending on the distance, total similarity measure (TSM ) is calculated. Query

image is given a status either authenticated or intruder based on TSM .

In order to solve these problems, this paper attempts to

improve recognition accuracy and efficiency of retinal identifi-

cation system. Accuracy is improved by using hybrid segmen-

tation and efficiency is achieved by using Principal Component

Analysis (PCA) for template dimensionality reduction.

Motivated by these above issues, this paper aims to propose

an automatic fast and accurate retinal identification system

for the multi-sample data set. The idea is to use a hybrid

segmentation technique to segment out both thick/thin vessels.

Feature points are extracted to formulate the templates whose

dimensionality is reduced by PCA. This step is crucial as it

hastens the matching process. In the identification module,

the query image template is generated. L2-norm is used to

calculate the distance between the feature vector of the live-

template and the feature vector of all the templates stored in

the database. Based on the distance Total Similarity Measure

TSM is calculated. The final decision is based on the TSM
value. Fig. 2 gives an overview of the proposed system. The

major contributions of this paper are as follows:

1) An automatic fast and accurate retinal identification sys-

tem with hybrid vasculature extraction is designed and

developed for the large-scale multi-sample retinal data

set. The proposed hybrid vasculature extraction approach

could effectively balance the difference of wavelet re-

sponse between thick/thin blood vessels. The use of a

hybrid segmentation is more effective to retain complete

retinal vasculature and also prevents thin vessels from

being discarded. As a result, recognition accuracy is

improved.

2) PCA based feature processing approach is proposed for

efficiently reducing the dimensionality of a large number

of vessels features towards multi-sample retinal data set.

The extracted features are projected into a subspace

achieved by PCA. PCA approach ensures that principal

components not only correspond to maximum variance,

but also ensures that resulting set of features in the

subspace are uncorrelated while retaining most of the

information content. It could significantly reduce com-

putation time and accelerates the matching process in the

retinal identification system.

3) Very few databases are available for retinal identification.

A large-scale multi-sample per subject named Biometric

Retinal Identification Database (BRDB) is designed. It

consists of 1800 color retinal images of 200 subjects

with nine samples per subject. The proposed approach

achieved the recognition accuracy of 99.46% with BRDB

that validates its strength.

II. RELATED WORK

EyeDentify company provided the first commercially avail-

able retinal identification system that uses a retina scanner

called EyeDentification [21]. It maps vascular pattern on the

retinal portion of the eyeball. Sadikoglu and Uzelaltinbulat

[22] used the feature vector of the segmented image with

a neural network. The neural network is trained by back-

propagation. Fatima et al. [17] used a recursive supervised

multilayered thresholding for accurate segmentation. Vascular

ending and bifurcation are used as features. Mahalanobis

distance is used as a similarity measure for identification.
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Fig. 3: (a) Thin vasculature obtained without using NVCR:

Zoomed images show artifacts. Red = optic disc boundary is

apparent, Green = blood vessels are not enhanced properly and

somewhat suppressed, Yellow = noise is also present and has

a similar texture to that of vessels. (b) Thick vasculature ob-

tained without using NVCR. Red = non-uniform background,

Green = illumination is present around blood vessels, Yellow =

retinal boundary is also highlighted and there is no distinction

between foreground and background.

In [19], feature extraction is performed by using optic disc

location as a reference point. Blood vessels that are around

optic disc are used for feature generation. Köse et al. [23]

proposed a retinal identification that employed a similarity

measure and is capable of tolerating the transformations. In

[24], Fourier transform coefficient and angular partitioning are

used for feature detection. Euclidean distance is used in the

matching process. Monisha and Seldevchristopher [25] used

the crossing number technique to find features and voting

for finding similarity. Sasidharan [26] used skeletonization

for feature extraction. Similarity transformation is used for

similarity check between reference and candidate image.

Akram et al. [16] formulated feature vector by calculating

distance and angle between feature points. Bifurcation is the

chosen feature point. The accuracy was further improved by

using both bifurcation and end points as features in [4]. Gabor

filter is used for extraction of feature points. The resulting

feature vectors are stored in the database. The reference image

and candidate images are matched using a SVM classifier [27].

In [18], branch points and crossing points are extracted from

only those vessels that have a certain width. Geometric hashing

is used to make features invariant. Crossing points and branch

points are used to map the hash table for every image. Jiu

et al. [28] used Gabor wavelet transform for enhancement of

vessels. The feature vector is formed by calculating distance

and angle between four nearest neighbors of a feature point.

Euclidean distance is used to test authentication.

