
This is a repository copy of Distributed consensus algorithm for events detection in 
cyber-physical systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/150620/

Version: Accepted Version

Article:

Li, S., Zhao, S., Yang, P. orcid.org/0000-0002-8553-7127 et al. (3 more authors) (2019) 
Distributed consensus algorithm for events detection in cyber-physical systems. IEEE 
Internet of Things Journal, 6 (2). pp. 2299-2308. 

https://doi.org/10.1109/jiot.2019.2906157

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1

Distributed Consensus Algorithm for Events

Detection in Cyber Physical Systems
Shancang Li, Shanshan Zhao, Po Yang, Panagiotis Andriotis, Lida Xu, and Qindong Sun

Abstract—In the harsh environmental conditions of cyber
physical systems (CPS), the consensus problem seems to be one
of the central topics that affect the performance of consensus-
based applications, such as events detection, estimation, tracking,
blockchain, etc. In this paper, we investigate the events detection
based on consensus problem of CPS by means of compressed
sensing (CS) for applications such as attack detection, industrial
process monitoring, automatic alert system, and prediction for
potentially dangerous events in CPS. The edge devices in a CPS
are able to calculate a log-likelihood ratio (LLR) from local
observation for one or more events via a consensus approach
to iteratively optimize the consensus LLRs for the whole CPS
system. The information-exchange topologies are considered as
a collection of jointly connected networks and an iterative
distributed consensus algorithm is proposed to optimize the LLRs
to form a global optimal decision. Each active device in the
CPS first detects the local region and obtains a local LLR,
which then exchanges with its active neighbors. Compressed
data collection is enforced by a reliable cluster partitioning
scheme, which conserves sensing energy and prolongs network
lifetime. Then the LLR estimations are improved iteratively until
a global optimum is reached. The proposed distributed consensus
algorithm can converge fast and hence improve the reliability
with lower transmission burden and computation costs in CPS.
Simulation results demonstrated the effectiveness of the proposed
approach.

.
Index Terms—Consensus algorithm, data gathering, security

events detection, Cyber-Physical Systems, Internet of Things.

I. INTRODUCTION

Cyber-Physical-Systems (CPS) can provide a broad range of

control for complex industrial systems in the Internet of things

(IoT) environment through heterogeneous architectures of in-

tegrated sensors and devices [1]. CPS systems are expected to

be able to perform real-time operations, such as information

sensing, processing, communication and actuation by different

nodes in the CPS infrastructure. For in-network processing

techniques, such as estimation, detection, and tracking in CPS,

a compressed sensing based consensus method is introduced

for distributed detection, estimation, and tracking, which can

guarantee the performance in hash environmental conditions

such as random packet losses, asymmetry of the links, etc. [2],

[3].
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It is reported that most CPS devices are not adequately

designed and more than 47% of all devices in CPS and IoT

distrust the security of CPS and IoT [4], [5]. When security

in CPS is not sufficient in even seemingly harmless devices

or systems, it presents endemic vulnerabilities and risks [4],

[6]. As a CPS consists of numerous devices, it is important

to develop reliable solutions to ensure that security is built-in

against attacks which target connected systems and devices.

The consensus is able to improve the security of all devices

in a CPS system.

Wireless Sensor Networks (WSNs) are basic CPS compo-

nents and they have been successfully utilized in events de-

tection and information collection [6], [7], [8], [9], [11], [12].

Compare with WSNs, the CPS can bring several advantages:

self-organization, real-time information exchange, collabora-

tive controlling, and reliable data consensus to events status

[11]. Through this way, CPS can be run at high efficiency yet

in low cost [12]. However, due to the unique characteristics, to

implement a CPS system involves a combination of expertise

from different professional disciplines [14], [15], [16], [17]:

(1) application background knowledge, which is required in

CPS services development; (2) smart sensor sensing expertise,

which is essential to complete a sensing task; (3) reliable

wireless communication, which is required to provide infor-

mation exchange between nodes or the equipment; and (4)

reliable networked data processing expertise, which is needed

for understanding the reliable data exchange and processing to

provide flexible and scalable networking coverage. The main

technical challenges in the CPS include [11], [12], [13], [18]:

1) Resource constraints. In CPS, many infrastructure de-

vices are designed with limited processing ability, mem-

ory, energy, and communication range. The energy and

communication limitations may restrict the coverage and

connectivity of the entire system.

2) Dynamic topologies. The topology of a CPS changes

dynamically over time due to the reconfiguration of

network or failure of links or nodes. The nodes might

work in both active and inactive mode to save energy,

which can also cause the topology to change over time.

