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Online Pricing via Stackelberg and Incentive Games in a Micro-Grid

Fernando Genis Mendoza*, Dario Bauso and George Konstantopoulos

Abstract— This paper deals with the analysis and design of
online pricing mechanisms in micro-grids. Two cases are studied
in which the market layer is modeled as an open-loop and
closed-loop dynamical system respectively. In the case of open-
loop market dynamics, the price is generated as equilibrium
price of a Stackelberg game with an incentive strategy. In
such Stackelberg game, the leader is the energy supplier, the
follower is the consumer, and the leader plays an incentive
strategy. In the case of closed-loop market dynamics, the price
is obtained as a function of the power supplied and the demand.
A stability analysis is provided for both cases, which sheds
light on the transient and steady-state behavior of the system
in terms of the grids time constant, inertial, damping and
synchronizing coefficients. Conditions on the parameters that
guarantee asymptotic stability are obtained for both open-loop
and closed-loop configurations. The findings provide an insight
on the impact of the time constant and damping coefficient on
the demand and power. The study also elucidates the ways in
which the suppliers decisions influence the output values, thus
contributing to clarify the interconnection between the market
and physical layers in a micro-grid.

I. INTRODUCTION

Pricing mechanisms on electrical power systems constitute

a viable way to shift the demand peaks and thus to improve

efficiency. The underlying assumption is that the consumer

and the supplier are rational and try to maximize their profits.

Under such an assumption, a change of the price on the part

of the independent system operator modifies the consumer’s

behavior and the analysis of the resulting dynamics is a core

element in the literature on online pricing. Online pricing

requires the implementation of such incentive mechanisms

in real-time to increase the profits of the supplier by charg-

ing more when the production costs are higher instead of

applying a flat rate. Similarly, incentives can be used to

let the consumer know when is more convenient to carry

out the more power-consuming tasks. Effective methods to

determine the electricity price dynamically present several

challenging open problems including: Global optimality for

both consumers and supplier, the uncertainties in the con-

sumers’ behaviors and preferences, and more importantly,

the safe operation of the electrical systems when subjected

to such mechanisms.
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d.bauso@rug.nl

A. Problem Statement

This paper focuses on bringing together the market and

physical dynamics that are involved in determining the

functioning of the micro-grid as a whole. Two configurations

are studied in which the market layer is modeled as an

open-loop and closed-loop dynamical system respectively.

In the first configuration, a Stackelberg game is introduced

between the supplier and consumer where the supplier plays

an incentive strategy to generate an equilibrium price. In

the second, the price is obtained as feedback function of

the power supplied, the demand and an incentive strategy.

However, a detailed stability analysis should be conducted

on both configurations to ensure their correct operation.

B. Main Contributions

As a first result, conditions for stability are obtained and

the transient response of a micro-grid system subject to a

price which is generated exogenously from a Stackelberg

game is studied. The Stackelberg game introduces an in-

centive problem, which in turn determines the steady-state

gain of the open-loop market dynamics. As a second result,

a general feedback rule to obtain the price as a function

of the power flow and demand is derived. Such a rule is

based on an ex-ante price formulation. Stability analysis is

performed and the impact of the parameters on the transient

dynamics of the micro-grid system is studied. In addition to

this, simulations were carried out using both open-loop and

closed-loop pricing mechanisms based on data from [1].

C. Reviewed Literature

The present work is in the same spirit as [2], where a

stability analysis of micro-grids together with the study of

the effects of damping and inertia for homogeneous micro-

grids was conducted. The present paper differs from [2] as

we add the market layer to the physical layer of the micro-

grid. The approximation we used for the demand response

as a first-order system is introduced in [3]; examples of this

for households and businesses can be found in [4], [5] and

[6]. Transient analysis on coupled oscillators and the relation

between damping and inertial coefficients is investigated

in [7] and [1]. In this paper we use the swing dynamics

to model the transient stability in analogy with the model

developed in [7], [8] and [1]. The formulation used in the

current study for the ex-ante price, including the supplier and

consumer models was first proposed in [9]. We refer to the

cost for electricity generation mentioned in [10]. Although

the use of incentives on micro-grids have been previously

studied in [8], here they are implemented as a reward to the

consumer when participating in an online pricing scheme.



