
This is a repository copy of A Calculus of Space, Time, and Causality: its Algebra,
Geometry, Logic.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/150600/

Proceedings Paper:
Hoare, Tony, Struth, Georg and Woodcock, James Charles Paul orcid.org/0000-0001-
7955-2702 (2019) A Calculus of Space, Time, and Causality: its Algebra, Geometry, Logic.
In: Ribeiro, Pedro and Augusto Sampaio, (eds.) Unifying Theories of Programming:7th
International Symposium, UTP 2019, Dedicated to Tony Hoare on the Occasion of His 85th
Birthday, Porto, Portugal, October 8, 2019, Proceedings. Lecture Notes in Computer
Science . Springer

https://doi.org/10.1007/978-3-030-31038-7_1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Calculus of Space, Time, and Causality:

its Algebra, Geometry, Logic

Tony Hoare1, Georg Struth2, and Jim Woodcock3

1 University of Cambridge, t-tohoar@outlook.com
2 University of Sheffield, g.struth@sheffield.ac.uk

3 University of York, jim.woodcock@york.ac.uk

Abstract. The calculus formalises human intuition and common sense
about space, time, and causality in the natural world. Its intention is to
assist in the design and implementation of programs, of programming
languages, and of interworking by tool chains that support rational pro-
gram development.

The theses of this paper are that Concurrent Kleene Algebra (CKA) is
the algebra of programming, that the diagrams of the Unified Modeling
Language provide its geometry, and that Unifying Theories of Program-
ming (UTP) provides its logic. These theses are illustrated by a for-
malisation of features of the first concurrent object-oriented language,
Simula 67. Each level of the calculus is a conservative extension of its
predecessor.

We conclude the paper with an extended section on future research di-
rections for developing and applying UTP, CKA, and our calculus, and
on how we propose to implement our algebra, geometry, and logic.

Keywords: Concurrent Kleene Algebra (CKA) · Concurrent Separation Logic
(CSL) · Calculus of Communicating Systems (CCS) · Communicating Sequen-
tial Processes (CSP) · Action Algebra · Discrete Euclidian Geometry · Cartesian
Coordinates · Unified Modeling Language (UML) · Unifying Theories of Pro-
gramming (UTP)

Foreword from Tony

I am deeply grateful to the organisers and attendants at this meeting of UTP
2019 in celebration of my 85th birthday. I could not ask for a better birthday
present. I hope you enjoy hearing my presentation as much as I have enjoyed
writing it with my co-authors.

Twenty years ago I had the privilege of delivering a presentation at the first
World Congress on Formal Methods, FM’99, in Toulouse [74, 75]. I gave a talk
entitled “Theories of Programming: Top-down and Bottom-up and Meeting in
the Middle” [32]. I claimed that denotational semantics was at the top, opera-
tional semantics at the bottom, with algebraic semantics as a unifying link in
the middle. My talk today is on the same subject. At the top, discrete geomet-
ric diagrams provide the denotations, and its rules of reasoning provide both

an operational semantics (e.g., Milner’s CCS) and a verification semantics (e.g.,
O’Hearn’s CSL).

Next year is the 60th anniversary of my invention of Quicksort [29], and I
propose to retire from active personal research. This will be my farewell appear-
ance at an international conference. I have taken advantage of the opportunity
to present a sort of testament, reporting the results of the last ten years of my
research. I hope you will find some of them helpful or inspiring for your next ten
years of research into the theory and application of UTP.

* * *

1 Introduction

The purpose of this paper is to give independent descriptions of the features
of programming languages, independently of the language in which they are
embedded. It offers many examples, but does not make any recommendation on
their selection or rejection. Above all it shuns any attempt to define a complete
language. To achieve its purpose, it exploits the power of elementary algebra,
geometry, and logic.

The basic insight of the paper is that causality, space, and time have the same
meaning inside a computer as in the natural world outside it. These concepts do
not require a mathematical semantics, but they will be used to give one.

The operators of sequential composition of operands executed in the same
region of space at different intervals of time is an equal partner of concurrent
composition of operands executed in the same interval of time in disjoint regions
of space. They differ primarily in their domain of definition.

The other insight is that a program is a predicate. Each phrase of a structured
program defines exactly, and in minute detail, the set of all its traces of its
execution. Each trace records all the events that were performed, both internal
to the computer and in interaction with its environment. The execution may be
on any computer, at any time and at any place, and with any resolution of its
internal non-determinism.

Specifications are predicates that extend the range of operators available in a
programming language by including operators of the predicate calculus. Disjunc-
tion is most useful in the design phase of development to postpone decisions be-
tween design options until more information is available. Conjunction combines
requirements in the specification phase of design. In general, its implementation
is indescribably inefficient for a non-deterministic program.

Choice in a program is defined by disjunction of predicates, either finite or
infinite. An internal choice introduces (demonic) non-determinism into the exe-
cution of programs. In making an external choice (for example, by a conditional
or a guarded command), the surrounding environment (either the rest of the
program or the external world) can prevent selection of one or more of the op-
tions.

The trace is written in a subset of the same language as its program, but
avoids all forms of choice. It is pictured as an abstract syntax tree (AST): its

nodes represent component phrases of a structured program, and each leaf repre-
sents a unique execution of a basic commands of the program. Relations between
traces are defined by structural induction on their ASTs, particularly the refine-
ment relation and the function mapping each node of a trace to its leaves.

The language of traces contains only composition operators. Their events are
just the union of the events of their operands. For example ‘ ;;; ’ describes sequen-
tial execution of its operands at separate instants in time; another operator ‘ ||| ’
describes their concurrent execution at separate locations in space.

The operators are distinguished by different constraints on their implemen-
tation or on their use. For ‘ ;;; ’, the implementer of the language must ensure that
no event in the first operand has a cause in the second operand. For ‘ ||| ’ the user
of the language must ensure that the trace contains no cyclic chain of causation
between its events.

The operators of the trace calculus are lifted to sets in the usual way. The sets
are downward closed wrto the refinement order. Thus if a program describes a
trace, it also describes all the refinements of it. In any phase of development, this
is what justifies replacement of an abstract program by one of its refinements.

