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ABSTRACT

The edge coloring problem asks for an assignment of colors to edges

of a graph such that no two incident edges share the same color

and the number of colors is minimized. It is known that all graphs

with maximum degree ∆ can be colored with ∆ or ∆ + 1 colors, but

it is NP-hard to determine whether ∆ colors are sufficient.

We present the first runtime analysis of evolutionary algorithms

(EAs) for the edge coloring problem. Simple EAs such as RLS and

(1+1) EA efficiently find (2∆ − 1)-colorings on arbitrary graphs and

optimal colorings for even and odd cycles, paths, star graphs and

arbitrary trees. A partial analysis for toroids also suggests efficient

runtimes in bipartite graphs withmany cycles. Experiments support

these findings and investigate additional graph classes such as hy-

percubes, complete graphs and complete bipartite graphs. Theoret-

ical and experimental results suggest that simple EAs find optimal

colorings for all these graph classes in expected timeO(∆ℓ2m logm),
wherem is the number of edges and ℓ is the length of the longest

simple path in the graph.

CCS CONCEPTS

· Theory of computation → Theory of randomized search

heuristics.
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Edge coloring problem, runtime analysis

1 INTRODUCTION

Evolutionary algorithms (EAs) are general purpose, bio-inspired

methods that have proven to perform extraordinarily well on a

wide range of optimization problems [7]. In the last decades the-

oretical analysis of EAs and related methods, especially the time

complexity analysis, gained a lot of attention and came up with

a manifold of analysis methods and results [2, 15, 22]. While in

the beginning simple toy functions like ONEMAX were studied

predominantly, research soon turned its focus to well-known com-

binatorial optimization problems. So far many results are available

for, e. g., minimum spanning trees [21], maximum matchings [13],

shortest paths [24], Eulerian cycles [20], scheduling [28] or vertex

coloring [11, 25, 26] to mention a few.

We contribute to the fundamental understanding of working

principles of evolutionary algorithms by considering the edge col-

oring problem. Given a simple graph with n vertices andm edges,

the goal is to assign colors to the edges such that no two incident

edges share the same color, called a proper coloring, and the size of

the used color palette is minimal. Edge coloring has various applica-

tions in (job shop) scheduling [27] or the assignment of frequencies

in fiber optic networks [10].

One can easily see that each simple graph can be properly col-

ored with 2∆ − 1 colors in time O(∆m), where ∆ is the maximum

node degree in the graph. An astonishing theorem by Vizing states

that any simple graph can be colored either by ∆ (class 1) or ∆ + 1

(class 2) colors.1 Holyer [14] proved that edge coloring is NP-

hard on general graphs and hence all known exact algorithmic

endeavours require exponential time. However, Misra & Gries [19]

provided a constructive proof of Vizing’s theorem. The resulting

algorithm finds an coloring with at most ∆+ 1 colors in timeO(nm)
and makes use of a sophisticated procedure called a fan rotation.

Oftentimes, restrictions to specific graph classes lead to more effi-

cient algorithms since one can leverage structural properties. For

∆-edge-colorable bipartite graphs, algorithms with running time

O(m logm) by Alon [1],O(∆m) by Schrijver andO(m log∆) by Cole,
Ost and Schirra [8] have been proposed.

In distributed computing many machines operate collaboratively

in order to solve a problem. In the famous LOCAL communication

model a network is expressed as a graphG = (V , E) with maximum

degree ∆ where adjacent nodes perform local computations and ex-

change information directly in discrete rounds via message passing

(see, e. g., [18]). Here, the running time is expressed by means of

the (expected) number of rounds until a given problem is solved

and one usually aims for poly-logarithmic running times. Graph

coloring problems (vertex and edge coloring) have a long tradition

in distributed computing and have been studied extensively for

decades mainly due to their symmetry breaking properties and the

fact that it is easy to check solutions locally [3]. That is, to verify

that a (2∆− 1)-edge-coloring is proper for a certain edge one needs

to check the local neighborhood only. Simple, yet efficient local

randomized distributed algorithms for (2∆ − 1)-coloring exist for
over 30 years [3]. Beating this natural barrier in the deterministic

setting was a major open problem for decades. Just recently, con-

siderable progress was made [4, 6, 12], e. g., by Ghaffari et al. [12]