The concepts for Stackelberg game and the incentive strategy

formulation used in the present work are introduced in [11]

and [12], respectively. In [13] the Stackelberg approach is

used in conjunction with evolutionary algorithms for online

pricing schemes. The existence of equilibrium points using

other kinds of games including the Stackelberg game is

demonstrated in [14] and [15]. The main difference of our

current study to the papers above is our novel inclusion of

the incentive strategy when obtaining the price.

This paper is organized as follows. In Section II, we

introduce the micro-grid and demand response models, and

formulate the Stackelberg game. In Section III, we present

the main results. In Section IV, we provide simulations.

Finally in Section V, we provide conclusions and discuss

future directions.

II. MICRO-GRID AND ONLINE PRICING MODELS

In this section we introduce the dynamic models for the

micro-grid and for the online pricing mechanism in a unified

framework.

A. Micro-Grid Model

A micro-grid connected to the main grid can be modeled

combining an integrator dynamics and a swing dynamics.

The first equation is associated with the rate of change of

the power flow into the grid as function of the deviation

between the nominal mains frequency and the frequency of

the grid [7]. This is given by

˙Pflow = T (fnom − f), (1)

where f is the operating frequency of the micro-grid, fnom
is the nominal frequency, which is considered to be the

frequency of the main grid and T is the synchronizing co-

efficient which is obtained as the power transferred over the

transmission line between the micro-grid and the mains [16].

The second dynamics describes the rate of change of fre-

quency as function of the current frequency f , the power

flow Pflow, the generated power from the mains Pnom,

the nominal consumed power by the loads Prated and the

shiftable demand response ∆Pd [8]. This second dynamics

is given by

ḟ = −D

M
f +

1

M
(Pflow + Pnom − Prated −∆Pd), (2)

where D denotes the damping coefficient of the micro-

grid and M is its inertial coefficient, the dynamics for

∆Pd are explained in the following subsection. The block

representation of the market layer and the physical layer

of a single micro-grid is shown in Fig. 1. There, the input

exogenous to the grid represents the price Λ obtained from

the online open-loop mechanism.

B. Demand Response

For a given price, the demand response dynamics can be

represented as a first-order system [3]

˙∆Pd = −1

τ
∆Pd +

k

τ
Λ, (3)
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Fig. 1. Block system of a micro-grid with demand response ∆Pd, power
Pflow and frequency f subject to exogenous price input Λ.

where ∆Pd is the demand, τ the time constant of the market

dynamics and Λ is the price multiplied by a DC gain k.

The demand is subtracted from the power available in the

grid as shown in Fig. 1 and represents the quantity of

electrical energy that is used by the consumer given the price

announced by the supplier. The price Λ is generated from a

Stackelberg game as described in the following section.

C. Consumer and Supplier Functions

Both the supplier and the consumers are considered to

be price-taking, profit-maximizing agents. In particular the

supplier wants to maximize the price and the consumers want

to consume as much as possible with the minimum prize. The

power supplied Ps and power consumed Pc are selected as

the quantity that maximizes their respective profit functions

[9]:

Ps = argmax
x

max
Λ∈[

¯
Λ,Λ̄]

Λx− c(x), (4)

Pc = argmax
x

min
Λ∈[

¯
Λ,Λ̄]

v(x)− Λx, (5)

where the value function of all the consumers in the grid

are denoted by v(x), which represents the value that the

consumer obtains by consuming x units of electricity. Anal-

ogously, the supplier has a production cost function c(x).
We assume that the value and cost functions are concave and

convex, respectively [8], [9]. In the maximization problems

defined above, we denote by Λ̄ and
¯
Λ the upper and lower

bounds for the price. In other words, we assume that the price

lies in the interval Λ ∈ [
¯
Λ, Λ̄]. The corresponding supply

and consumption values obtained from (4) and (5) under the

minimum and maximum prices are denoted by
¯
xs and x̄s

and
¯
xc and x̄c, respectively. This implies that the supply

and consumption values lie in the intervals xs ∈ [
¯
xs, x̄s]

and xc ∈ [
¯
xc, x̄c]. The optimal supply and consumption

values x̄∗

s and x̄∗

c can be obtained by taking the derivative

of the objective functions in (4)-(5) and equaling to zero.