3) Communication burden. In CPS, too high communi-

cation burden will cause high bit error rate (BER)

and degrade the performance of the networks. Thus,

the goal in communication control is to minimize the

communication burden while trying to provide sufficient

link bandwidth.

4) Data consensus in CPS. Existing centralized schemes

significantly rely on specialized routing protocols and



2

require a central fusion center, making the consensus

result unstable for networks with topology changing

or node and link failures. Distributed consensus has

the advantages of improved robustness, scalability, and

efficiency.

In industry, the commonly used methods to deal with

the consensus events detection are conducted through the

centralized consensus algorithms and distributed consensus

algorithms [10]. In the context of centralized consensus al-

gorithm, fusion centers (FCs) are used to collect all nodes’

measurements (i.e., log-likelihood ratio (LLR), etc.) regarding

one or more target events and combine them to reach a final

decision [19], [20]. The fusion centers are selected depends a

number of features required by applications, such as location,

capacity, types, etc. In distributed consensus scheme, each

node is able to calculate a LLR and transmit it to the FC. For

the centralized scheme, the optimization performance depends

significantly upon the number of nodes, if local decisions can

be correctly received at the FC [8]. If measurements from

CPS nodes are not correctively received at the FC due to

multihop transmission impairments, the detection performance

at FC can be significantly affected [19]. The centralized

detection may also cause network congestion when the size of

CPS increases. On the other hand, sparse events detection is

intimately affected by the changes of topology of CPS. In this

paper, sparse events denote events that occur very infrequently

in sparse regions, but may cause quite dramatic consequences

when they do occur [16], [20], [21], [22]. Eventually, the

centralized scheme may increase the energy consumption in

CPS and might be unreliable when the hop count increases

from node to the FC [7], [16], [17].

Aiming at improving the reliability and reducing the com-

munication burden in events detection through CPS [7], [16],

[17], this paper focuses on robust events detection via a

distributed consensus algorithm in CPS, in which the active

CPS nodes can collaboratively detect events and seek to

iteratively reach a global optimum. In the iterative procedure

[8], each node is able to exchange the detection results only

with its active neighbors within transmission range. Distributed

consensus algorithms can be applied to overcome the problems

mentioned before [7], [16], [25], in which only local commu-

nications between neighboring nodes are involved. Through

the iterative updates between neighboring nodes, a consensus

global decision can be achieved at all nodes [8], where a

distributed consensus algorithm with a fast convergence rate

is needed. Furthermore, low information exchanges and trans-

mission is achieved for reliable and energy-effective detection

in CPS [8], [9], [16].

Specifically, a distributed consensus algorithm for sparse

events detection via a topology-changing CPS is proposed.

The monitoring field is represented as a measurement vector,

in which each component denotes the detection result at the

position that the node lies. Compared with nodes in a CPS,

the number of events that might occur is much smaller, which

means the measurement vector is sparse where only a few

elements are non-zeros. This feature enables the measurements

collection by using compressed sensing (CS) based methods,

for which only a few number of random sensory measure-

ments from activate nodes would be enough to accurately

reconstruct all measurements. The resolution for monitoring

can be guaranteed by solving the problem: how to obtain a

robust detection result, based on the measurements of both

active nodes and sleep nodes.

Furthermore, we address the sparse events detection prob-

lem by making the following assumptions: (1) Each node

in a CPS works in two switchable modes: active and sleep

(inactive) modes. Nodes in active mode can actively probe the

environment, and nodes in sleep mode remain idle to save

energy and they can easily switch to active mode to perform

detection; (2) The number of active nodes is much less than

those of the sleep nodes; (3) The number of events that might

occur simultaneously is much smaller than the total number

of nodes (includes active and sleep nodes) in a CPS; and (4)

The received measurements are superimposed all together from

multiple events when events might occur simultaneously. At

the beginning of deployment of a CPS, only a random number

of nodes are configured to be in sleep mode. These nodes

might be switched into active mode or kept in sleep mode

depending on the sleep strategy in topology control which is

defined by routing layer. In this paper, we skip the changes

of topologies from the issues in routing layer by focusing

on improving the reliability of detection and reducing the

transmission burden to save energy. First, we propose a jointly

connected network model, in which the continuous topology of

CPS at different time t can be modeled with jointly connected

graphs collection; then the collaborative events detection can

be formulated as a consensus optimization problem over the

jointly connected networks, which can be solved as a ℓ1-norm

optimization problem [7], [8], [9], [16]. The nodes in active

mode can optimize the detection results for both itself and

its neighbors in sleep mode. Each active node finally reaches

consensus for the sleep node. By this way an event can be

accurately detected even when it occurs at the point where the

node is in sleep mode. The distributed consensus optimization

problem can be solved by alternative direction method and

details can be found in Section II.