Other operators can be defined by stronger constraints. For example, the
CSP operator ‘→’, which separates the guard of a guarded command from its
body, requires every event in the body to have a cause in the guard, and to be
a cause of every event in the body [31]. The result of a concurrency operation
of CSP must not contain a cyclic causal chain, because that would deadlock the
implementation. For ‘|||’ in CSP and for separating conjunction in CSL, there
must be no causal link between the operands. This obviously prevents both races
and deadlocks.

General negation is an incomputable operator. It must be included in a spec-
ification language to permit simple descriptions of safety and security by negat-
ing a description of what must not happen. But it cannot be included in any
general-purpose programming language. It is therefore included in specification
languages like UTP [34], CSL [37], and Concurrent Refinement Algebra (a foun-
dation for rely/guarantee reasoning about concurrent programs) [14].

UTP is a special-purpose descriptive logic for specifying traces. It describes
primarily the causal links crossing the interfaces between the phrases of a pro-
gram, and abstracts from the internal events. Each interface is a labelling func-
tion from the links of the interface to a value that passed between from its
cause to its effect. Examples are the function that represents a region of mem-
ory shared between the left and right operand of ‘ ;;; ’, and the trace of messages
passing between concurrent operands, restricted to channels that they share.

2 Extended Summary

2.1 The calculus

1. An ordering relation is defined on traces by induction on its AST. Its left
operand in general requires the same or fewer real processors for execution
than the right operand.

2. It specifies a single decision step taken by a timesharing scheduler, which
implements concurrency by sequentially interleaving the threads that appear
as its operands. Details are given in [39] and [36].

3. The order is a precongruence, i.e., a preorder that makes all operands of the
program monotonic (covariant). Its symmetric closure is an equivalence rela-
tion that satisfies all the equational axioms of a CKA [37] that are expressible
without ‘+’, which means choice in CKA.

4. The algebra is lifted to sets by precongruence closure, standard for converting
a precongruence into an order [48, 8]. The same lifting is used by Dedekind
to lift fractions to real numbers [9]. It is analogous to the equivalence class
construction due to Frege and used by Russell in the definition of natural
numbers.

5. Choice in a program is defined as set union. The ordering relation on traces
lifts to refinement (set inclusion) on programs.

6. Further operators can be defined on sets, both algebraically and by proof
rules; for example: iterators (e.g., the Kleene ∗), and residuals for all opera-
tors (e.g., weakest prespecifications (/) and postspecifications (\) [33]), and
fixed points [73].

7. A claim that the calculus can be applied to programs is supported by evi-
dence of the large body of program proofs from either the axiomatic proof
rules of CSL or the operational rules of CCS [52]. Hoare triples and Milner
transitions are given algebraic definitions as a simple refinement in the cal-
culus. The rules of both CSL and CCS are then proved in the calculus. They
are three-line proofs in [36].

8. The definitions given above to triples and transitions are the same. By the
reflexivity of equality, the theories differ only in notation! Verification logic
and operational semantics have been unified in the closest possible way.

The rest of this summary has been included here only for background information.

The text summarised has been excluded from the published article for reasons not

unconnected with time and space.

2.2 Causality, space, and time

1. Causality denotes a familiar relation between events in the real world, and
requires no mathematical semantics. Any such semantics (such as that given
for Petri nets [63, 62]) can be considered as a scientific theory applicable to
the natural world. Causality is represented graphically by drawing an arrow
from the causing event to the caused event (its effect) at its head.

2. The essential property of causation is that no event can occur before its
cause. But they can occur at the same time.

3. The collection of arrows between the events of a trace forms a directed graph,
with events represented by points.

4. Arrows are classified as either vertical or horizontal. A vertical arrow is drawn
between the successive events that occurred at the same location in space;
events are performed by an object allocated at a given location of memory,
for example a variable or a communication port of a channel.

5. A horizontal arrow is drawn between simultaneous events, each performed by
a different object (e.g., a thread and a variable). The full set of simultaneous
actions is known as a transition [62], or as a transaction [25].

6. The graph for a trace is segmented into subgraphs, one for each node and
for each leaf of its AST. A leaf is the only occupant of its segment.

7. The graph of a sequential node is split by a horizontal cut between its
operands. The only coordinates that it cuts are vertical. A concurrent node
is split by a vertical cut, which cuts only horizontal coordinates.

8. The graph for any node of the AST is contained within a rectangular box,
whose edges are cuts. The input arrows of the box are defined as those with
only their heads in the box; and those with only tails are called its outputs.
Its internal arrows have both ends in the box.

9. Conventionally, all vertical input arrows enter the box at its top edge, and
vertical output arrows leave at the bottom edge. Horizontal input arrows
enter at the left edge and horizontal output arrows leave it at the right.

2.3 Geometry

1. For purposes of program debugging, a box can be displayed as a diagram
of discrete plane geometry. Its two axes represent time and space, and its
points represent events.

2. A vertical coordinate is a chain of arrows containing the complete history of
events performed by a single object. Examples of objects include variables,
threads, communication ports, messages.

3. A horizontal coordinate is a set of arrows connecting all its points. Each point
on it is shared by a distinct vertical coordinate. Examples include multiple
assignments, communications, synchronising fences, object allocation, and
disposal.

4. Any pair of vertical or of horizontal coordinates is mutually parallel in the
sense of Euclid: they have no point in common.

5. As in Cartesian geometry, every point in a diagram is the unique element of
the intersection of a horizontal and a vertical coordinate.

6. Further examples are presented in [35] and alternatively in [54]. They are
called Sequence Diagrams in UML [59], or Message Sequence Charts in
SDL [43].

7. In a debugging tool, each error revealed by the trace should be highlighted.
The tool should also provide a means for navigating backwards from an error,
travelling along vertical and horizontal coordinates to its direct and indirect
causes (time-travel debugging [51]); also forwards to its results whenever
possible after a non-fatal error.

2.4 Logic

1. According to its standard semantics, a proposition of predicate calculus de-
scribes all observations (aka, valuations) that satisfy it. An observation is
a total function from all syntactically possible variable identifiers to their
observed values.