This corresponds to identifying as optimal those points in

which the derivative (slope of the curve) is parallel to the

price line, as illustrated in Fig. 2. From the figure we note

that x̄c corresponds to the maximum consumption given the
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Fig. 2. Supplier and consumer functions and quantities.

lowest price
¯
Λ, similar conclusions can be drawn for all other

bounds.

In order to steer the solutions to an equilibrium, a Stack-

elberg game is proposed. The advantage of formulating such

a new game is that the incentive strategy arising from such

a game no longer depends directly on the cost and value

functions, but solely on the Stackelberg equilibrium. Let

us define reference points to be employed in the game.

Normalizing the optimal solutions to each problem to unitary

values, such solutions can be taken equal to

(
¯
Λ, x̄c) = (0, 1), (6)

(Λ̄, x̄s) = (1, 1), (7)

for the consumer and for the supplier respectively. The

incentive strategy is illustrated in Section III.

III. MAIN RESULTS

In this section, the main result of the paper is presented.

First for the open-loop configuration we formulate the Stack-

elberg game, the incentive problem and determine its optimal

solution. Secondly we perform the stability analysis and

obtain the steady-state gains of the micro-grid model subject

to the game-generated price. Thirdly, we show a way to

express the price as a function of power and demand and

perform both stability and final value analysis on the closed-

loop micro-grid model.

A. Normalized Stackelberg Game Formulation

Assuming that the demand response ∆Pd of the consumers

depends on the price Λ set by the supplier, the following

Stackelberg game with incentive strategy is proposed. The

game provides an incentive strategy and an associated on-

line pricing mechanism for the case of open-loop market

dynamics. First, denoting the supplier as the “Leader” and

the consumers as the “Follower”, we introduce πL(qL, qF )
and πF (qL, qF ) as their respective profit functions. Both

functions depend on the outputs qL of the leader and qF
of the follower. The output of the supplier is the price Λ that

will minimize its cost and maximize its profits. The incentive

problem is formulated in a way such that the leader selects

a price as function of the follower’s demand. The following

profit functions capture the tension between the supplier and

the consumer. Namely the consumer prefers a low price and

to consume large quantities of energy, whereas the supplier

aims to balancing supply and demand. Let (6) and (7) be the

optimal solutions of the optimization problems (4) and (5)

respectively. Then the profit function for the leader is given

by

πL = qLqF − 1

2
q2F . (8)

Similarly, the profit function for the follower is given by

πF = log qF + 1− qLqF . (9)

We refer to incentive strategy as the choice that the leader

takes depending on the one of the follower. Namely a

function Γ(qF ). For the sake of tractability we propose the

following assumption, however, whitout loss of generality,

other class of strategies can be employed in a similar way.

Assumption 1: Strategy Γ(qF ) is linear and given by

qL = γqF . (10)

Theorem 1: Let Assumption 1 hold true. The Stackelberg

game yields the following equilibrium point:

q∗F = γ−
1

2 , (11)

q∗L = γ
1

2 . (12)

Proof: Let the leader maximize (8), and the follower

maximize (9). Because of the concavity of (14), the maxi-

mum of the follower is obtained by taking the derivative of

its profit function and equaling it to zero:

∂πF

∂qF
=

1

qF
− qL = 0. (13)

Under the assumption that the leader is playing according to

(10), then (13) can then be rewritten as

1

qF
− γqF = 0. (14)

The above yields the optimal solution q∗F as in (11). Once

the follower has chosen its demand, the leader then obtains

the price substituting (11) in (10), which leads to (12).

The optimal solutions q∗F and q∗L determine the equilibrium

of the game. Now the leader has to design a proper strategy γ
to obtain the best equilibrium point. For the supplier the best

equilibrium point is the one closest to the optimum (1, 1)
as in (7). Figure 3 illustrates the way in which a different

choice for strategy γ produces different quantities of price

and demand at the equilibrium. From the figure it is evident

that the output of the leader (the supplier) depends on the

quantity selected by the follower (consumer). In particular,

the higher the price, the lower the consumption.
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Fig. 3. Stackelberg equilibrium points as a function of γ.

Remark: From the demand response dynamics in (3), the

following expression can be obtained at steady-state:

Λss =
1

k
∆P ss

d . (15)

Above there is a linear relation between the price and the

demand, it can be implied that the incentive γ can be treated

as a gain, making the choice of the Stackelberg game with

a linear Γ(qF ) appropriate for the studied case.