The rest of the paper is organized as follows: in Section

II, a jointly connected network model is presented, and a

distributed sparse events detection problem is formulated

as a consensus optimization; in Section III, a collaborative

consensus algorithm is proposed; experiment simulations are

provided in Section IV to evaluate the effectiveness of the

proposed algorithm; Section V concludes the paper.

II. PROBLEM FORMULATION

A. Jointly Connected Networks

In a CPS, consensus means that the detected states of

multiple participants converge to the same state value for an

event. To address this problem, in this work we define each

participant as a node, and in a CPS nodes can communicate

with each other in its communicaton range. Consider a CPS

with N nodes and a fusion center (FC). The topology can be

modeled as a graph with the interconnection links between N
nodes, as G = {V, E}, in which V = {vi, i = 1, . . . , N} is

a set of locations of nodes L = {1, . . . , N}, and E denotes
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the set of edges of the graph. Let set Na consist of all nodes

in active mode, and set Ns include all nodes in sleep mode.

Then we have L = {1, . . . , N} = Na ∪Ns [20], [21], [22].

For node i, if node j lies within its transmission range and

(vi, vj) ∈ E then one can say that node i is a neighbor of

node j. All one-hop neighbors of i are contained in a set

Ni = {i|(vi, vj) ∈ E}. The FC is denoted by vertex v0. In

this case, a CPS can be represented by a graph Ḡ with V̄ =
V ∪{v0}, which includes N nodes and vertex v0 with directed

edges. Note that there may not be any connection between the

nodes and the FC at the moment. If one or more direct edges

from every node to the FC v0 can be found, then the graph Ḡ
is said to be connected graph or sample graph [25], [26].

In CPS, a union of connected graphs {Ḡ1, Ḡ2, . . . , Ḡm}(m ≥
1) that have the common vertex set V̄ are defined as a union

of simple graphs [26]. For simplicity, the union of simple

graphs are denoted as Ḡ1,...,m. It is clear that Ḡ1,...,m includes a

vertex set V̄ and the edges of Ḡ1,...,m is the union of edges of

all simple graphs. To properly describe the union of simple

graphs, a new concept is introduced as “jointly connected

graphs” {Ḡ1, . . . , Ḡm}, in which each simple graph Ḡi is a

connected graph with a common vertex set V̄ and Ei might

be different. It can be understood that a collection of jointly

connected graphs contains at least one simple connected graph

[23], [24], [26].

Theorem 1. A collection of graphs {Ḡ1, Ḡ2, . . . , Ḡm} can

be said jointly connected if its union graphs Ḡ1,...,m are

connected.

Since each graph in the collection contains v0, it guarantees

that each graph contains at least one common node [26], [27].

It should be noticed that if one or more graphs are connected

in this collection, then it is jointly connected. At a time

interval [t, τ ], if n nodes are connected and formed a collection

of simple graphs {Ḡt, Ḡt+1, . . . , Ḡτ}, then the graphs with

different topologies are said to be jointly connected.

Assume a node i is able to make a local decision to

determine the occurrence of an event at a point vi, which is

superimposed of reading from its neighboring points, and can

be modeled as

xi(t+ 1) = xi(t) +
∑

j∈Ni(t)

wijxj(t), i ∈ W (1)

in which xi(t) is LLR at node i at time t, and wij is the

weight between i and j.

For a graph that contains a number of nodes, the links

between nodes change over time and that causes change of

the topologies of the graph [28]. Let P represent a node-set,

in which all simple graphs Ḡp(p ∈ P) defined on V̄ are well

indexed.

The set of LLRs can be easily defined in a state vector form.

For each p ∈ P , define

x(t+ 1) = (Aσ + I)x(t) = Fσx(t) (2)

in which x denotes a vector of LLRs: x = [x1, x2, . . . , xN ]T

and σ : {0, 1, . . .} → P is used to represent a scheduling

signal that reconfigures the networks and hence causes changes

of topology at a specific time t (including CPS reconfiguration,

nodes or links failures, etc.), Fσ = (Aσ + I), and Ap(p ∈ P)
denotes the adjacent matrix of graph Ḡp.

In this model, σ changes as a function of locations of the

active nodes in a CPS. Actually, the convergence analysis of

this model is a very difficult task [29], [30]. We ignore the

dependencies between σ and the node positions and instead of

that σ can be any scheduling signal that is properly predefined.

By doing this, the convergence difficulty can be avoided.

The main goal is to obtain a stable global optimal decision

from all n nodes for any initial set of node local decision,

which is expected to converge to a stable state value xS .

The convergence problem of xi to xS equals to solving the

convergence problem of xS1.