2. For the predicates of CSL and of UTP, the observations are only partial
functions, whose domain (aka footprint) is the set of all free variables of the
proposition. Negation of an assertion preserves its footprint.

3. Separating conjunction in CSL describes concurrent composition of pro-
grams. It is defined only if the footprints of its two operands are disjoint,
and neither is undefined. The footprint of a disjunction is the union of that
of footprints of its operands.

4. The footprint of a predicate in UTP is defined in terms of the box diagrams
of the trace described. For its top edge, it is the collection of unique names of
the vertical coordinates that cross a horizontal boundary of the box diagram.
For the bottom edge of the diagram, the names are annotated by a dash.

5. The value of an object observed at these edges is that which was assigned
(or left unchanged) by the event at the tail of the cut arrow.

6. In the Circus variant of UTP [76, 61], a built-in variable tr stands for a
record of the history of all input-output events that are recorded from the
beginning of the entire trace. Each input of a message lies on the same
horizontal interface as the output of the message.

7. Alternative conventions are often more intuitive. For example, the trace can
be represented by a finite state diagram in which the nodes are annotated
by an invariant that describes the values of the variables throughout the
interval between its initial and its final horizontal coordinate.

3 The Calculus

Our terms are traces of execution of a program written in a language that in-
cludes events (to be defined later), a constant 1, and two binary operators of
sequential composition (‘ ;;; ’) and concurrent composition (‘ ||| ’). The context-free
syntax of the terms of the calculus is:

〈term〉 ::= 1 | 〈event〉 | (((〈term〉〈operator〉〈term〉)))
〈operator〉 ::= ‘ ; ’ | ‘ ||| ’

By structural recursion we define the events of a term to be the set of events
recorded in the whole trace:

events(1) = {}

events(k) = {k} [if k is an event]

events(p ;;; q) = events(p |||q) = events(p) + events(q)

where {k} is the singleton set containing only k , and + is disjoint union of
sets, ensuring that each event only occurs once in the abstract syntax tree. If
the operands of + are not disjoint, then the result is undefined. This fact is
expressed by the ok predicate of UTP [34], which satisfies the axioms

ok(s + t) ≡ (s ∩ t = {}) ∧ ok(s) ∧ ok(t)

ok(s) [if s is a singleton set or empty]

Let p be a term (r ;;; s) and let e be a member of events(r) and let f be a
member of events(s). Then the pair (e, f) is said to be sequentially separated
within p. The set of pairs within p that are so separated is defined by

ssep(p) = { events(r) × events(s) | r ;;; s is a subterm of p (or p itself) }

This can also be defined axiomatically without set notation by structural recur-
sion:

ssep(1) = {}
ssep(p ;;; q) = ssep(p) + ssep(q) + events(p) × events(q)
ssep(p |||q) = ssep(p) + ssep(q)

A definition of concurrent separation csep(p |||q) is similar.
The structure of two terms is compared by a relation ≤ between them.4 It

means that q has a denser sequential control structure than p. For example,
p ;;; q ≤ p |||q . (Similar relations can be defined with respect to csep.)

p ≤ q =̂ ssep(p) ⊆ ssep(q) ∧ events(p) = events(q)

p ≡ q =̂ (p ≤ q) ∧ (q ≤ p)

This definition of the fundamental ordering relation is formulated in terms
of syntax. This may violate one tradition of programming language semantics:
that syntax and semantics should be totally separated. The syntactic definition
is strongly welcomed in other traditions. It gives the strongest possible model
of the calculus. Algebraists call it a word algebra, category theorists call it an
initial or free algebra, and computer scientists call it fully abstract. A proof
that CKA satisfies all these definitions is given in [47]. A concept with three
or more equivalent definitions is usually important in mathematics, for example
the axiom of choice in logic.

3.1 The algebra of traces

The axioms of the calculus are just those basic axioms of CKA [37] that can be
expressed in the syntax; those involving choice (written as +), repetition (∗) and
residuation (/ and \) are omitted. They will be re-introduced shortly.

Theorem 1.

1. ≤ is a preorder [reflexive and transitive]

2. If q ≤ p then p |||r ≤ p |||r and r |||q ≤ r |||p
and p ;;; r ≤ p ;;; r and r ;;; q ≤ r ;;; p

[monotonicity]

3. (p ;;; q) ;;; r ≡ p ;;;(q ;;; r) and (p |||q)|||r ≡ p |||(q |||r) [associativity]

4 In UTP [17], refinement between pointwise relations is written as P ⊑ Q (or equiv-
alently Q ≤ P), and defined by [Q ⇒ P]. It asserts that every behaviour of Q is
also a behaviour of P .

4. p ;;;1 ≡ p ≡ 1 ;;; p and p |||1 ≡ p ≡ 1|||p [unit]

5. (p |||q) ;;;(p′ |||q ′) ≤ (p ;;; p′)|||(q ;;; q ′) [interchange]

The first two laws echo the familiar laws for equality, formulated by Euclid and
Leibniz. They permit a refinement to be used as a single-directional substitution
rule in algebraic reasoning. A standard structural induction from the second law
says that refinement is preserved when the rule is applied to any sub-term of
a given term. The third law allows redundant brackets to be omitted. And the
fourth describes the steps that reduce a term to sequential normal form, in which
all ‘ ||| ’ are eliminated.

We obtain four small interchange laws from Theorem 1.5 by substituting
units for each of the four variables.

p ;;;(r |||s) ≤ (p ;;; r)|||s q ;;;(r |||s) ≤ r |||(q ;;; s)

(p |||q) ;;; s ≤ p |||(q ;;; s) (p |||q) ;;; r ≤ (p ;;; r)|||q

Two tiny interchange laws are derived by a second such substitution in the first
line above:

p ;;; r ≤ p |||r q ;;; r ≤ r |||q

The interchange axiom models the decisions of a timesharing scheduler op-
erating at run time or at compile time. Its purpose is to reduce the number of
actual processors needed for execution of a program below what it has explicitly
called for. In combination with the equational axioms, it may be used as a single
step in the reduction of any term of the calculus to a normal form that has no ‘ ||| ’.
The equational axioms are used first on each step to select which ‘ ;;; ’s and which
‘ ||| ’s to match to the left hand side of interchange. Different choices will result
in different eventual interleavings. Each non-trivial application of interchange
increases the membership of sseq , so the shuffling process must terminate. The
corollaries of the axiom are what finally eliminates the ‘ ||| ’s.