B. Stability of Open Loop Configuration

Now that we have explained the ways in which the price Λ
is obtained, let us analyze the stability of the system subject

to such input. From the system configuration illustrated

in Fig. 1 and equations (1)-(3) the following state space

representation is derived:





Ṗflow

ḟ
˙∆Pd



 =

A
︷ ︸︸ ︷




0 −T 0
1
M

− D
M

− 1
M

0 0 − 1
τ









Pflow

f
∆Pd





+

B
︷ ︸︸ ︷




0 T 0
0 0 1

M
k
τ

0 0









Λ
fnom

Pnom − Prated



 . (16)

Theorem 2: System (16) is stable for all positive values

of parameters T , M , D, and τ .

Proof: Consider matrix A in (16). The characteristic

polynomial of the entire system can be obtained from the

denominator of the system’s transfer function, which is

expressed by the determinant of sI −A:

|sI −A| =
∣
∣
∣
∣





s T 0
− 1

M
s+ D

M
1
M

0 0 s+ 1
τ





∣
∣
∣
∣

= s3 + (
D

M
+

1

τ
)s2 + (

T

M
+

D

τM
)s+

T

τM
. (17)

The roots of the above polynomial, namely the eigenvalues

of system (16) are given as follows:

s1 = −1

τ
,

s2,3 =
−D ±

√
D2 − 4MT

2M
.

(18)

From Nyquist stability criterion, for the system to be asymp-

totically stable the real part of its eigenvalues must be

negative, namely the eigenvalues must lie in the left-hand

side of the complex plane. From (18) the system is stable if

the following conditions on the parameters are met:

τ > 0 and MT > 0. (19)

The above conditions are always true given that the param-

eters are strictly positive.

Remark: The transient of the system is characterized by

oscillations, when the eigenvalues have complex part, namely

for D2 < 4MT . On the contrary, no oscillations arise when

the eigenvalues are real and specifically for D2 > 4MT .

Theorem 3: The steady-state-gain from a step input of

magnitude Λm, fm or Pm=Pnom−Prated correspondingly,

to system (16) is expressed by:

P ss
flow = kΛm +Dfm − Pm, (20)

fss = fm, (21)

∆P ss
d = kΛm. (22)

Proof: From system (16) a transfer function matrix

can be obtained as Y (s)/U(s) = C(sI − A)−1B. Since

the feedback in the mentioned system is unitary, matrix

C is considered to be an identity matrix I of appropriate

dimensions. Substituting matrices A and B we obtain





Pflow(s)
f(s)

∆Pd(s)



=





G11(s) G12(s) G13(s)
G12(s) G22(s) G23(s)
G31(s) 0 0









Λ(s)
fnom(s)

Pnom(s)−Prated(s)



,

(23)

where

G11(s)=
P (s)

Λ(s)
=

kT

M( D
M
s+ s2 + T

M
)(τs+ 1)

,

G12(s) =
P (s)

fnom(s)
=

T ( D
M

+ s)
D
M
s+ s2 + T

M

,

G13(s) =
P (s)

Pnom(s)− Prated(s)
= − T

M( D
M
s+ s2 + T

M
)
,

G21(s) =
f(s)

Λ(s)
= − ks

M( D
M
s+ s2 + T

M
)(τs+ 1)

,

G22(s) =
f(s)

fnom(s)
=

T
M

D
M
s+ s2 + T

M

,

G23(s) =
f(s)

Pnom(s)−Prated(s)
=

s

M( D
M
s+ s2 + T

M
)
,

G31(s) =
r(s)

Λ(s)
=

k

τs+ 1
.



From the final value theorem, we have that the steady-state

gain for a system described by a transfer function F (s) and

subjected to an input U(s) can be obtained as

lim
s→0

sG(s)U(s). (24)

From (24) and (23) and assuming a step input of magnitude

Λm, fm or Pm we obtain:

lim
s→0

sG11(s)
Λm

s
+ sG12(s)

fm
s

+ sG13(s)
Pm

s

=
kT

M T
M

Λm +
T D

M
T
M

fm − T

M T
M

Pm,

lim
s→0

sG21(s)
Λm

s
+ sG22(s)

fm
s

+ sG23(s)
Pm

s

= − 0

M T
M

Λm +
T
M
T
M

fm +
0

M T
M

Pm,

lim
s→0

sG31(s)
Λm

s
= kΛm.