III. ENROLLMENT MODULE

A. Pre-Processing

The presence of noise in retinal images can render them

inappropriate for identification phase [29], [30]. Retinal im-

ages contain non-uniform illuminations, blurry areas, and

noisy background. Noise seems to be present in regions with

poor illumination and is more prominent closer to retinal

edges [31], [32]. Eye movements cause motion artifacts that

induce blurring in images. Noise can also be induced by

image acquisition modality i.e. Fundus camera [33]. Thus, pre-

processing is used for artifacts exclusion and to make images

Fig. 4: Pre-processing. (a) CE module: Enhanced image ob-

tained by applying CLAHE on Igchannel. Zoomed images

show NVC. Yellow = optic disc, Red = macula, Pink =

background with noise. (b) NVCR module: Background re-

moval: Removes the artifacts and noise in the background by

masking enhanced image with mask. Zoomed image shows

a complete black background with no noise. Optic Disc and

Macula Removal: Modified Top-Hat Transform is applied for

removing optic disc and macula.

appropriate for reliable feature extraction. Pre-processing is of

vital significance as the overall strength of retinal identification

depends on the final segmented image. To deal with variations

of different data sets, standardization is done to make the

proposed technique universal for all of the data sets. Through

experiments, the resolution of 256×256 is found to be optimal

for performance. Thus, all images are resized to the resolution

of 256× 256.

1) Contrast Enhancement (CE): Green channel contains

fine details and valuable information. So, to obtain maximum

contrast between the blood vessels and background green

channel is extracted. To make intensity uniform and to remove

non-uniform illuminations from the images, Contrast Limit-

ed Adaptive Histogram Equalization (CLAHE) [34] is ap-

plied. CLAHE divides the image into non-overlapping regions

termed as tiles. Contrary to conventional contrast enhancement

methods, it prevents over-amplification of noise by using a pre-

defined value termed as clip limit [34]. There is no need for

adaptive selection of CLAHE parameters because image size

has been fixed to the resolution of 256 × 256. To select an

appropriate clip limit for CLAHE, we varied clip limit from

0.01-0.05. With a clip limit of 0.01, the image quality was

improved, the noise level was low and blood vessels were

perceivable as well. To select tile size, we varied it from [8×8]

to [64 × 64] and compared corresponding processing time.

With different images, a window size of [8× 8] had the least

processing time. So for experiments, a clip limit of 0.01 and

window size of [8×8] is applied to the extracted green channel

(Igchannel) for optimum performance.

2) Non-Vascular Components Removal (NVCR): Segmen-

tation process is accelerated by removing non-vascular com-

ponents (NVC). NVC constitute of background, optic disc,

macula, and other abnormalities. If NVC are not removed,

the processing time will be more, blood vessels will not be

enhanced appropriately, the noise will be more apparent, there

will be non-uniform background, the computational cost of

successive methods will be more and NVC will appear as

false positive during segmentation stage. These artifacts are

clearly visible in Fig. 3. All these factors result in declined

performance. So, NVCR has a crucial role in handling the
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Fig. 5: Flow diagram showing blood vessels enhancement,

segmentation and image fusion. (a) Pre-processed image.

(b) BVE module: Application of Frangi filter generated two

outputs (Thin vessels network and thick vessels network). (c)

Segmentation module: k-means clustering used for thin vessels

network and Multilevel Thresholding used for thick vessels

network. (d) Image fusion: Final segmented image obtained

by fusion of thick and thin vessels.

general performance of the proposed system.

The region of interest (ROI) in retinal images corresponds

to the semi-circular region over a dark background [31]. The

background is not actually black, but it contains noise [35]. So,

it is necessary to mask the pixels that do not constitute ROI.

Mask image is created by a two-stage process: coarse level and

fine level. At the coarse level, Otsu threshold algorithm [36] is

applied to Igchannel. However, some pixels are misclassified

at this stage. At the fine level, these pixels are classified

correctly by morphological opening and closing operation with

a disc-shaped structuring element having radius 2. After that,

masking of Igchannel is performed with the mask obtained.

This step removes background noise and unwanted pixels

that do not constitute ROI as shown in Fig. 4. Instead of a

normal top-hat transform which induces noise, modified top-

hat transform [37] is adopted. Modified top-hat ensures better

noise removal and suitable feature extraction.

ITophat = I − (I • Sc) o So (1)

where I is input image, • is a closing operator, o is an opening

operator, Sc is the structuring element used for closing and So

is the structuring element for opening, ITophat is the output

image. For both closing and opening disk type structuring

element with the radius of 15 pixels is used. The opening

stage of the modified top-hat transform removes the optic

disc. Fig. 4(a) has the clear optic disc, macula, and noisy

background. Proposed NVCR completely removes these NVC

without effecting the blood vessels in the optic disc region as

shown in Fig. 4(b).