3.2 Applications

The simplicity, relevance, and power of the calculus is demonstrated by its appli-
cation to two well known and widely used theories of programming, separation
logic [66, 60] (which includes Hoare Logic) and Milner’s CCS [52]. The Hoare
triple {p} q {r} [30] is interpreted as saying that performance of q preceded by
p is one of the ways of implementing r : i.e., p ;;; q ≤ r . (This is a generalisation
of the original Hoare definition, which required that p and r be restricted to the
events that evaluate assertions [72], in a similar manner to weakest prespecifica-
tions [33].) From this definition, the proof rules for sequencing and concurrency
in CSL (Concurrent Separation Logic) [38]. Simpler proofs (three-liners mostly)
are given in [38].

The Milner transition is written r
p

−→ q . In the small-step version of the
transition, the program p is restricted to a singleton event. This triple is inter-
preted as the statement that one of the ways of implementing r is to perform p

first, saving its continuation q for later execution. Algebraically expressed, this
is p ;;; q ≤ r , which is the same definition as the Hoare triple. By definition, the
two calculi are the same! This claim can be checked by definitional substitution,
which translates the defining axioms of each theory into those of the other. The
unification is similar to that made by Dirac, when he showed the mathematical
identity of the Schrödinger and the Heisenberg formulations of quantum theory
with his own.

3.3 The algebra of programs

The behaviour of a program is defined as the set of all traces that can be produced
by its execution. The operators are defined by complex product or convolution.
Let capital letters stand for sets of traces. Define the operators on the traces by

1 =̂ {1}
P ;;;Q =̂ { (p ;;; q) | p ∈ P ∧ q ∈ Q }
P |||Q =̂ { (p |||q) | p ∈ P ∧ q ∈ Q }
P ⊓ Q =̂ P ∪Q

Nondeterministic choice is defined as set union, and its algebraic properties are
familiar from Boolean algebra: it is associative, commutative, and idempotent,
and it has the empty set as its unit. Refinement is defined by set inclusion.

Linearity of the axioms in Theorem 1 ensures ensures that the equational
properties of traces remain unchanged when they are lifted to sets of terms in
the usual way, by the results of [20]. We would also like to remove all undefined
terms from the sets. This is done by applying a familiar algebraic construction
for turning a preorder into a partial order, namely by the downward closure of
the sets, with respect to the preorder:

P ;;;Q =̂ { r | p ∈ P ∧ q ∈ Q ∧ r ∧ ok(r) ≤ p ;;; q }
P |||Q =̂ { r | p ∈ P ∧ q ∈ Q ∧ r ∧ ok(r) ≤ p |||q }
P ≤ Q =̂ P ⊆ Q

Further operators can be defined on sets, both algebraically and by proof
rules; for example: iterators (e.g., the Kleene ∗), and residuals for all opera-
tors (e.g., weakest prespecifications (/)and postspecifications (\) [33]), and fixed
points [73]. Iteration is defined as the least fixed point of x = SKIP ∨ x ∨ x ;;; x .
An introduction to these topics is well presented by axioms and proof rules
in [64], where a complete algebraic characterisation of iteration includes the el-
egant equation p = (p/p)∗, or equivalently p = (p \ p)∗, where p is an invariant
of the loop. Pratt proved the axiom interdeducible with the proof rules that
define either least or greatest fixed-point (depending on the order).

4 Symmetries

In the natural sciences, an experiment is designed to produce a result that all
observers of a repeated experiment will agree on, no matter when and no matter

where it is viewed from. The raw observations will obviously be different, but
agreement can be reached if the direct description of each raw observation is au-
tomatically translatable into a description made by any observer from a different
viewpoint at a later time. The translation algorithm is called a symmetry.

It is therefore not surprising that the laws themselves are translatable by the
same symmetry, and each translation to gives back either the same law or another
one. That gives confidence of the universal applicability of the laws throughout
space and time. It should certainly be checked by mathematical proof.

The axioms in Theorem 1 satisfy such symmetries. In the algebra, we model
time reversal symmetry by a function v that swaps the arguments of ‘ ;;; ’, space
inversion symmetry by a function h that swaps those of ‘ ||| ’, and space-time
symmetry by a function d that interchanges ‘ ;;; ’ and ‘ ||| ’:

v(p ;;; q) = v(q) ;;; v(p), v(p |||q) = v(p)|||v(q) v(1) = 1

h(p ;;; q) = h(p) ;;; h(q), h(p |||q) = h(q)|||h(p) h(1) = 1

d(p ;;; q) = d(p)|||d(q), d(p |||q)= d(p) ;;; d(q) d(1) = 1

As before, ‘ ||| ’ need not commute. All axioms in Theorem 1 are closed under
these symmetries. We explain only the interchange law, which we write as

p

q
;;;
r

s
≤

p ;;; r

q ;;; s

Applying the symmetries yields

v(r)

v(s)
;;;
v(p)

v(q)
≤

v(r) ;;; v(p)

v(s) ;;; v(q)

h(q)

h(p)
;;;
h(s)

h(r)
≤

h(q) ;;; h(s)

h(p) ;;; h(r)

d(p) ;;; d(q)

d(r) ;;; d(s)
≥

d(p)

d(r)
;;;
d(q)

d(s)

The first law holds because ssep guarantees that the left-hand and right-hand
sides of the two laws have the same points and the same arrows, which are just
reversed in direction. The second one holds by a similar argument with respect
to csep. The third law is valid because d interchanges ssep with csep, after which
the value of ssep decreases from right to left. This explains the reversal of ≤.
Application of d to the monotonicity axioms in Theorem 1 requires this reversal
as well.

If p, q , r and s are leaves of the AST, then we can depict the nodes in both
sides of the first interchange law as the following black square.

p

q

r

s

h

d v

In the symmetric interchange laws, v then reflects the nodes in the vertical axis
bisecting the square, h in the horizontal axis, and d in the diagonal axis through

p and s. In fact, h can be generated from d and v as h = d ◦ v ◦ d and the full
symmetry group of the square—reflection in the other diagonal and rotations
by 0◦, 90◦, 180◦ and 270◦—can be generated from these two elements as well.
Interchange is therefore invariant under all eight symmetries.