who proposed a deterministic distributed algorithm that calculates

a (1 + o(1))∆-coloring in poly-logarithmic time in the local model

as long as ∆ = ω(logn).
Graph coloring has been subject of studies in the context of

randomized search heuristics [11, 25, 26]. This includes studies

of a simple Ising model, a model of ferromagnetism where one

seeks tomaximize the number of edges where both end points have

the same color, as it is equivalent to the vertex coloring problem

1Examples for class 1 graphs are even cycles, bipartite graphs in general and complete
graphs with an even number of nodes. In contrast, e. g., odd cycles and complete
graphs with an odd number of nodes belong to class 2.
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Table 1: Overview of presented results. Herem is the number of edges, ∆ the maximum degree, δ the minimum degree, ℓ the

length of the longest simple path, k is the size of the color palette and χ ′ is the chromatic index. The lower bound for (bipartite)

toroids holds for a worst-case initial coloring with two remaining conflicts. We conjecture an upper bound of O(m3) for RLS
on bipartite toroids from any initialization.

Graph class Colors k RLS (1+1) EA

Coloring with k = χ ′

Cycle (even) ∆ O(m3) [Thm 14] O(m3) [Thm 14]

Cycle (odd) ∆ + 1 O(m logm) [Thm 15] O(m logm) [Thm 15]

Path ∆ O(m3) [Thm 16] O(m3) [Thm 16]

Star ∆ O(m2) [Thm 17] O(m2) [Thm 17]

General tree ∆ O(∆ℓ2m logm) [Thm 18] Ð

Toroid ∆ Ω(m3) [Thm 24] Ð

Coloring with k > χ ′

Graph with restricted

edge neighborhood
∆ + τ + 1 O(∆m logm) [Thm 6] O(∆m logm) [Thm 6]

Every graph 2∆ − 1 O(∆m logm) [Cor 7] O(∆m logm) [Cor 7]

General lower bounds Every connected graph ≥ ∆ Ω(m log(m/k)) [Thm 11] Ω(m log(m/k)) [Thm 11]

Every connected graph δ +O(1) Ω(km) [Thm 12] Ω(km) [Thm 12]

in case of bipartite graphs. For the Ising model/vertex coloring,

Fischer and Wegener [11] showed that on cycle graphs RLS and

(1+1) EA find a proper 2-coloring in expected timeO(n3) andO(n2)
if crossover is used. Sudholt [25] considered the class of complete

binary trees and showed that (1+1) EA needs exponential expected

time, but a simple Genetic Algorithm with fitness sharing and

crossover locates a global optimum in expected cubic time. Sudholt

and Zarges [26] studied the running time of an iterated local search

(ILS) algorithm with different mutation operators based on color

eliminations and Kempe chains (as in the algorithm of Misra and

Gries). These operators recolor large connected parts of the graph.

They showed that ILS with color eliminations efficiently computes

2-colorings in bipartite graphs while ILS with Kempe chains needs

exponential time with overwhelming probability. Recently, Bossek

et al. [5] studied vertex coloring in a dynamic setting where edges

are added to a properly colored graph over time. Their results

show that re-optimization can be much faster than optimization

from scratch in certain situations. In contrast, adding edges in an

unfavorable order may lead to even worse asymptotic running

times than in the static setting.

In contrast to vertex coloring, the edge coloring problem has

not been considered by the EA theory community, despite being

a well-known NP-hard problem with important applications. We

address this problem here by providing rigorous runtime analyses

of RLS and (1+1) EA for selected graph classes. We show that these

algorithms are able to find proper edge colorings efficiently for a

range of graph classes. Our main results are gathered in Table 1.