For a very small P , σ remains constant make sure G is a

complete graph in p ∈ P . In this case, x can easily converge

to xS1. Let Q denote a subset of P that consists of the indices

of the connected simple graphs in collection {Ḡp, p ∈ P} [31],

[32].

Theorem 2. For a scheduling signal σ : {0, 1, 2, ...} → P , if

x(0) is given and for all t ∈ {0, 1, . . .}, σ(t) ∈ Q holds, then

lim
t→∞

x(t) = xS1 (3)

It is possible that a jointly connected collection of simple

graphs converges to a common decision, which has a less

strength than that in Theorem 2. Meanwhile, Theorem 2

requires the collection {Ḡσ(ti), Ḡσ(ti+1), . . . , Ḡσ(ti+1−1)} in

[ti, τ) to be jointly connected. For a scheduling signal σ,

Eq.(3) holds if an infinite and non-overlapping sequence of

intervals is available across which the collection is jointly

connected. It should be noted that during interval from ti to

ti+1, at least one component in Q is picked up as switching

signal.

Proof. As mentioned above, each Fp is non-negative, and all

the sums of each row of each Fp are equal to 1 (i.e., Fp1 = 1).

So the matrix Fp is stochastic and its diagonal elements are all

non-zeros. For a simple graph Ḡp(p ∈ Q), if m is sufficiently

large then all entries in (I + Ap)
m are positive. Hence both

(I + Ap)
m and Fp are primitive matrices, which means that

the largest eigenvalue of Fp for p ∈ Q is 1, and all remaining

eigenvalues must lie in (−1, 1). Then we have

lim
t→∞

F t
p = 1cp (4)

for some row vector cp.

It is clear that all diagonal elements of a stochastic matrix

Fp(p ∈ Q) are positive, and they are primitive.

Theorem 3. For a finite set of ergodic matrices F =
{F1,F2, . . . ,Fm}, then for a stochastic matrix Fp ∈ M,

(Fp)
i(i→∞) is a matrix of rank 1.

For simplicity, a connected graph can be used to denote a

network, and a collection of jointly connected graphs can be

used to represent a set of topologies of networks, where the

active nodes may be different for different topologies.

Lemma 1. For a set of jointly connected networks, let

{Ḡp1
, Ḡp2

, . . . , Ḡpm
}({p1, p2, . . . , pm} ∈ P) denote the
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corresponding topologies, then the product of matrices

Fp1Fp2 · · ·Fpm
is said ergodic.

Theorem 3 can be proved as follows:

Proof. For t ≥ 0, let Φ(t, t) = I hold and τ be an integer

between 0 and t, then we have Φ(t, τ) = Fσ(t+1) · · ·Fσ(τ−1) ·
Fσ(τ). Accordingly, a matrix θ(t) can be reformatted as θ(t) =
Φ(t, 0)θ(0). Actually Eq.(5) is enough to prove Theorem 2

lim
t→∞

Φ(t, 0) = 1c (5)

in which c denotes a row vector. According to Lemma 1,

for an integer j ≥ 0, matrix Φ(tj+1, tj) is said ergodic,

and it can be represented by a product of finite matrices

from {Fp, p ∈ P}. Accordingly, Φ(tj , 0) can be substituted

by Φ(tj , tj−1)Φ(tj−1, tj−2) · · ·Φ(t1, t0). Therefore, Φ(tj , 0)
is ergodic and we have

lim
j→∞

Φ(tj , 0) = 1c (6)

Let jt denote the largest non-negative integer that satisfies

tjt ≤ t. Accordingly, Φ(t, 0) can be represented by the product

of Φ(t, tjt) and Φ(tjt , 0), and we have

Φ(t, 0)− 1c = Φ(t, tjt) · (Φ(tjt , 0)− 1c) (7)

It can be seen that Φ(tjt , 0)→ 0 when t→∞ due to Eqs

(5) and (6), therefore Eq.(4) holds and the proof is complete.

For two non-negative matrices Fi and Fj , if all elements

of Fi − Fj are non-negative, then matrix Fi − Fj is said a

non-negative matrix.

Proof. (Lemma 1) Let a non-negative matrix F = (I +A), in

which A denotes the adjacency matrix of the collection being

jointly connected graphs {Ḡp1 , Ḡp2 , . . . , Ḡpm
}. Then matrix F

is said primitive. According to Lemma 2 we have

Fp1 · Fp2 · . . . · Fpm
≥ ξ(Fp1 + Fp2 + · · ·+ Fpm

) (8)

in which ξ denotes a small positive constant. Then for a

primitive matrix Fpi
, Fpi

≥ (I +Api
) holds, and

Fp1
· Fp2

· . . . · Fpm
≥ ξ(mI +Ap1

+Ap2
+ · · ·+Apm

) (9)

Since m is an integer then mI ≥ I holds and Eq.(9) is

reduced to

Fp1 · Fp2 · . . . · Fpm
≥ ξF (10)

It should be noticed that the product is bounded below by

ξF , and the product is primitive as well. As mentioned in [16],

[17] the product is also a stochastic matrix, so it is ergodic

[26], [33].