In mathematics, symmetries are admired for their beauty. They arise as prop-
erties invariant under some transformation, usually the action of some group.
Yet beyond their beauty, they have practical uses too. The symmetries of in-
terchange are preserved by refinement, so any conjecture that does not preserve
symmetry can be instantly rejected. Furthermore, every theorem proved auto-
matically generates seven corollaries. Exploitation of symmetries by a proof tool
can give further optimisations [13, 41, 68, 21].

5 Future Directions

In the shortest term, the authors plan to publish a journal version of this paper
with missing sections restored. It is proposed to apply the syntactic methods of
this paper to define features like probabilistic choice and delay commands that
are found in Simula 67 [7].

An urgent development of the theory presented here is to model the layers
of abstraction that are implemented by a hierarchy of class declarations in an
object-oriented language. A layer includes all the subclasses of a class, and shares
no resources with any other layer. It is sometimes called a component or a
module. Abstraction scales: the very largest systems in worldwide use today
could never have evolved without it.

5.1 Unifying Theories of Programming

The major problem facing verification today is that many large systems are
written in a combination of languages:

– General purpose, application-oriented (e.g., scripting, discrete-event simula-
tion, network design, security).

– Continuous control in both signal-oriented and equational styles.
– Hardware-oriented (e.g., GPU, FPGA, quantum).

How can we provide a common toolset for them all? Perhaps the algebraic meth-
ods introduced in this paper could be used to develop a semantics for existing
and future languages, with compatible links for other languages used in the same
product.

5.2 Applications of Concurrent Kleene Algebra

Kleene algebra is well known for vast simplifications and generalisations of the
proofs of some important theorems. For example, in [45], Kozen gives a com-
pletely algebraic proof in KA with tests (KAT) that a program with nested loops

can be reduced to a program with just a single loop and some auxiliary vari-
ables (a classic folk theorem), and von Wright gives a very elegant, single-page
proof of a theorem for atomicity refinement in action systems [78] that previ-
ously had taken Back many pages to accomplish [2]. Equally convincing results
for concurrent programs with CKA are so far missing. Examples would include
concurrency control or concurrency refinement laws.

KAT [45], Kleene algebras with domain [10, 11], and demonic refinement al-
gebras [78] have been established as abstract semantics and verification methods
for sequential programs and linked with concrete program semantics such as re-
lations or predicate transformers. Hayes and co-workers have recently developed
concurrent refinement algebras, which are inspired by CKA, and support rely-
guarantee style reasoning with shared-variable concurrent programs [27, 28] and
CCS/CSP-style reasoning [52, 31]. Similar applications in the semantics of con-
current programming languages remain to be explored. Many of the approaches
mentioned have led to verification components with interactive theorem provers,
notably with Isabelle/HOL [1, 24, 18]. For CKA, such components are under de-
velopment.

5.3 Implementing the calculus

In the immediate future, we are planning that a research team at York will engage
in developing a library of theories in our theorem prover, Isabelle/UTP [17, 19,
77], which is an implementation of UTP in Isabelle/HOL [58].

We hope to recruit collaboration with other centres of excellence to develop
compatible extensions of the mechanisation in other proof tools, for example
Coq [3], Lean [55], Maude [6], Agda [4], and FDR [23].

We will support the geometric presentation of the calculus using Eclipse [71],
defining the abstract graphical syntax with the Eclipse Modeling Framework
(EMF), its concrete syntax with the Graphical Modeling Framework (GMF),
and transforming the models created with the language into Isabelle/UTP the-
ories using the Epsilon model transformation tool [44]. This will follow the ap-
proach set out in [53, 79], where the graphical RoboChart language [53] is man-
aged within the Eclipse-based RoboTool environment [67] and transformed to
CSP [31], Prism [46], and Isabelle/UTP [19].

5.4 Object orientation and UTP

Object-oriented programming is the only known programming paradigm that
makes writing massive software applications reasonably manageable, maintain-
able, and scalable. The research presented in this paper uses classes and their
objects as the principal technique for abstraction. A full treatment of object ori-
entation requires additional abstraction techniques that provide encapsulation
and information hiding, supporting structuring and re-use of classes through in-
heritance (perhaps including multiple inheritance), behavioural subtyping, and
polymorphism; it would permit the use of dynamic dispatch as a way of selecting
different implementations.

There is already much significant work on OO in UTP, but an elegant and
integrated treatment in UTP remains a significant ambition. Existing achieve-
ment include the following. Santos et al. [69] present a general theory of object
orientation in UTP. Naumann et al. [57] give a semantics to class hierarchies
and how to refactor them for representation independence. Cavalcanti et al. [5]
report on unifying OO classes and CSP-like processes in OhCircus, an object-
oriented extension of the UTP-based Circus multi-paradigm language [76, 61],
with a formalisation of method calls and their refinement. Ramos et al. [65] give
a semantics to active classes in UML-RT, the real-time profile for UML, via a
mapping into Circus. Duran et al. [12] present a strategy for compiling classes,
inheritance, and dynamic binding, following the compilation strategy for Dijk-
stra’s guarded command language using refinement algebra in UTP [34, chap.6].
Silva et al. [70] present the laws of programming for object orientation with ref-
erence semantics and Gheyi et al. [22] give a complete set of object modelling
laws for Alloy [42]. Finally, Zeyda and his colleagues [80] present a modular
theory of object orientation in higher-order UTP [34, chap.9], all mechanised in
Isabelle/UTP [17, 19, 77].

A huge challenge is to harmonise and extend these existing UTP theories
to provide a simple and widely accepted treatment of all the main features of
object orientation.

To test and evaluate the theory of classes, other concurrent programming
design patterns should be specified experimentally as class declarations. At each
layer, the programmer needs a way of specifying new behavioural type systems
checkable at compile time and proof systems detectable at run time. Their pur-
pose is to avoid violations of the protocols whose universal observance by user
programs is required by the design pattern. Type inference algorithms should be
specifiable within the algebra, perhaps by restricting refinement rules to Horn
clauses [40]. They can then be directly executed by exhaustive tree search. The
same restriction is also made in functional languages, but other syntactic restric-
tions ensure determinacy, so that tree search is not necessary.