Hence, the steady-state values (20)-(22) are obtained.

In view of the considerations in subsection III-A, the price

Λ is the supplier’s output from the Stackelberg game and is

a function of a selected strategy Γ(qF ) that characterizes the

equilibrium point in terms of supply and demand as shown

in (11). This implies that for every possible equilibrium point

we obtain a different steady-state value.

C. Price as a Function of Power and Demand

To determine a way to express the price Λ as a linear

function of power and demand while closing the loop of the

system in Fig. 1, a few concepts must be introduced in the

same spirit as in [9].

An ex-ante price Λ(t) can be calculated from an estimated

supply ŝ which is in turn obtained from the total of a previous

demand, namely

ŝ(t) = Prated(t) + ∆Pd(t) (25)

which essentially represents the balancing of supply and

demand. From it and by solving the supplier’s cost function

in (4) we obtain

Λ(t) =
d

dx
c(x)

∣
∣
∣
ŝ(t)

. (26)

A physical interpretation of the above is that the supplier

supplies a quantity equal to the demand from a previous

period of time. The price is then the one that is optimal

for the given supplied quantity. Graphically, the price is

identified by the slope of the curve representing the cost

evaluated in the point corresponding to the supplied quantity.

As mentioned in [10], the supplier cost function is the

following:

Assumption 2: The supplier has a cost function c(x) of

the form:

c(x) = α
x2

2
, (27)

where x is the quantity of supplied power and α is a scalar

value. Such cost function has been experimentally validated

fnom +

−
e

T
s

1
Ms+D

fPflow

Prated

Pnom

−

∆Pd

+
+ −

γ
τs+1−γ

Market Layer
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Fig. 4. Block system of the micro-grid with closed-loop online pricing.

for thermal generators in [17] and is generally accepted as a

sound approximation as seen in [18], [19] and [20].

Substituting the supply (25) and the cost (27) into (26)

yields the following expression for the ex-ante price:

Λ(t) =
d

dx
α
x2

2

∣
∣
∣
ŝ(t)

= αx
∣
∣
∣
ŝ(t)

. (28)

We are ready to establish the following result.

Lemma 1: Let Assumption 2 hold, the price is given by

Λ(t) = α(Prated(t) + ∆Pd(t)). (29)

Now that we have obtained the dependence of price Λ on the

sum of the nominal consumed power Prated and the demand

shift ∆Pd, the block system describing the market dynamics

can be rearranged closing the loop as in Fig. 4. The system’s

dynamics in the case of closed-loop market dynamics can

then be written as

˙Pflow = T (fnom − f), (30)

ḟ = −D

M
f +

1

M
(Pflow + Pnom − Prated −∆Pd), (31)

˙∆Pd = −1

τ
∆Pd +

kα

τ
(Prated +∆Pd). (32)

We can freely substitute kα with the incentive γ since both

are linear relationships to the consumed power and both

serve as means of shifting the total demand via ∆Pd. The

state space representation of the closed-loop system can be

rewritten in matrix form as follows





Ṗflow

ḟ
˙∆Pd



=

A
︷ ︸︸ ︷




0 −T 0
1
M

− D
M

− 1
M

0 0 1
τ
(γ−1)









Pflow

f
∆Pd



+

B
︷ ︸︸ ︷




0 T 0
1
M

0 − 1
M

0 0 γ
τ









Pnom

fnom
Prated



,

(33)

as in Section III-B, the characteristic polynomial can be

obtained from |sI −A|, yielding

|sI−A|=s3+(
D

M
+
1−γ

τ
)s2+(

T

M
−D(γ−1)

τM
)s−T (γ−1)

τM
.

(34)

We are now ready to enunciate the following result.



Theorem 4: System (33) is stable for all non-negative

values of parameters T , M , D and τ . Additionally, the

incentive strategy γ must comply with the condition:

0 > γ > 1. (35)

Proof: The role of the parameter conditions for stability

are obtained similarly as demonstrated in Theorem 2, the

roots of the characteristic polynomial (34) are the following:

s1 =
γ − 1

τ
,

s2,3 =
−D ±

√
D2 − 4MT

2M
.