Lemma 2. For an m × m non-negative set Ai, i ∈
{1, 2, · · · ,m}, let µ denote the smallest diagonal element of

Ai and ρ denote the largest diagonal elements of Ai. We have

A1A2 · · ·Am ≥ (
µ2

2ρ
)(m−1)(A1 +A2 + · · ·+Am) (11)

Proof. This can be easily proved by writing Ai as Ai = µI+
Bi, where Bi is non-negative. For any j, k

AjAk = (µI +Bi)(µI +Bi) ≥ µ2 +
µ2

2ρ
(Bj +Bk) (12)

Since (ρI +Bj) ≥ Aj and (ρI +Bk) ≥ Ak, then we have

AjAk ≥ (
µ2

2ρ
)(Aj +Ak) (13)

Using Eq.(12) iteratively, Eq.(11) holds and the proof is

complete.

B. Jointly Connected Graphs based Consensus Algorithm

For a collection of jointly connected networks, each node

is capable of exchanging information with its active neighbors

directly and keeping all the local LLRs vector in the network

to derive a weighted average, which eventually converges to

a global decision vector [34], [35].

As proved in Theorem 2, for x(t + 1) = Fσx(t), weight

matrix Fσ features the sparsity pattern specified by the

jointly connected graphs collection {Ḡ1, Ḡ2, . . . , Ḡm} and σ :
{0, 1, . . .} → P , in which weight matrix Fσ corresponding to

the edges of connected graph. For a t-step transition matrix

Φ(t) = Fp1Fp2 · · ·Fpm
, we have

x(t+ 1) = Φ(t)x(0) (14)

and according to Theorem 2, we have

lim
t→∞

Φ(t) =
1

n
11T (15)

which is equivalent to

lim
t→∞

x(t) =
( 1

n
1Tx(0)

)

1 (16)

The weight matrix satisfies the condition in Eq.(16). In prac-

tice, some links might fail permanently, however the jointly

connected scheme guarantees the long-term connectivity of

graphs [36], [37].

III. DISTRIBUTED SPARSE EVENTS DETECTION

When an event occurs around a local node vj , it might

influence its neighboring area by a non-zero influence function

wj(vj), which can be normalized to obey
∑

wj(vj) = 1
[33]. Let yi denote the measurement at point vi that is the

superposition of the influence of all events on vi. LLR will be

obtained at vj , and we have wji = wij , which is the weight

event at vi. Let ǫi denote the measurement noise of zero mean.

It is easy to understand that the LLRs vector x is sparse, but

the measurement vector yi can be non-sparse.

For a CPS withNa(t) active nodes andNs(t) inactive nodes

at time t, measurement yi at vi can be modeled as

yi =
∑

j∈N

Aj,ixj + ǫi (17)

in which Ai,j = Aj,i denotes the influence event at vi.
For node i, if node j is out of the transmission range of

i, then let Aji = 0. Accordingly, the observation yi can be

represented as yi = xi +
∑

j∈n Aj,ixj + ǫi. Furthermore, for

a network with Na active nodes, we have

ya = ΦAx+ ǫa (18)

in which Φ denotes the selection matrix, ya denotes the

measurement vector and ǫa denotes the noise, respectively.
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Here compressed sensing can be used to perfectly recover

x from measurements ya [7], [8]

min
x

‖Ax− ba‖
2
2 + λ‖x‖1 s.t. x ≥ 0 (19)

The neighbors list of node i is denoted by Ni. Node i not

only keeps xi at vi, but also keeps measurements xk (∀k ∈
Na ∩ Ni) that is evaluated at its inactive neighboring nodes.

Actually, neighbors of i include active nodes belong toNi∩Na

and the sleep nodes belonging to Ni ∩ Ns. Then we rewrite

Eq.(19) as

min
∑

i∈Na

(

yi − x
(i)
i −

∑

k∈Ns∩Ni

Ak,ix
(i)
k −

∑

j∈Na

Ak,ix
(j)
j

)2

+ λ‖x‖1 (20a)

s.t. x
(i)
i ≥ 0, ∀i ∈ Na, (20b)

x
(i)
k ≥ 0, ∀k ∈ Ns ∩Ni (20c)

Note that here ‖x‖1 can be solved by

‖x‖1 =
∑

i

x
(i)
i +

∑

i∈Ns∪Nk

x
(i)
k (21)

in which Nk denotes the active neighboring nodes at vk and

both x
(i)
i and x

(i)
k are non-negative constraints for all decision

variables.