This work is structured as follows. After formulating the founda-

tions in Section 2 we given some general bounds in Section 3. We

prove that a proper (2∆− 1)-coloring can be found in expected time

O(∆m logm) on arbitrary simple graphs with maximum degree ∆,

consider the expected time to find colorings with few conflicts,

and formulate general lower bounds for general graphs. Next, we

shift our focus to optimal colorings. In Section 4 we provide up-

per bounds for simple graph classes, e. g., cycles, paths and star

graphs. In Section 5 we show that on every tree the expected time

to find a proper coloring with ∆ colors is bounded from above by

O(∆ℓ2m logm) in expectation where ℓ is the length of the longest

path in the tree. In Section 6 we discuss the analysis of toroid graphs

as an example of a graph class with multiple cycles. Since the anal-

ysis turns out to be surprisingly challenging, we only present a

rigorous lower bound for a worst-case initialization and discuss the

challenges involved in rigorously proving upper bounds. Section 7

joins theory and practice by conducting a series of experiments to

(1) empirically back up our results, such as a conjectured O(m3)
bound for toroids, and (2) to check assumptions on other, more gen-

eral graph classes (e. g., hypercubes and complete graphs). Section 8

completes our first excursion into edge coloring with concluding

remarks and pointers to promising future research directions.

The appendix contains tools for the analysis of fair randomwalks

used in the main part; our presentation of these largely known

results may be of independent interest.

2 PRELIMINARIES

Let G = (V , E) be a simple undirected graph with n = |V | and
m = |E |. For an edge e we denote by deg(e) the number of edges

incident to e and by N (e) the set of edges incident to e . Note that
for every graph with minimum degree δ and maximum degree ∆

and every edge e we have

2δ − 2 ≤ deg(e) ≤ 2∆ − 2.

By ℓ := ℓ(G) we denote the length of the longest simple path in G

(that is, a path that does not loop back on itself).
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We call a function c : E → {1, . . . ,k} an edge coloring/coloring

of G. An edge coloring c is termed proper if no two incident edges

share the same color, i. e.,∀e1, e2 ∈ E: e1∩e2 , ∅ ⇒ c(e1) , c(e2). A
graph is k-colorable if there is a proper edge coloring with k colors.

The smallest number k , such that G is k-colorable, is the so-called

chromatic index and denoted χ ′(G) or just χ ′ in the following.

We call an edge pair (e1, e2) with e1 , e2 a conflict if the edges

are incident and have the same color. Likewise, we call an edge e a

conflict edge if there is at least one edge in N (e) that has the same

color assigned. We shall often refer to the unique vertex shared

between e1 and e2 as the common vertex of the conflict. A color i is

termed free for e if no incident edge is colored with i .

2.1 Algorithms

In this work we consider the size of the color palette to be fixed

to a parameter k ≥ χ ′. The search space is thus given by S =

{1, . . . ,k}m and the fitness function used is to minimize the number

of conflicts, that is, the number of edge pairs that are conflicting.

For example, if there are 4 edges e1, e2, e3, e4 sharing a common

vertex and all colored identically, they contribute
(4
2

)

= 6 conflicts

to the fitness.

Clearly, a solution x ∈ S with zero fitness is a proper k-coloring.

We are interested in the expected number of function evaluations

required until simple randomized search heuristics locate a proper

coloring for the first time. The algorithms under consideration are

randomized local search (RLS, see Algorithm 1) and (1+1) EA (see

Algorithm 2). Both algorithms maintain a single incumbent solution

x which is initialized uniformly at random. In each iteration the

incumbent is subject to mutation and the mutant y replaces x if

it has no more conflicts. The only difference is in the mutation

operator. While RLS recolors a single edge in each iteration with

probability 1 (called a local move), (1+1) EA recolors each edge with

probability 1/m independently. It thus has the ability to perform

multiple local moves simultaneously.

Algorithm 1 RLS

1: Generate x ∈ {1, . . . ,k}m uniformly at random.

2: while optimum not found do

3: Generate y by choosing an index i ∈ {1, . . . ,m} uniformly

at random, choosing a new value yi ∈ {1, . . . ,k} uniformly

at random and setting yj = x j for all j , i .

4: If y has no more conflicts than x , let x := y.

Algorithm 2 (1+1) EA

1: Generate x ∈ {1, . . . ,k}m uniformly at random.

2: while optimum not found do

3: Generate y by deciding to mutate each edge xi with prob-

ability 1/m: if yes, choose a new value yi ∈ {1, . . . ,k}
uniformly at random.

4: If y has no more conflicts than x , let x := y.

Unless stated otherwise, RLS and (1+1) EA start with a coloring

generated uniformly at random. Most of the upcoming positive

results will hold for arbitrary initial colorings.