3) Blood Vessels Enhancement (BVE): Without BVE, the

output generated by NVCR will be directly subjected to the

segmentation module. It is clearly evident from Fig. 4(b)

that the output of NVCR is not appropriate for vasculature

segmentation. It needs proper enhancement before segmen-

tation. Hence, BVE is a crucial factor for blood vasculature

enhancement and to make image appropriate for segmentation.

Fig. 6: (a) Vasculature estimated by multi-level Otsu thresh-

old. The highlighted portion is estimated only by multi-level

threshold. (b) Vasculature estimated by k-means. The high-

lighted portion is estimated only by k-means. (c) Image fusion:

combines and harness results of both (a) and (b) to create

a single-fused image (Ifused). Ifused is more informative,

as it combines information from both (a) and (b). (d) Post-

processing: Result obtained by performing area opening of

Ifused.

Currently used enhancement techniques also enhance noise

that appears as spurs in the segmented result and increases

false positive rate. Frangi filter is used in this work for blood

vessels enhancement. Contrary to existing techniques that

enhance whole structure, Frangi filter performs enhancement

of only elongated structures. In the case of retinal images,

these structures constitute blood vessels. Thus, the noise is

suppressed as shown in Fig. 5(b). Given a continuous 2D

image I(Ŷ ), Frangi filter [38] for blood vessel enhancement

is adopted.

r(Ŷ , σ, β1, β2) =
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1 − exp
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))

, otherwise
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where λ1(Ŷ , σ) and λ2(Ŷ , σ) are eigenvalues of local

hessian estimated at Ŷ with scale σ. RB(Ŷ , λ) = λ1(Ŷ ,σ)

λ2(Ŷ ,σ)
is the elongated strength. It calculates the variation from

blob by taking into account the eccentricity of the second

ellipse. The structureness measure is given by S(Ŷ , σ) =
√

λ2
1(Ŷ , σ) + λ2

2(Ŷ , σ). The parameters β1 (Frangi beta one)

and β2 (Frangi beta two) control sensitivity of the filter to

deviation in Rβ(Ŷ , σ) and S(Ŷ , σ) [39]. The values used for

β1 and β2 are 2 and 3.5.

B. Segmentation

Segmentation is paramount of overall performance because

the errors prevailing in final segmented retinal images will

significantly affect the feature extraction and identification

process. In phase-based level set methods, vessel width plays

an important role in the wavelet response. Thick blood vessels

give a high response in contrast to thin vessels [17]. Due

to varying wavelet response, thin vessels may get discarded.

Another overhead of such methods is the optimal threshold

selection to handle varying wavelet response. To overcome

these issues and to retain both thick and thin vessels hybrid

segmentation technique is used. The proposed hybrid vascu-

lature extraction approach effectively balances the difference

of wavelet response between thick/thin blood vessels. The use



5

Fig. 7: Two possible outcomes of the feature extraction phase. (a) The result of feature extraction performed without

skeletonization. Consequently, the feature extraction generates wrong features. (b) The result of feature extraction performed

with skeletonization. The extracted features are correct and each one is marked correctly by color slicing.

of hybrid segmentation is more effective to retain complete

retinal vasculature and also prevents thin vessels from being

discarded and aids to estimate as much vasculature as possible.

As a result, recognition accuracy is improved. The advantage

and contribution of hybrid segmentation are evident from Fig.

6. k-means clustering is used for thin vessels segmentation.

k-means is a data clustering iterative algorithm that partitions

the data points into clusters on the basis of their distances

from the centroid [40]. To choose clusters k optimal for our

data set, average silhouette method [41], [42] is used. Multi-

level thresholding using Otsu is used for thick blood vessels

segmentation. It performs well where the image has to be

divided into two classes of pixels. It automatically calculates

the optimum threshold in such a way that it maximizes

between class variance of segmented classes [36]. It divides

the image into multiple classes with optimization objective as:

J1(th1, th2, ...thk) = σ0
2 + σ2

1 + σ2
2 + ...+ σ2

k (3)

where k is the total number of classes, {th1, th2, ..., thk}
is the set of thresholds applied on the image, and
{

σ2
0 , σ

2
1 , σ

2
2 , ..., σ

2
k

}

is variance set.

After segmentation, image fusion is performed to harness

the results generated by k-means and multi-level threshold to

generate a single-fused image. Image fusion is performed by

spatial domain fusion method. We particularly used pixel level

fusion using the Maximum method from spatial domain [43].