A. Collaborative Consensus Optimization

It is crucial to perform collaborative detection by fusing y

to obtain a global optimal estimation of the sparse decision

x. For a CPS with N = |Na| + |Ns| nodes and a FC, x

can be reconstructed from the following ℓ1-norm optimization

formulation

min
∑

i∈Na

a2i +
∑

i

x
(i)
i +

∑

i∈Ns∩Nk

x
(i)
k (22a)

s.t. ai = yi − x
(i)
i −

∑

k∈Ns∪Ni

Ak,ix
(i)
k −

∑

j∈Na

Ak,ix
(j)
j

(22b)

x
(i)
i ≥ 0, ∀i ∈ Na, (22c)

x
(i)
k ≥ 0, ∀k ∈ Ns ∩Ni (22d)

Eq.(22) might yield a globally optimal result, in which the

linear measurements from all the nodes are centrally fused at

the FC. It is costly but easy to be implemented. Not only all

measurements, but also the measurement matrices of all nodes

need to be collected at FC.

Let J denote the number of active nodes, then the problem

reduces to J least-squares sub-optimal functions. This may

cause a very expensive computation cost when the number of

nodes increases.

min
x

‖x‖1 +
J
∑

j=1

λj‖y
(j) −Ax(j)‖22 (23)

where the positive parameter {λi} describes the noise re-

silience of the samples {x
(j)
t } and λ =

∑

j λi describes

the trade-off between noise resilience and events sparsity. As

mentioned above, the centralized fusion may cause high com-

munication burden and hence cause unstable optimal results

and high energy consumption.

A distributed consensus algorithm may overcome the draw-

backs of centralized consensus fusion, which uses only local

optimal between one-hop neighbors to iteratively estimate the

decision. In this case, each active node j keeps a local copy

of the local decision x
(j)
j and collaboratively consent on their

copies [16], [35]. Let G = {G1,G2, · · · ,Gm} be a collection

of jointly connected networks depicting the connectivity of

the CPS, in which each network Gi = (Vi, Ei) includes active

nodes for the set of vertices Vi(i = 1, . . . ,m) and each edge

(j, k) ∈ Ei connects an unordered pair of distinct nodes within

one-hop neighborhood. Different from the centralized fusion

formula, each node j locally performs the following consensus

optimization

min
x(j)
‖x(j)‖1 + λj‖x

(j) −Ax(j)‖22 (24)

It can be seen that Eq.(24) enforces the consensus between

j and its one-hop active neighbors, which can be solved as

a LASSO problem [17], [34]. Each local LLR at an active

node is shared with its one-hop neighbors and will be updated

and percolated throughout the network after performing an

iterative consensus procedure that converges to an optimal

result. Upon convergence, all neighboring nodes will have

consented on the same globally optimal x. It can be seen

that when
∑

j

∑

k wjk = 1, Eq.(24) forces the LLR copy xj

to consent to a weighted neighboring LLR by a reminiscent

phase. Thus, the weighting matrix A can be easily obtained

by setting its (i, k)-th element as wjk by adhering to A1 = 1,

where 1 is the all-one vector.

B. Distributed Consensus Implementation via the Alternating

Direction Method of Multipliers

The iterative optimization can be implemented via the

global consensus discussed above. For Eq.(24), an augmented

Lagrangian function can be created as

L
(

x(j), λj , zj , {x
(j)}

)

= ‖y(j) −A(j)x(j)‖22 + zTj x
(j)

+
β

2
‖x(j) −

∑

k∈Nj

wjkx
(k)‖22 (25)

where zj denotes a Largrangian operator, and β denotes the

augmented Lagrangian multipliers in the consensus optimiza-

tion constraints. zTj x
(j) is applied to guarantee that Eq.(25) is

fulfilled by properly setting zT (x(j) −
∑

k∈Nj
wjkx

(k)) = 0.

By using the alternating direction of multipliers, each node

can update x(j)(t) by iteratively solving

x(j) = argmin
x(j)
L
(

x(j), λj , zj , {x
(j)}

)

(26)

in which the multipliers can be updated via a gradient-based

iteration

z(j)(t) = z(j)(t− 1) +
β

2

(

x(j) −
∑

k∈Nj

wjkx
(k)

)

(27)
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Algorithm 1: Distributed Fusion Algorithm

Input: Each node calculates LLR as x
(j)
t , sets λj and c

empirically, initializes estimate x(j)(0) = 0 and

local multiplier vector z(j)(0) = 0. Let T be the

maximum number of iterations and e be the

tolerable deviation, both are at convergence

conditions.