5.5 Extensions of the calculus

Probabilistic Kleene Algebra (PKA) [49] and CKA [37] have been combined in
Concurrent Probabilistic Kleene Algebra (CPKA) to provide a unified account
of nondeterminism, probability, and concurrency, with models in probabilistic
automata, modulo probabilistic refinement simulation [50]. This is a natural
target for the extension of the algebra, geometry, and logic of our calculus.

A particular application area of great current interest is Cyber-Physical Sys-
tems (CPS). They use embedded computers and networks to compute, commu-
nicate, and control physical processes. Research in verification in this area has
to provide the techniques and tools for checking the correctness of software and
hardware platforms with respect to agreed requirements.

The notion of correctness has to be judged against runtime feedback on the
validity of assumptions about the environment, and digital twin technology is

being proposed to handle this problem [26]).5 Fitzgerald et al. [15] describe
the beginnings of a generalised theory of CPS design, with an introduction to
the formal foundations, methods, and integrated tool chains for CPS. Crucially,
models of CPS are inherently heterogeneous and require unification of different
languages, design methods, and verification techniques and their tools.

Modal Kleene Algebra (MKA) [10, 11] has recently been used with ordinary
differential equations (ODEs) for the verification of hybrid systems, where dis-
crete imperative program behaviour complements continuous physical dynam-
ics [56]. Foster et al. [16] describe a generalisation of the UTP theory of reactive
processes [34, chap.7] using abstract trace algebra. This extends the reactive pro-
cess theory to continuous time traces, where events are replaced by piece-wise
continuous functions of physical behaviour, and this gives a model of hybrid
systems. A connection between the UTP and MKA is a long-term and very
ambitious objective.

6 Conclusion

The long-term practical goal of a theory of programming is to provide a concep-
tual framework for the design of a coherent set of practical tools for program de-
velopment. They should cover the features of modern general-purpose program-
ming languages, and also special-purpose languages and design patterns that
exploit synergy in the characteristics of particular applications, algorithms and
hardware. The tools should cover the entire life cycle of large-scale program evo-
lution, which starts from requirements and specifications, and continues through
system architecture, program design, coding, static checking, compilation, op-
timisation, selective verification, testing, and correction, right up to delivery of
the product. The cycle then repeats in subsequent evolution of the delivered
product. The coherence of the theory enables the various languages to be used
together in the same software architecture. The conceptual framework should
ideally be accompanied by tools which give assistance in the life cycle of new
special-purpose programming languages likely to emerge in the changing world.

It is comforting that the conceptual framework of causality, space, and time is
the same as that of our common-sense world, and of the more advanced theories
of modern science.

5 In this extension of model-based engineering, a digital twin is a virtual model of
the system, constructed from formal development artefacts and used throughout the
lifetime of the product. This pairing of the virtual and physical worlds allows analysis
of data and monitoring of systems to detect problems before they occur, prevent
downtime, develop new application opportunities, and plan immediate and long-
term behaviour using simulations. Since the virtual model captures the assumptions
made about the environment during system development, these assumptions can be
tuned to more accurately reflect reality.

Acknowledgements

Parts of this work were funded under EPSRC grants EP/R032351/1 on Verifiably

Correct Transactional Memory and EP/M025756/1 on A Calculus for Software

Engineering of Mobile and Autonomous Robots, and by a Royal Society grant
on Requirements Modelling for Cyber-Physical Systems.

References

1. Armstrong, A., Gomes, V.B.F., Struth, G.: Building program construction and
verification tools from algebraic principles. Formal Asp. Comput. 28(2), 265–293
(2016)

2. Back, R.: A method for refining atomicity in parallel algorithms. In: Odijk, E.,
Rem, M., Syre, J. (eds.) PARLE ’89: Parallel Architectures and Languages Europe,
Volume II: Parallel Languages, Eindhoven, 12–16 June, 1989. Lecture Notes in
Computer Science, vol. 366, pp. 199–216. Springer (1989)

3. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions. Springer (2010)

4. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda — A functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009: 22nd International Conference on Theorem Proving in Higher Order
Logics, Munich, 17–20 August 2009. Lecture Notes in Computer Science, vol. 5674,
pp. 73–78. Springer (2009)

5. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes. Soft-
ware and System Modeling 4(3), 277–296 (2005)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Tal-
cott, C.L. (eds.): All About Maude — A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic, Lecture Notes in
Computer Science, vol. 4350. Springer (2007)

7. Dahl, O., Myhrhaug, B., Nygaard, K.: Simula 67 Common Base Language. Tech.
rep., NCC (May 1968)

8. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge Uni-
versity Press (1990)

9. Dedekind, R.: Stetigkeit und irrationale Zahlen. Verlag von Friedrich Vieweg und
Sohn, Braunschweig (1872)

10. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans.
Comput. Log. 7(4), 798–833 (2006)

11. Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Comput.
Program. 76(3), 181–203 (2011)

12. Duran, A., Cavalcanti, A., Sampaio, A.: A strategy for compiling classes, inheri-
tance, and dynamic binding. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME
2003: International Symposium on Formal Methods Europe, Pisa, 8 14 September
2003. Lecture Notes in Computer Science, vol. 2805, pp. 301–320. Springer (2003)

13. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in
System Design 9(1/2), 105–131 (1996)

14. Fell, J., Hayes, I.J., Velykis, A.: Concurrent refinement algebra and rely quotients.
Archive of Formal Proofs 2016 (2016)

15. Fitzgerald, J.S., Gamble, C., Larsen, P.G., Pierce, K., Woodcock, J.: Cyber-
physical systems design: Formal foundations, methods, and integrated tool chains.
In: Gnesi, S., Plat, N. (eds.) FormaliSE 2015: 3rd IEEE/ACM FME Workshop on
Formal Methods in Software Engineering, Florence, 18 May 2015. pp. 40–46. IEEE
Computer Society (2015)