The maximum method performs a selection process. Every

corresponding pixel of the images to be fused is compared.

After that, the pixel with the maximum intensity is selected and

placed on the corresponding position of the resultant image.

Thus, every pixel of the fused image is the maximum intensity

of the corresponding position pixels in the input images.

Ifused(i, j) =

M∑

i=1

N∑

j=1

max(X1(i, j), X2(i, j), ..., Xn(i, j)) (4)

where X1, X2, ..., Xn are the input images, Ifused is the

output fused image, n is the total number of images to be

fused, max() finds the maximum intensity pixel, M and N
correspond to the total number of rows and columns. The

reason for opting out this particular method is that it does not

compromise over the good information available in the image,

it is fast and efficient. Its disadvantage is that the maximum

pixel is not always the better pixel. However, it is rectified

in our method by post-processing. As evident from Fig. 6(c),

Ifused is more informative as compared to results generated by

the individual segmentation. As proposed segmentation retains

both vessels, so it outperforms the other existing segmentation

techniques and have high accuracy.

C. Post-Processing

Before analyzing Ifused for identification, it is subjected

to post-processing to get rid of spurs and unwanted regions

produced during segmentation. Area opening is used to remove

these artifacts. In this paper, vessels that have less than or

equal to 20 pixels are regarded as unwanted regions and

are discarded out. The result of area opening is shown in

Fig. 6(d). Before feature extraction, it is necessary to reduce

vessels width to 1. Without width reduction, the feature ex-

traction stage will yield incorrect features as evident from Fig.

7(a). Width is reduced by skeletonization. For skeletonization,

MATLAB’s built-in morphological function named bwmorph
is used [44]. Iskel = bwmorph(bw,′ skel′, Inf) where bw is

the segmented image obtained after area opening, with Inf
bwmorph repeats the operation until there is no further change

in the image. Fig. 7 shows a step-wise illustration of feature

extraction performed with and without skeletonization.

D. Feature Extraction

Like other biometric identification systems, retinal identifi-

cation also relies on its unique features to distinguish subjects

from one another. These include (a) end point (end of a vessel),

(b) bifurcation (where a vessel splits into two), (c) crossing

over (the point where two vessels meet up) as shown in Fig.

1. To ensure maximum discriminant power and high accuracy,

we used all three of them. For feature extraction, crossing

number technique is used. It takes the skeleton image Iskel as

input and outputs an image with extracted features F (Fig. 7).

CN(P ) =
1

2

8
∑

i=1

|Iskel(pi)− Iskel(pi+1)| (5)

where P is the pixel to be evaluated, pi are the pixels sur-

rounding P in a clockwise direction and Iskel is the skeleton

image. CN is half of the sum of the difference between

adjacent pixels in the 8-neighborhood of P . Algorithm 1 is

the pseudocode for crossing number and color slicing. CN
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Algorithm 1 Feature Extraction and Color Slicing

Require: Skeleton Image Iskel
Ensure: Final Image with extracted features F

1: Do zero padding of Iskel to obtain a matrix img;

2: Initialize a matrix Clr Img (with three layers) having the

same size as that of Iskel for color slicing;

3: for ∀ p ∈ img do

4: if img[p] == 1 then

5: Calculate CN value using Eq. (5);

6: Color Slicing: Evaluate computed CN value;

7: if CN == 1 then

8: p is end point;
9: Clr Img[p]← Red Color;

10: else if CN == 3 then

11: p is bifurcation;

12: Clr Img[p]← Green Color;

13: else if CN > 3 then

14: p is crossing over;

15: Clr Img[p]← Blue Color;

16: end if

17: else

18: Move to img(p+1);

19: end if

20: end for

21: N Img = cat(3, Iskel, Iskel, Iskel);
22: F = N Img + Clr img;

explores 8-neighbourhood of a pixel that constitutes vessel

in a clockwise direction. Depending on final CN value, a

pixel is designated either as a feature point or not. Color

slicing is used to highlight the detected feature points. For

color slicing, a matrix with 3 layers (Clr img) having the

same dimension as that of Iskel is initialized. Corresponding

to CN value, a specific color (Red for end point, Green

for bifurcation, Blue for crossing over) is stored at the same

location in Clr img. Once feature extraction is completed,

Clr img is superimposed on Iskel. Before superimposition,

Iskel is also concatenated in 3 dimensions to have an image

with three layers (N Img). Superimposition of Clr img on

N Img gives the final image F with all extracted features

highlighted as shown in Fig. 7(b).