Output: Algorithm converges to an optimal result and

each node obtains the global estimation

x = x(j)(T ), ∀j ∈ N .

repeat

All nodes update z(j)(t) and x
(j)
t via Eqs (26) and

(27), ∀j;

All nodes transmit x
(j)
t (t+ 1) to their one-hop

neighbors in Nj , ∀j;

t← t+ 1.
until t > T or ‖x

(j)
t (t+ 1)− x

(j)
t (t)‖ ≤ e;

In Eqs (26) and (27), the iterative steps constitute a dis-

tributed scheme, and details can be found in Algorithm 1.

In the t-th iteration, a node j first collects x(j) from its

one-hop neighbors k ∈ Ni, which is then used to update

the local multiplier vector z(j)(t) as described in Eq.(27). By

doing this, Eq.(26) can be solved as a quadratic optimization

problem and the updated local LLR estimation x(j)(t + 1)
will be yielded. Then, all nodes locally update the decision

and exchange the sparse estimation x(j)(t+1) with their one-

hop neighbors. This procedure repeats until converged to the

specific condition.

During iterations, nodes are not required to synchronize the

measurements, which makes it easily implemented in a large-

scale CPS. The convergence of Algorithm 1 can be proved as

follows:

Proof. In [17], the iterative alternating direction method have

been proved to converge to a minimizer of Eq.(26) for any

positive constant β.

IV. PERFORMANCE EVALUATION

In this section, a CPS will be created to perform the

sparse events detection by the proposed distributed consensus

algorithm. Considering an event detection scheme in a small

network with 5 nodes (ni, i = 1, . . . , 5), which are deployed

in a two-dimensional area; and the distance between two

neighboring nodes is 20, and communication range is 50 as

shown in Fig.1.

It can be seen that the neighbor set of n1 includes nodes

{n2, n3}. Similarly, n2 has a neighbors set as {n1, n3, n4},
n3 has a neighbor set as {n1, n2, n4, n5}, n4 has a neighbor

set as {n2, n3, n5}, and n5 has a neighbors set as {n3, n4},
respectively. As mentioned in Section III, each node not only

holds its local decision, but also holds the decisions of its

neighbors (both active and sleep neighbors). Let ci denote the

possibility that event might occur at the position that ni lies

(vi), and all five nodes are in active mode. Assume that three

events occurred at v1, v3, and v5, respectively. The detection

Fig. 1. Consensus algorithm on 5 active nodes

TABLE I
DETECTION RESULTS AFTER 200 ITERATIONS

c1 c2 c3 c4 c5
n1 1.000 0.000 0.9987 N/A N/A
n2 1.000 0.000 1.000 0.000 N/A
n3 1.000 0.000 1.000 0.000 0.9918
n4 N/A 0.000 1.000 0.000 1.000
n5 N/A N/A 0.9991 0.000 1.000

results from all five nodes are reported in Table I, where the

possibilities of events occurred are reported and N/A means

that the detection is not available. For example, node n1 can

successfully detect events occurred at n1, n2, n3, but can not

detect events occurred at n4 and n5. It is reasonable that nodes

n1, n2, and n3 are in the neighbors list of n1.

Fig.2 presents the optimization results when all nodes are

active vs the number of iterations. In practice, in order to

save energy not all the nodes are in active mode. Assume the

distance between the nodes is 20 and the transmission range is

25. Let nodes n2 and n4 be in sleep mode, then the consensus

algorithm can only be performed on nodes n1, n2, and n3,

and can report the decision results. However, as discussed

above, the active nodes are able to report the decision result

by itself and its neighboring active nodes are able to report the

decision results of its neighboring inactive nodes. In Fig.3 n1

has an inactive neighboring node n2, node n3 has two inactive

neighboring nodes {n2, n4}, and n5 has an inactive neighbor

n4, respectively.

Table II depicts the detection results of CPS with 3 active

nodes and 2 inactive nodes, where each node is able to keep its

local decision and decisions of its one-hop neighbors. It can be

seen that the decision results converge to 0.9967 for c1, 0.9989
for c3, and 0.9971 for c5, respectively. The decisions near to

1 converged faster than the above scenario. It is due to the

fact that each active node holds a small number of neighbors.

Fig.4 shows the optimization results at node n1, n3, and n5,

when events c1, c3, and c5 occurred at n1 and n3, and n5.

Nodes n2 and n4 are inactive.