It should be noted that for reasons of clarity and consistency ś

and because it seems to be more natural for edge coloring ś all our

runtime bounds are stated in terms of the number of edges,m, as

opposed to the number of vertices.

2.2 On the Effect of Local Moves

To lay the foundations for the upcoming analyses, we explain the

effect of local moves, before considering fitness-improving and

fitness-neutral local moves (that is, local moves not altering the

fitness) in more detail.

Consider a local move at time t changing the color of an edge

e = {u,v} from i to j , i . This move can only affect the status of

edges in N (e) ∪ {e}.
Let e1, e2, . . . , ek be all i-colored edges in N (e) (if any). Then the

recolor operation will resolve all conflicts (e, e1), (e, e2), . . . , (e, eℓ).
However, if e ′1, e

′
2, . . . , e

′
r are all j-colored edges inN (e) (if any) then

the move will create conflicts (e, e ′1), (e, e
′
2), . . . , (e, e

′
r ).

It will be useful to regard conflicts as particles that can move

through the graph. For example, if one previously conflicting edge

pair (e, e ′) becomes non-conflicting but another edge pair (e, e ′′)
now becomes conflicting, we say that the conflict has moved from

(e, e ′) to (e, e ′′). If a local move at e reduces the number of conflicts

by s , we select s conflicts involving e uniformly at random and

declare these to be resolved. The remaining conflicts (if any) are

then declared to have moved.

This random selection is used to break symmetries and to ensure

that every conflict has a fair chance to be removed in a fitness-

improving local move. For instance, if N (e) contains two i-colored
edges e1, e2 and one j-colored edge e

′
1 then either the conflict (e, e1)

moves to (e, e ′1) and the conflict (e, e2) is declared resolved, or the

conflict (e, e2) moves to (e, e ′1) and the conflict (e, e1) is declared
resolved. These decisions are made with equal probability.

2.3 On Possible Improvements

We first collect some statements that allow us to identify possible

improvements.

Recall that a color i is called a free color for an edge e if color i

does not appear in the neighborhood of e . For every conflict (e1, e2),
if either edge e1 or e2 has a free color, there is a local move that

resolves the conflict.

The following lemma lower-bounds the number of free colors,

or colors that only lead to one conflict.

Lemma 1. For every edge e the following holds. Let kfree be the

number of free colors at e and kone the number of colors that only

create one conflict among its incident edges, then

2kfree + kone ≥ 2k − deg(e).
In particular, if there is no free color for e then e has at least 2k−deg(e)
colors leading to one conflict only.

Proof. Note thatkone colors account forkone edges incident to e .

All kfree free colors do not contribute any edges, but all remaining

k − kfree − kone colors contribute at least 2 edges. Since there are

only deg(e) edges, we have
(k − kfree − kone) · 2 + kone · 1 + kone · 0 ≤ deg(e)

which is equivalent to 2kfree + kone ≥ 2k − deg(e). □
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By Lemma 1 every edge e involved in a conflict either has a free

color or it has one other color that leads to one conflict. We refer

to the latter color as an alternative color.

For edges that are part of many conflicts, there is a larger proba-

bility of reducing the number of conflicts.

Lemma 2. For every edge e that is part of at least 3 conflicts there

are at least k − ∆ + ⌈(∆ − 1)/3⌉ other colors for e that lead to at most

2 conflicts.

Proof. There are at most 2∆ − 2 edges incident to e . There can

be at most ⌊(2∆− 2)/3⌋ colors that also lead to 3 (or more) conflicts.

Thus there must be k − 1 − ⌊(2∆ − 2)/3⌋ ≥ k − ∆ + (∆ − 1)/3 other
colors that have at most 2 conflicts. Since the number of colors is

an integer, it is at least k − ∆ + ⌈(∆ − 1)/3⌉ as claimed. □

Conflicts can be resolved in case two or more conflicts of the

same color are incident.

Lemma 3. For every graph G with maximum degree ∆, for every

conflict (e1, e2) the following holds. If the conflict is incident to another
conflict (e3, e4) of the same color, with probability at least 1/(2km)
the conflict (e1, e2) is resolved in the next step.