E. Template Generation

1) Template Formulation: Once features are extracted, the

next step is to formulate templates and store them in the

database. The matching phase is paramount for the identifica-

tion process. Irrespective of rotation and translation, the angle

and distance between different feature points remain the same.

This consistency is harnessed to ensure that matching is rota-

tion and translation invariant. The angle and distance between

a candidate feature point and its four nearest feature points

are calculated to formulate a template. Resulting template is

of dimension R × 8. Where R is the number of features and

varies for every image.

2) Dimensionality Reduction: The massive number in the

database and type of templates require much time to compare

Fig. 8: Performance of proposed method on images with large

degenerations. The first row corresponds to input images. The

second row corresponds to the result of segmentation achieved

by the proposed method. (a) Images from STARE [47] (b)

Images from DIARETDB0 [48] (c) Images from Messidor

[49].

query images. It slows down the matching process and makes

it more complex. Feature extraction phase yields templates of

varying dimensionality. Most of the existing retinal identifi-

cation techniques focused only on accuracy and not on time

efficiency. To make proposed matching process time efficient it

is hastened by reducing template dimensionality. The proposed

approach used PCA based feature processing approach for

efficiently reducing the dimensionality of a large number of

vessels features. PCA is used because it converts the set of

features into a reduced number of uncorrelated features. PCA

ensures that principal components not only correspond to max-

imum variance, but also ensures that resulting set of features

in the subspace are uncorrelated while retaining most of the

information content [45], [46]. This guaranteed un-correlation

improves the predictive performance of resulting features. The

enhanced predictive power improves the performance of the

classifier. The new retinal features are termed as retinal Eigen

features. Every original retinal feature is transformed into an

Eigen value. Firstly, every image is converted into a column

vector and stacked into a matrix i.e. M = {M1,M2, ...,MN}.
The zero-mean vector of each vector is found by subtracting

the vector from mean:

x0 =
1

N

N
∑

i=1

Mi − x̄→ x̄ =

N
∑

i=1

xi,j/N (6)

where x0 is zero-mean vector, Mi is ith column vector in

matrix M , x(i,j) is (i, j)th entry in the vector M , x̄ is mean

and i = 1, ..., N . After mean, covariance matrix is computed

as:

C = (x0)(x0)
T (7)

where C is the covariance matrix, x0 is zero mean vector, T
is transpose and xT

0 is the transpose of zero mean vector. As

C is large dimensionality matrix, Eigen vectors are calculated

to obtain distinguishing features and remove redundant ones

as:

Cv = λEv (8)

where λ is Eigen value, Ev is Eigen vector and Cv is the

matrix associated with Eigen values λ of vector Ev . All the

images are transformed to Eigen subspace as:

y = WT (Mi) i = {1, 2, ..., N} (9)
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Fig. 9: FAR and FRR curves for retinal identification. (a) and (b) show the dependence of FAR and FRR on the threshold.

(c) FAR and FRR with respect to the error rate. The intersection point represents EER, which is demonstrated by a magenta

circle. As our approach has EER = ‘0’, thus it is accurate.

where y is Eigen subspace termed as principal components or

retinal Eigen features, W is projection matrix constructed from

selected Eigen vectors, T is transpose and WT is transpose

of projection matrix. The first N Eigen features with high

variance are selected. As a result, dimensionality is reduced.

The resulting retinal Eigen features are stored in the database.

Without PCA, all templates will have varying dimension.

With the massive number and template size, identification

will take more time and will be inappropriate for real-time

applications. PCA significantly reduced the dimension of the

templates. As a result, the time interval between matching and

identification process is reduced. Consequently, the proposed

technique takes less time in matching and is computation-

ally more efficient. The statistical details of time efficiency

achieved by the proposed technique are discussed later in

Section V-A.

IV. IDENTIFICATION MODULE

When an unknown subject sample is given, the system

generates its live-template. L2-norm given in Eq. (10) is used

to calculate the feature distance between the feature vector of

live-template and the feature vector of all the templates stored

in the database.

||v|| =

√

√

√

√

k
∑

i=1

|v2i | (10)

where v is a vector, k is the total number of elements in vector

v and |v2i | is absolute of squared values in v. To evaluate the

similarity between samples, total similarity measure (TSM )

is calculated. Whenever the live-template feature vector has

minimum feature distance with some stored template feature

vector, then the TSM for that subject is incremented by ’1’.