(36)

which yields the condition MT > 0 that is always true. To

find the conditions for γ, the Routh-Hurwitz criteria can be

applied to (34), the following conditions are obtained:

D

M
+

1−γ

τ
> 0,

T

M
− D(γ−1)

τM
> 0,

(
D

M
+

1−γ

τ
)(

T

M
− D(γ−1)

τM
) > −T (γ−1)

τM
.

(37)

Such conditions together with (36) can be reduced to obtain

the range of values (35) for the incentive strategy.

The meaning behind (35) is that if the gain is too small this

results in a price reduction that will increase the demand, and

by trying to maximise their utility function, the consumers

will demand power beyond the capabilities of the micro-grid.

Therefore, we can conclude that the closed-loop system is

stable for certain bounds of γ, as we will illustrate in section

IV-B. Hence the supplier must be aware of the consumption

historical patterns in the grid and select an appropriate value

for the incentive.

Remark: Taking into account the previous statement and

the expression of the eigenvalues in (36) we can also derive

the two following considerations:

• The system is stable with complex eigenvalues when

(38) is met, namely when

D2 < 4MT. (38)

• The system is stable with real, distinct and negative

eigenvalues when the following inequality holds

D2 > 4MT. (39)

As can be seen from the mentioned inequalities, the oscilla-

tions in the system’s response depend mainly on the value

of the damping and inertial parameters D and M , which

still holds with he findings in [7] despite our new system

configuration. Additionally, we can provide the following

observations obtained empirically regarding the role of the

system’s parameters on the transient of the system. The value

of the time constant τ affects directly the settling time of

Pflow and ∆Pd. The synchronizing coefficient T influences

the speed of the oscillations of all states proportionally, and

reduces the settling time as well; T also alters the peak

values of Pflow and ∆Pd. The inertial coefficient M affects

oscillation speed on all states and the peak responses of

Pflow and ∆Pd without affecting their steady-state values.

The damping coefficient D directly increases the settling

time for larger values while also modifying the steady-state

values of Pflow and f . The gain γ directly changes the

magnitude of Pflow and ∆Pd, increasing the settling time for

larger values. The last two observations can be corroborated

by the following result.

Theorem 5: The steady-state gain from a corresponding

step input of magnitude Pnm, fm or Prm to system (33) is

expressed by:

P ss
flow =

1

1− γ
Prm − Pnm +Dfm, (40)

fss =fm, (41)

∆P ss
d =

γ

1− γ
Prm. (42)

Proof: From system (33) a transfer function matrix can

be obtained. Since the feedback in the mentioned system is

unitary, matrix C is considered to be an identity matrix I of

appropriate dimensions. Substituting matrices A and B into

Y (s)/U(s) = C(sI −A)−1B we obtain




Pflow(s)
f(s)

∆Pd(s)



=





G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)

0 0 G33(s)









Pnom(s)
fnom(s)
Prated(s)



 (43)

where

G11(s) =
Pflow(s)

Pnom(s)
= − T

s(D +Ms) + T
,

G12(s) =
Pflow(s)

fnom(s)
=

T (D +Ms)

s(D +Ms) + T
,

G13(s) =
Pflow(s)

Prated(s)
=

sTτ + T

(−γ + sτ + 1)(s(D +Ms) + T )
,

G21(s) =
f(s)

Pnom(s)
=

s

s(D +Ms) + T
,

G22(s) =
f(s)

fnom(s)
=

T

s(D +Ms) + T
,

G23(s) = − f(s)

Prated(s)
=

τs2 + s

(−γ + sτ + 1)(s(D +Ms) + T )
,

G33(s) =
∆Pd(s)

Prated(s)
=

γ

τs+ 1− γ
.

Applying the final value theorem from (24) to (43) and

assuming a corresponding step input of magnitude Pnm, fm
or Prm we obtain:

lim
s→0

sG11(s)
Pnm

s
+ sG12(s)

fm
s

+ sG13(s)
Prm

s

= −T

T
Pnm +

TD

T
fm +

T

(1− γ)T
Prm,

lim
s→0

sG21(s)
Pnm

s
+ sG22(s)

fm
s

+ sG23(s)
Prm

s

= − 0

T
Pnm +

T

T
fm +

0

(1− γ)T
Prm,

lim
s→0

sG31(s)
Prm

s
=

γ

1− γ
Prm.