16. Foster, S., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying theories of time with
generalised reactive processes. Inf. Process. Lett. 135, 47–52 (2018)

17. Foster, S., Woodcock, J.: Unifying theories of programming in Isabelle. In: Liu,
Z., Woodcock, J., Zhu, H. (eds.) Unifying Theories of Programming and Formal
Engineering Methods: International Training School on Software Engineering, Held
at ICTAC 2013, Shanghai, 26–30 August, 2013. Lecture Notes in Computer Science,
vol. 8050, pp. 109–155. Springer (2013)

18. Foster, S., Ye, K., Cavalcanti, A., Woodcock, J.: Calculational verification of reac-
tive programs with reactive relations and Kleene algebra. In: Relational and Al-
gebraic Methods in Computer Science - 17th International Conference, RAMiCS
2018, Groningen, The Netherlands, October 29 - November 1, 2018, Proceedings.
pp. 205–224 (2018)

19. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: A mechanised theory engineer-
ing framework. In: Naumann, D. (ed.) Unifying Theories of Programming: 5th
International Symposium, UTP 2014, Singapore, 13 May 2014. Lecture Notes in
Computer Science, vol. 8963, pp. 21–41. Springer (2015)

20. Gautam, N.D.: The validity of equations of complex algebras. Archiv für mathe-
matische Logik und Grundlagenforschung 3(3), 117–124 (Sep 1957)

21. Gent, I.P., Petrie, K.E., Puget, J.: Symmetry in constraint programming. In: Rossi,
F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Founda-
tions of Artificial Intelligence, vol. 2, pp. 329–376. Elsevier (2006)

22. Gheyi, R., Massoni, T., Borba, P., Sampaio, A.: A complete set of object modeling
laws for Alloy. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009: 12th Brazil-
ian Symposium on Formal Methods, Gramado, 19–21 August 2009. Lecture Notes
in Computer Science, vol. 5902, pp. 204–219. Springer (2009)

23. Gibson-Robinson, T., Armstrong, P.J., Boulgakov, A., Roscoe, A.W.: FDR3: A
parallel refinement checker for CSP. STTT 18(2), 149–167 (2016)

24. Gomes, V.B.F., Struth, G.: Modal Kleene Algebra applied to program correctness.
In: Fitzgerald, J.S., Heitmeyer, C.L., Gnesi, S., Philippou, A. (eds.) FM 2016:
21st International Symposium on Formal Methods, Limassol, 9–11 November 2016.
Lecture Notes in Computer Science, vol. 9995, pp. 310–325. Springer (2016)

25. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann (1993)

26. Grieves, M., Vickers, J.: Digital twin: Mitigating unpredictable, undesirable emer-
gent behavior in complex systems (excerpt). Tech. rep., University of Michigan
(August 2016)

27. Hayes, I.J.: Generalised rely-guarantee concurrency: an algebraic foundation. For-
mal Asp. Comput. 28(6), 1057–1078 (2016)

28. Hayes, I.J., Meinicke, L.A., Winter, K., Colvin, R.J.: A synchronous program al-
gebra: A basis for reasoning about shared-memory and event-based concurrency.
Formal Asp. Comput. 31(2), 133–163 (2019)

29. Hoare, C.A.R.: Algorithm 64: Quicksort. Commun. ACM 4(7), 321 (1961)
30. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM

12(10), 576–580 (1969)
31. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)

32. Hoare, C.A.R.: Theories of programming: Top-down and bottom-up and meeting
in the middle. In: Wing et al. [74], pp. 1–27

33. Hoare, C.A.R., He, J.: The weakest prespecification. Inf. Process. Lett. 24(2), 127–
132 (1987)

34. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall (1998)
35. Hoare, T.: Geometric theory of program testing. www.cl.cam.ac.uk/~carh4/19.

Jan.18.Lecture1.pdf, accessed: 2019-07-11
36. Hoare, T., Mendes, A., ao F. Ferreira, J.: Logic, algebra, and geometry at the foun-

dation of computer science. In: FMTea 2019: Formal Methods Teaching Workshop
and Tutorial (2019)

37. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene Algebra and
its foundations. J. Log. Algebr. Program. 80(6), 266–296 (2011)

38. Hoare, T., O’Hearn, P.W.: Separation logic semantics for communicating processes.
Electr. Notes Theor. Comput. Sci. 212, 3–25 (2008)

39. Hoare, T., van Staden, S., Möller, B., Struth, G., Zhu, H.: Developments in Con-
current Kleene Algebra. J. Log. Algebr. Meth. Program. 85(4), 617–636 (2016)

40. Horn, A.: On sentences which are true of direct unions of algebras. Journal of
Symbolic Logic 16(1), 14–21 (1951)

41. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1/2), 41–75 (1996)

42. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

43. Jervis, C. (ed.): ITU-T: Recommendation Z.120 (04/04), Message Sequence Charts
(MSC). International Telecommunication Union, Geneva (2004)

44. Kolovos, D., Paige, R., Polack, F.: The Epsilon Transformation Language. In: Val-
lecillo, A., Gray, J., Pierantonio, A. (eds.) Theory and Practice of Model Transfor-
mations. pp. 46–60. Springer (2008)

45. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

46. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification. pp. 585–591. Springer (2011)

47. Laurence, M.R., Struth, G.: Completeness theorems for pomset languages and
Concurrent Kleene Algebras. CoRR abs/1705.05896 (2017)

48. MacNeille, H.M.: Partially ordered sets. Transactions of the AMS 42(3), 416–460
(1937)

49. McIver, A., Rabehaja, T.M., Struth, G.: On probabilistic Kleene algebras, au-
tomata and simulations. In: de Swart, H.C.M. (ed.) RAMICS 2011: 12th Inter-
national Conference on Relational and Algebraic Methods in Computer Science,
Rotterdam, 30 May–3 June, 2011. Lecture Notes in Computer Science, vol. 6663,
pp. 264–279. Springer (2011)

50. McIver, A., Rabehaja, T.M., Struth, G.: Probabilistic concurrent Kleene algebra.
In: Bortolussi, L., Wiklicky, H. (eds.) QAPL 2013: 11th International Workshop
on Quantitative Aspects of Programming Languages and Systems, Rome, 23–24
March 2013. EPTCS, vol. 117, pp. 97–115 (2013)