TSM is calculated as:

TSM = Subject ID[find(mini(FD))] + 1, i = 1....N (11)

where find() is a MATLAB’s built-in function that finds

the index position, min() is a MATLAB’s built-in function

that returns the minimum element, FD is the feature distance,

Subject ID is an array having the same length as that of

the number of subjects stored in the database and is used for

keeping the matching score, N is the total number of templates

stored in the database. With find(min(FD)) index position

where the minimum value of FD is encountered is found.

After that, an increment of 1 is done to that index of the

Subject ID. The result of this matching is a list of TSM
values. After the live-template has been compared with all

the templates in the database the final decision is made by

comparing maximum TSM with a threshold as:

max(TSM) ≥ T (12)

where T is the threshold. If the above condition is satisfied,

then the query image is regarded as authenticated. Otherwise,

it is rejected as an intruder. Thresholding step is vital for

rejection of intruders.

V. EXPERIMENTAL RESULTS

The algorithm is implemented and tested using MAT-

LAB R2015b environment on a workstation with Intel(R)

CORE(TM) i3-4130, 3.40GHz, and 8GB RAM. In contrast to

face recognition, very few databases are available for retinal

identification. To the best of our knowledge, VARIA [50]

and RIDB [51] are the only publicly available databases

for retinal identification purpose. For this reason, we created

our own database named Biometric Retinal Identification

Database (BRDB). Other existing techniques have evaluated

performance on some local database or on publicly available

databases like DRIVE [52] and STARE [47]. Local databases

are not publicly available. Hence for a fair comparison with

these techniques and to make publicly available databases

suitable for identification, augmentation is used to generate

multi-samples per subject. Each image is rotated randomly to

generate nine samples per subject. For performance evaluation

on pathological images STARE [47], HRF [53], Messidor [49],

DIARETDB0 [48] are used. Experimental section is further

divided into two subsections: Retinal Identification and Retinal

Vasculature Segmentation.

A. Retinal Identification

Proposed approach authenticity is evaluated by conducting

different experiments. A personal database BRDB is designed

to evaluate the validity of the proposed technique. BRDB

consists of 1800 color retinal images of 200 subjects with nine

samples per subject. Images are captured using Fundus camera

TOPCON TRC NW300, having 8M pixels per inch (PPI), and

are non-mydriatic with a 45-degree field of view. The images

are macular centered, have the dimension of (1536x2048x3)

and are stored in .JPG format. To evaluate proposed technique

performance, 60 subjects were selected to act as authenticated
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TABLE I: Performance comparison for retinal identification

No. Method Database
Total

Images

Correctly

Recognized

Wrongly

Recognized

Accuracy

%

Identification

Rate%

1 Akram et al. [16]

DRIVE
STARE
VARIA

40
81

233

40
77
231

0
4
2

100
95.05
99.14

98.30

2 Hussain et al. [18] DRIVE 40 39 1 97.50 97.50

3 Sadikoglu and Uzelaltinbulat [22] DRIVE - - 1 97.50 97.50

4 Qamber et al. [4]

DRIVE
STARE
VARIA

40
81

233

40
78
232

0
3
1

100
96.29
99.57

98.87

5 Monisha and Seldevchristopher [25]

DRIVE
STARE

40
100

39
97

1
3

97.5
97

98.87

6 Sabaghi et al. [24] DRIVE 40 40 0 100 100

7 Jiu et al. [28]

DRIVE
STARE
VARIA

-
-
-

-
-
-

-
-
-

100
95.06
98.28

97.78

8 Fatima et al. [17]
VARIA
RIDB

233
100

232
97

1
3

99.57
97

98.28

9 Farzin et al. [19] DRIVE+STARE 300 - - 99.0 99.0

10 Köse et al. [23] STARE 80 - - 95.0 95.0

11 Our Proposed

DRIVE
STARE
VARIA
RIDB

Our BRDB

40
81
233
100

1800

40
81

232
98

1797

0
0
1
2
3

100
100

99.57
98

99.46

99.40
⋆

⋆ Other techniques have only used DRIVE, STARE, VARIA or RIDB. Due to this in some cases, their average identification
rate is more as compared to our proposed technique. In contrast, our method is evaluated on all of them including BRDB. The
proposed method achieved the highest accuracy database wise.