Hence, the steady-state values (40)-(42) are obtained.



IV. SIMULATIONS

Micro-grid parameters were selected based on typical

values of a grid with capacity of 60 MVA that is providing 30

MVA of power to the main grid: T = 30 MVA, M = 0.2 MJ-

s/rad and D = 1 MJ/rad in accordance to [1]; the simulation

time is 60 seconds, initial state values are selected randomly

and the grid is subject to step inputs of fnom = 50 Hz,

Pnom = 50, Prated = 20 MVA. The time constant for

the demand response has been selected as τ = 3 s, two

justifications are behind this, the first is to show the results

more clearly, the second is that in the future, customers might

be able to access real time prices in a more immediate way,

facilitating the implementation of automated decision making

given a price.

A. Grid with Exogenous Price Input

In addition to the parameters previously mentioned, the

gain is selected as k = 25 and the price Λ is a value in the

range of [0, 1], in the simulation, only three different values

of Λ are selected for illustrative, tractability purposes, and

to show the system’s response to abrupt changes. Figure 5

shows the open-loop configuration response. Note that the

demand ∆Pd reacts in accordance with the consumer be-

havior discussed in section II-B. Oscillations arise during the

transient of the system, also the sum of powers in the grid

Pnom − Prated −∆Pd does not turn negative, meaning that

the increase/decrease of demand does not surpass the power

available in the grid. Finally, none of the states exceeds the

60 MVA capacity of the micro-grid, it can be seen that the

power flow reacts according to the demand shift. Figure 6

shows the response under the same parameter values with

the exception of D = 2 MJ/rad, which is sufficiently large

to damp the oscillations. Note that when the power flow

increases, a larger damping can be chosen but this will in

might produce power flow values out of the 60 MVA capacity

of the grid.

Selecting large values of k can also result in power flow

values larger than the capacity of the grid, Fig. 7 shows the

response of the grid under the same parameter values as for

the first example except for k = 250. Note that the frequency

state deviates largely from the desired 50 Hz. These results

show that the response can be asymptotically stable but the

parameters must be selected in a way that the demand does

not exceed the power available.

B. Grid with Closed Loop Market Dynamics

The following set of simulations adopts the same param-

eters and frequency inputs as in the previous example. In

Fig. 8 with γ = 0.5 and D = 1 MJ/rad, it can be seen that

the power flow can take negative values due to oscillations

during the transient. However the frequency f has a the same

steady-state value. Also the demand shifted because of the

incentive γ is not larger than the power available. In Fig. 9

the damping is increased to D = 2 MJ/rad to eliminate

oscillations and as in the open-loop configuration, there is

an increase in the power flow state that can ultimately lead

to values exceeding the capacity of the grid. As implied in
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Fig. 5. Time plot of (top) price, (middle) power flow, and (bottom)
frequency; oscillations may arise in the frequency and power flow plot.
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Fig. 6. Time plot of (top) price, (middle) power flow, and (bottom)
frequency; by increasing the damping coefficient oscillations are reduced.

the stability analysis, there exists a sufficiently large value

of γ which compromises the stability of the system. This

is illustrated in Fig. 10 where γ = 0.8 and the power

available becomes negative due to increased demand, which

is physically impossible.

V. CONCLUSION

We have explored two ways of implementing online

pricing mechanics in a micro-grid, with a novel approach

of subjecting the system model to a Stackelberg game with

incentive strategies. Furthermore conditions for stability were

found, as well as the role of the grid’s time constant, DC

gain, inertial, damping and synchronizing coefficients in the

transient and steady-state behavior of both configurations has

been studied. More importantly, we brought closer the market

and physical layers in the system by learning the way in
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Fig. 7. Time plot of (top) price, (middle) power flow, and (bottom)
frequency; by selecting large gain values, the demand exceeds the power
available in the grid.
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Fig. 8. Time plot of (top) power flow, and (bottom) frequency; oscillations
may arise in the frequency and power flow plot.

which the parameters that are chosen by the supplier, being a

price, a gain or incentive, affect the system response. Further

direction of this work involves the introduction of mean-

field models for the demand and the impact on the overall

dynamics of the interconnection of multiple grids.
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