Proof. Note that edges e1, e2, e3, e4 may not be mutually differ-

ent, however we know that e1 , e2, e3 , e4 and s :=
�

�

⋃4
i=1{ei }

�

� ≥ 3

as we are dealing with two different conflicts. We consider the fol-

lowing cases:

(1) The union of the two conflicts contains a path of length at

least 3.

(2) The two conflicts share a common center vertex.

Note that these are the only cases since the absence of a path of

length at least 3 implies that all edges must have one vertex in

common.

In the first case, the middle edge of that path can be recolored

with another color that only creates at most 1 conflict. By Lemma 1

this reduces the number of conflicts. Since we may create a new

conflict, the conflict (e1, e2) may either be declared as resolved, or

declared to have moved to the new conflicting edges. Since there

are at least 2 conflicts affected by the recolor operation, one of these

will be chosen uniformly at random to be declared to have moved.

So with probability at least 1/2, conflict (e1, e2) will be declared as

resolved.

In the second case, each of the s edges in
⋃4
i=1{ei } is involved

in at least s − 1 ≥ 2 conflicts. According to Lemma 1, recoloring

an edge in {e1, e2} with a free or an alternative color will make at

least 2 edge pairs non-conflicting (including (e1, e2)) while making

at most one non-conflicting edge pair conflicting. As above, the

probability that (e1, e2) will be declared resolved is at least 1/2. □

2.4 Fitness-Neutral Operations

We also describe and characterize some fitness-neutral operations.

Definition 4. Let (e1, e2) be a conflict at time t and let (e ′1, e
′
2) ,

(e1, e2) be the same conflict at time t+1. We say that the conflictwas

rotated at time t if the common vertex has not changed: e1 ∩ e2 =

e ′1 ∩ e ′2. Otherwise, that is, if the common vertex has changed to a

neighbouring vertex, we say that the conflict has moved.

v1

e1

e2

e 3
e
4

Figure 1: Example of a blocked conflict (e1, e2). Here, it is

blocked by another conflict (e3, e4) and cannot move further

down.

The following lemma establishes that conflicts can move in the

graph unless they are blocked by other conflicts.

Lemma 5. Consider a conflict (e1, e2). Let v1 be the end point of e1
not shared with e2. If there is no conflict that has v1 as shared vertex

then e1 has a free color or an alternative color that, when applied,

leads to the conflict being moved, with v1 as the new shared vertex.

The same statement also holds with the roles of e1 and e2 swapped.

Proof. W. l. o. g. e1 has color 1. Call v the unique joint vertex in

e1∩e2. We pessimistically assume that e1 has no free color as other-

wise the statement is trivial. By Lemma 1 (and excluding the color

c(e1) itself) e1 has s := 2k − deg(e) − 1 alternative colors, w. l. o. g.

color 2. We prove the statement by contraposition. Assume that all

these alternative colors lead to the conflict being rotated. Then for

all alternative colors i ∈ A(e1), there is exactly one i-colored edge

at v and there is no i-colored edge at v1, as otherwise i would not

be an alternative color for e1.

This means that the number of colors used at v1 is at most

k−(2k−deg(e)−1) = deg(e)−k+1 = (deg(v1)+deg(v)−2)−k+1 ≤
deg(v1) − 1. By the pigeon-hole principle, there must be at least

one color that appears at least twice at v1. This completes the

contraposition. Hence if there is no conflict withv1 as shared vertex,

there must be an alternative color for e1 that moves the conflict

along the edge e1, with v1 as new shared vertex. □

The requirements of Lemma 5 are necessary. Assume there is an-

other conflict (e3, e4), e3 , e1 and e4 , e1, with e1’s only alternative

color c(e3) , c(e1) (assuming e1 only has one alternative color) and

v1 as its common vertex (see Figure 1). Then recoloring e1 with its

alternative color c(e3) yields two conflicting edge pairs, (e1, e3) and
(e1, e4). Unless there are further c(e1)-colored conflicts involving

e1, this move leads to a decrease in fitness and will be rejected by

RLS. We say that then the conflict (e1, e2) is blocked by the conflict

(e3, e4).