TABLE II: Performance evaluation on images with degenera-

tions

Database
Total

Images
Correctly

Recognized
Wrongly

Recognized
Identification

Rate (%)

STARE [47] 400 399 1 99.75
HRF [53] 45 45 0 100
Messidor [49] 800 797 3 99.62
DIARETDB0 [48] 130 128 2 98.46

Fig. 10: (a) Identification time comparison performed with

and without PCA. Our approach has significantly accelerated

the matching. (b) Recognition rate comparison of different

techniques. Our approach has the highest recognition rate.

users. Out of 9 samples, 6 samples are used for training and

3 samples are used for testing. 70 subjects were selected to

act as intruders. This set-up created a total of 810 experiments

(60×3 = 180 authenticated subjects experiment, 70×9 = 630
intruder experiments). The proposed approach achieves the

highest recognition rate that makes it more effective. It out-

performs other existing techniques as clearly evident from

Table I. For pathological cases, effectiveness of technique

is evaluated using STARE [47], HRF [53], Messidor [49]

(first two sets) and DIARETDB0 [48]. The statistical results

of performance with these databases are given in Table II.

It is evident that the proposed technique achieves a high

identification rate even with these databases. Fig. 8 shows the

visual results obtained with these databases. The results clearly

depict proposed technique strength to deal with images having

degenerations. The proposed approach is further validated by

False acceptance rate (FAR), False rejection rate (FRR) and

Equal error rate (EER). These matrices vary according to the

chosen threshold. There is always a trade-off between FAR

and FRR. Fig. 9 shows the effect on FAR and FRR with

respect to change in threshold values. The intersection point

of FAR and FRR represents EER. From Fig. 9(c), it is clear

that the proposed method achieves an EER of zero which

makes it completely accurate and gives it a lead over existing

techniques.

1) Identification Time: Biometric systems have to be used

in real time, so they must be computationally accelerated

and time efficient. Our method achieved this acceleration by

using PCA. PCA reduced dimensionality and decreased the

time interval between matching and identification process. The

statistical details of time efficiency achieved by the proposed

technique is given in Table III. The identification time for the
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Fig. 11: Discriminant power comparison. (a) End points as feature points. (b) Bifurcation as feature points. Clearly, in both

(a) and (b), there is overlapping of in-class and between-classes distances. Thus, subjects are not identified correctly. (c) The

proposed combination of features points. There is no overlapping and there is a clear discriminant boundary among classes.

TABLE III: Identification time comparison with/without PCA

Database
Total

Images

Query

Image Name

Total Identification Time (sec)

Without PCA With PCA

DRIVE [52] 40 38 training.tif 523.19 0.019
STARE [47] 100 Im0038.ppm 821.77 0.037
VARIA [50] 233 012.pgm 930.28 0.086
HRF [53] 45 08 h.jpg 529.27 0.024
Our BRDB 1800 4.jpg 827.20 0.029

Average Time - - 736.342 0.039

techniques without any acceleration ranges from 500 - 900

seconds. On the other hand, the proposed technique signifi-

cantly reduced it to a range of 0.019 - 0.029 seconds. Average

time clearly shows that the proposed approach is much more

efficient. This efficiency makes the proposed method more

appropriate for real-time applications. Fig. 10(a) shows ac-

celeration achieved by the proposed method as compared to

techniques without any acceleration mechanism. Thus experi-

mental results showed that our method has low computational

time and outperforms techniques without any acceleration

mechanism. The total identification time comprises of a fixed

time (required for retinal image pre-processing, segmentation

and feature extraction) and a variable time for the one-to-many

matching process. Total identification time is calculated as:

Total identification time = Fixed T ime +

TL(one− to− one template matching)
(13)

where TL is the total number of templates stored during

registration, Fixed T ime is 0.316 seconds, and one−to−one
template matching time is 0.0079 seconds (on a workstation

with Intel(R) CORE(TM) i3-4130, 3.40GHz and 8GB RAM).

2) Feature Comparison: Selected features discriminant

power is evaluated by comparing it with different kinds of

features (end points, bifurcations and proposed combination

of end points, bifurcations and crossing over). Performance

of all these features is evaluated and compared by the fol-

lowing experiment. FD between the live-template of different

subjects and registered subjects is calculated. If the template

belongs to the same class, then distance is categorized as

in-class. Otherwise, the distance is categorized as between-

class. The distribution of the two distances is approximated

as histograms. Intuitively, if a feature has good discrimination

power, then there will be no overlapping between both kinds of

distances and there will be a clear distinction among classes.

TABLE IV: Comparison for retinal vasculature segmentation

Method
DRIVE STARE

Acc Sn Sp Acc Sn Sp

Staal et al. [52] 0.944 0.719 0.977 0.952 0.697 0.981
You et al. [54] 0.943 0.741 0.975 0.950 0.726 0.976
Soares et al. [55] 0.946 0.724 0.976 0.948 0.710 0.974
Singh and Srivastava [56] 0.952 0.759 0.971 0.927 0.794 0.938
Imani et al. [57] 0.952 0.752 0.975 0.959 0.750 0.975
Vlachos and Dermatas [58] 0.929 0.747 0.955 - - -
BahadarKhan et al. [59] 0.961 0.746 0.980 0.946 0.758 0.963
Our Proposed 0.968 0.756 0.978 0.963 0.755 0.963

Fig. 12: (a) Scaling effect on average feature points number.