51. Microsoft: Time Travel Debugging in WinDbg Preview! blogs.msdn.microsoft.
com/windbg/2017/09/25/time-travel-debugging-in-windbg-preview/, ac-
cessed: 2019-07-01

52. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer
Science, vol. 92. Springer (1980)

53. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J., Woodcock,
J.C.P.: RoboChart: Modelling and verification of the functional behaviour of
robotic applications. Software & Systems Modeling (2019)

54. Möller, B., Hoare, T., Müller, M., Struth, G.: A discrete geometric model of con-
current program execution. In: Bowen, J., Zhu, H. (eds.) UTP 2016: International
Symposium on Unifying Theories of Programming, 4–5 June 2016, Reykjavik. Lec-
ture Notes in Computer Science, vol. 10134, pp. 1–25. Springer (2017)

55. de Moura, L.M., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE-
25: 25th International Conference on Automated Deduction, Berlin, 1–7 August,
2015. Lecture Notes in Computer Science, vol. 9195, pp. 378–388. Springer (2015)

56. Munive, J.J.H., Struth, G.: Verifying hybrid systems with Modal Kleene Algebra.
In: Desharnais, J., Guttmann, W., Joosten, S. (eds.) RAMiCS 2018: 17th Inter-
national Conference on Relational and Algebraic Methods in Computer Science,
Groningen, 29 October–1 November 2018. Lecture Notes in Computer Science, vol.
11194, pp. 225–243. Springer (2018)

57. Naumann, D.A., Sampaio, A., Silva, L.: Refactoring and representation indepen-
dence for class hierarchies. Theor. Comput. Sci. 433, 60–97 (2012)

58. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)

59. Object Management Group: OMG: Unified Modeling Language: Superstructure
2.0 (2003)

60. O’Hearn, P.W.: Separation logic. Commun. ACM 62(2), 86–95 (2019)

61. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Asp. Comput. 21(1-2), 3–32 (2009)

62. Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (1977)

63. Petri, C.A.: Communication with automata. DTIC Res. Rep. AD0630125, Defense
Tech. Inf. Cntr., Fort Belvoir, VA (1966)

64. Pratt, V.R.: Action logic and pure induction. In: van Eijck, J. (ed.) Logics in
AI, European Workshop, JELIA ’90, Amsterdam, 10–14 September, 1990. Lecture
Notes in Computer Science, vol. 478, pp. 97–120. Springer (1991)

65. Ramos, R., Sampaio, A., Mota, A.: A semantics for UML-RT active classes via
mapping into Circus. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005: 7th
IFIP WG 6.1 International Conference on Formal Methods for Open Object-Based
Distributed Systems, Athens, 15–17 June 2005. Lecture Notes in Computer Science,
vol. 3535, pp. 99–114. Springer (2005)

66. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22–25 July
2002, Copenhagen. pp. 55–74. IEEE Computer Society (2002)

67. RoboTool: Graphical modelling, validation, and automatic generation of math-
ematical definitions for proof for RoboChart models. www.cs.york.ac.uk/

robostar/robotool/

68. Sakallah, K.A.: Symmetry and satisfiability. In: Biere, A., Heule, M., van Maaren,
H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence
and Applications, vol. 185, pp. 289–338. IOS Press (2009)

69. Santos, T.L.V.L., Cavalcanti, A., Sampaio, A.: Object orientation in the UTP. In:
Dunne, S., Stoddart, B. (eds.) UTP 2006: First International Symposium on Uni-
fying Theories of Programming, Walworth Castle, County Durham, 5–7 February
2006. Lecture Notes in Computer Science, vol. 4010, pp. 18–37. Springer (2006)

70. Silva, L., Sampaio, A., Liu, Z.: Laws of object orientation with reference semantics.
In: Cerone, A., Gruner, S. (eds.) SEFM 2008: 6th IEEE International Conference
on Software Engineering and Formal Methods, Cape Town, 10-14 November 2008.
pp. 217–226. IEEE Computer Society (2008)

71. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley, 2nd edn. (2009)

72. Tarlecki, A.: A language of specified programs. Sci. Comput. Program. 5(1), 59–81
(1985)

73. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5, 285–309 (1955)

74. Wing, J.M., Woodcock, J., Davies, J. (eds.): FM’99—Formal Methods, World
Congress on Formal Methods in the Development of Computing Systems, Toulouse,
20–24 September 1999, Volume I, Lecture Notes in Computer Science, vol. 1708.
Springer (1999)

75. Wing, J.M., Woodcock, J., Davies, J. (eds.): FM’99—Formal Methods, World
Congress on Formal Methods in the Development of Computing Systems, Toulouse,
20–24 September, 1999 Volume II, Lecture Notes in Computer Science, vol. 1709.
Springer (1999)

76. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D., Bowen, J.P.,
Henson, M.C., Robinson, K. (eds.) ZB 2002: Formal Specification and Development
in Z and B, 2nd International Conference of B and Z Users, Grenoble, 23–25
January 2002. Lecture Notes in Computer Science, vol. 2272, pp. 184–203. Springer
(2002)

77. Woodcock, S.F.J., Zeyda, F.: Unifying semantic foundations for automated verifi-
cation tools in Isabelle/UTP. CoRR abs/1905.05500 (2019)

78. von Wright, J.: Towards a refinement algebra. Sci. Comput. Program. 51(1-2),
23–45 (2004)

79. Ye, K., Woodcock, J., Foster, S., Miyazawa, A., Cavalcanti, A.: RoboChart: Formal
modelling and verification of the probabilistic behaviour of robotic applications.
Tech. rep., University of York (2019)

80. Zeyda, F., Santos, T.L.V.L., Cavalcanti, A., Sampaio, A.: A modular theory of
object orientation in higher-order UTP. In: Jones, C.B., Pihlajasaari, P., Sun, J.
(eds.) FM 2014: 19th International Symposium on Formal Methods, Singapore, 12–
16 May 2014. Lecture Notes in Computer Science, vol. 8442, pp. 627–642. Springer
(2014)