TABLE II
DETECTION RESULTS AFTER 50 ITERATIONS

c1 c2 c3 c4 c5
n1 0.9967 0.001 N/A N/A N/A
n3 N/A 0.000 0.9989 0.000 N/A
n5 N/A N/A N/A 0.000 0.9971
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(a) Consensus result at n1 vs Iteration number

(b) Consensus result at n2 vs Iteration number

(c) Consensus result at n3 vs Iteration number

(d) Consensus result at n4 vs Iteration number

(e) Consensus result at n5 vs Iteration number

Fig. 2. Consensus algorithm on 5 active nodes

Fig. 3. Consensus algorithm on 3 active nodes and 2 inactive nodes

(a) Consensus result at n1 vs Iteration number

(b) Consensus result at n3 vs Iteration number

(c) Consensus result at n5 vs Iteration number

Fig. 4. Consensus algorithm on 3 active nodes vs Iteration number
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Fig. 5. Consensus algorithm on 3 active nodes

In order to evaluate the performance of sparse events

detection in a large CPS, we create a network with 50 nodes.

Consider 50 nodes are randomly deployed in a normalized

square, as shown in Fig.5. Nodes are connected with its

neighbors if its neighbors are within the transmission range. If

the graph (network) is not connected, the locations of nodes

are re-generated randomly until the graph is connected. In

Fig.5, four active nodes n1, n2, n3, and n4 are located at

points v47, v17, v30, and n38, respectively. Assume events c1
and c2 occur at v47 and v30, respectively. Fig.6 shows the

detection results at active nodes n1, n2, n3, and n4. At node

n1, the events c1 and c2 are successfully detected as shown in

Fig.6(a). In Fig.6(b) n2 successfully detected the occurrence

of c1, c2, and c3 since node n1 and n2 are its neighbors. Since

the status of c3 and c4 are 0, which means no event occurred at

v3 and v4, however nodes n3 and n4 successfully reported its

neighbors’ detection results, as shown in Fig.6(c) and Fig.6(d).

In this work, the following normalized mean squared error

(MNSE) is used to evaluate the performance of decision

making

NMSE =
E[||x̂− x||2]

E[||x||2]
(28)

Fig.7 shows the NMSE of decision results made by node

n1 in Fig.5 (the NMSE values obtained by simulations of

100 runs), where N1 denotes the MNSE results when c1 is

made, N2 denotes the MNSE results when c2 is made, and

N3 denotes the MNSE results when c3 is made, respectively.

V. DISCUSSION

This paper proposes a simple but compelling jointly con-

nected graph model for topology-changing CPS, which can

significantly improve the reliability of distributed consensus

decision-making. Although several decentralized consensus

schemes have been reported in [19], [37], [20], however

most of them are developed for decentralized in-networking

consensus without supporting the changes of topologies of

WSNs. This paper uses the idea of consensus optimization

and compressed sensing to develop a distributed consensus

events detection scheme by exploiting sparsity, which has the

following key differentiating features:

(1) This scheme can still perform consensus optimization

when the topology dynamically changes, which avoids the

reconfiguration of CPS caused by the switch of node work

model (between active and sleep modes). This feature signifi-

cantly increases the reliability of CPS and decreases the power

consumption in network reconfiguration and re-organization.

(2) Different from the existing distributed consensus scheme

reported in [19], [37], [20], where each node holds a local

decision vector of the whole network, it is too costly for

each node in a large network. In our scheme, each active

node holds an LLR vector for itself and its inactive neighbors.

This significantly reduces the computation and communication

costs per node, and improves the reliability and scalability of

the algorithm for a CPS with a large number of nodes.

(3)The proposed scheme exploits compressed sensing to

recover LLRs by distributive joint sparsity local estimations.

This can improve the reliability of consensus optimization by

tolerating the failure of nodes or links without causing the

reconfiguration or rebuilding of CPS.

VI. CONCLUSION

This paper proposed an iterative distributed consensus al-

gorithm that can be employed for sparse events detection in

CPS, which was originally derived for achieving consensus by

providing each node the full detection information even when

the topologies change. Each node is able to iteratively calculate

the LLR of itself and LLRs of neighbors by communicating

with the neighboring active nodes. Using the notion of com-

pressed sensing, the estimation of decision can be converged

faster. The numerical results showed that the estimation of

sparse events detection can be successful calculated with the

proposed distributed consensus algorithm.
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(a) Consensus result at n1 vs Iteration number

(b) Consensus result at n2 vs Iteration number

(c) Consensus result at n3 vs Iteration number

(d) Consensus result at n4 vs Iteration number

Fig. 6. Consensus algorithm on 4 active nodes vs Iteration number
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