(b) Scaling effect on time consumed in pre-processing and fea-

tures extraction. (c) Scaling effect on identification accuracy.

The histograms obtained as a result of this experiment are

shown in Fig. 11. When end points and bifurcations are used

independently, there is an overlapping of between-class and in-

class distance. However, with the proposed combination there

is no overlap and there is a clear discriminant boundary among

classes. Hence, the identification phase leads to correct results

with high accuracy.

3) The Impact of Scaling on System Performance: The

impact of scaling has been analyzed in terms of execution

time, identification rate and an average number of extracted

features as shown in Fig. 12. For analyzing the impact of

scaling on system performance, we downsampled the images

from the original resolution. The images are resampled to the

resolutions of 512 × 512, 256 × 256, 128 × 128, 64 × 64,

32 × 32 and 16 × 16 respectively. Fig. 12(c) shows that

the identification rate with the resolution of 512 × 512 and

256 × 256 is the same i.e. 99.85%. However, the execution

time with the resolution of 256 × 256 is faster as compared

to the resolution of 512× 512. With the resolution of 16× 16
execution time is fastest, but the identification rate declines

to 65%. So for the optimal performance, all the images are

downsampled to the resolution of 256×256. With the increase

in image size, the number of extracted feature increases corre-
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Fig. 13: Average silhouette plot for computing k. The plot

peak value is 2. So k = 2 is proper cluster choice.

spondingly. However, with the increased number of extracted

features execution time increases which make the identification

process slow.

B. Retinal Vasculature Segmentation

To evaluate proposed technique performance for segmen-

tation it has been validated on DRIVE [52], STARE [47]

and has been compared with other existing techniques. The

performance is evaluated with respect to three evaluation

measures i.e. Accuracy (Acc), Sensitivity (Sn) and Specificity

(Sp). The statistical results of this comparison are given

in Table IV. The proposed segmentation is very efficient

and achieved the highest accuracy as compared to all other

paralleled techniques. Our method also achieved highest Sn

and Sp for DRIVE except for Singh [55] and Bahadar Khan

[58] which is only better comparatively by a difference of

0.003 and 0.002. While in the case of STARE, Sn of Singh

[55] and Bahadar Khan [58] are 0.039 and 0.003 better. The Sp

of You [53], Soares [54] and Imani are slightly better by 0.013,

0.011 and 0.012 respectively. Fig. 8 shows the effectiveness of

our segmentation technique. The experimental results validate

that the suggested method is very effective as compared to

other cited frameworks. To choose number of clusters (k)

of k-means clustering that are optimal for segmentation of

our data set, average silhouette method [41], [42] is used.

We computed k-means clustering by varying k from 1-15.

For each k, the average silhouette of observations is then

calculated. The maximum location of average silhouette plot

is considered as the appropriate number of clusters [41], [42].

As evident from Fig. 13, the maximum location of average

silhouette plot for our data set is observed at 2. So, the value

of k is set to 2.

VI. CONCLUSION

An automatic fast and accurate retinal identification sys-

tem with hybrid vasculature extraction is developed for the

large-scale multi-sample retinal data set. In contrast to other

techniques, high recognition accuracy is achieved by using a

hybrid segmentation technique. Experimental results showed

an identification rate of 99.40% with the EER of zero. The

proposed hybrid vasculature extraction approach effectively

balance the difference of wavelet response between thick/thin

blood vessels. It achieved an accuracy of 99.6%. PCA based

feature processing approach significantly reduced the com-

putation time and accelerated the matching process. Our

approach has low computational time and is computationally

more efficient. The limitation of this work is that with images

having severe pathological noise the identification rate is low

as compared to normal images. The reason for this decline is

that in presence of severe pathological disorder it is difficult

to extract the feature points. Due to this difficulty, another

limitation arises, i.e. identification time for such images is

more as compared to normal ones. In the future, we will

overcome this limitation by particularly improving our image

enhancement module. Improved image enhancement will yield

more enhanced images for pathological cases as well. That, in

turn, will aid the feature extraction phase. This convenient

feature extraction will overcome will make the identification

process fast for pathological cases as well. Alongside we plan

to create an even more larger retinal database, with images

taken over even much longer periods and improve performance

by applying various discriminant analytics.
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