3 GENERAL BOUNDS

3.1 (2∆ − 1)-Coloring Arbitrary Graphs

We first concentrate on rather generous color palettes such that

local recoloring can always reduce the number of conflicts. Our first

result is on arbitrary graphs with restricted edge neighborhoods.
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Theorem 6. On every graph G = (V , E) with maximum degree ∆

and maxe ∈E deg(e) = ∆ + τ for 0 ≤ τ ≤ ∆ − 2, for every initial

coloring, RLS and (1+1) EA find a proper coloring with k = ∆ + τ + 1

colors in expected time O(∆m logm).

Proof. First note that given a color palette of size k = ∆ + τ + 1

for each conflict edge there is always at least one free color. Now

let Xt ∈ N denote the number of conflicts and Xt (e) the number

of conflicts edge e is part of at time t . Clearly, Xt ≤
(m
2

)

= xmax

and ś since every edge is counted twice ś
∑

e Xt (e) = 2Xt . With

probability at least 1/(ekm), (1+1) EA resolves all Xt (e) conflicts
the edge e is involved in. This lower bound does hold for RLS, too.

As a consequence we get

E(Xt+1 | Xt ) ≤ Xt −
∑

e Xt (e)
ekm

= Xt −
2Xt
ekm

= Xt

(

1 − 2

ekm

)

.

This implies an expected drift of

E(Xt − Xt+1 | Xt ) ≥ Xt

(

2

ekm

)

.

At last we apply the multiplicative drift theorem [9] and obtain a

runtime bound of

ekm

2
ln(1 +O(m2)) = O(∆m logm).

The final equality is due to k = Θ(∆). □

Note that every simple graph admits a proper coloring with

2∆ − 1 colors, since deg(e) ≤ 2∆ − 2 for all edges. Hence, setting

τ = ∆ − 2 in Theorem 6 we obtain the following result.

Corollary 7. On every graph with maximum degree ∆ and for

every initial coloring, RLS and (1+1) EA find a coloring withk = 2∆−1
colors in expected time O(∆m logm).

3.2 Reducing the Number of Conflicts

The number of conflicts (that is, the number of conflicting edge

pairs) can be as large as
(m
2

)

= Θ(m2) for a star graph or a complete

graph where all edges have the same color. We show that, for every

number of colors k ≥ ∆ and every initial coloring, the number of

conflicts quickly decreases to at mostm.

Theorem 8. For every graph G withm edges and maximum de-

gree ∆ and every initial coloring, the expected time until RLS or

(1+1) EA with k ≥ ∆ colors have found a solution with at most m

conflicts is O(m logm).

Proof. Let Xt again denote the number of conflicts at time t

and Xt (e) denote the number of conflicts edge e is part of at time t .

For edges e withXt (e) > 2, Lemma 2 states that there are at least

k − ∆ + ⌈(∆ − 1)/3⌉ alternative colors which lead to at most two

conflicts. The probability of executing a local move at e is at least

1/(em) for both RLS and (1+1) EA and the probability to recolor the

sampled edge with one of these colors is at least

k − ∆ + ⌈(∆ − 1)/3⌉
k

= 1 −
(

∆ − ⌈(∆ − 1)/3⌉
k

)

≥ 1 −
(

∆ − ⌈(∆ − 1)/3⌉
∆

)

≥ 1

4
.

Here, the last inequality stems from the observation that the term

in braces is maximal for ∆ = 4. Thus, if Xt (e) > 2 then with

probability at least 1/(4em)we getXt (e)−Xt+1(e) ≥ Xt (e)−2. The

same statement holds trivially for Xt (e) ≤ 2 as a local move at e

cannot increase the number of conflicts. As long as Xt ≥ m + 1, the

overall expected drift is thus

E(Xt − Xt+1 | Xt ) ≥
∑

e

1

4em
· (Xt (e) − 2)

=

1

4em

(

∑

e

Xt (e) − 2m

)

=

1

4em
(2Xt − 2m) .

The variable drift theorem [16] (Theorem 3 in [17]) then yields an

upper bound of

2em +

∫ m2

m+1

4em

2x − 2m
dx

= 2em + 4em

∫ m2

m+1

1

2x − 2m
dx

= 2em + 4em

[

ln(2x − 2m)
2

]m2

m+1

= 2em + 4em

(

ln(2m2 − 2m)
2

− ln 2

2

)

≤ 2em + 4em lnm. □

We remarkwithout proof that within expected timeO(∆m logm),
both RLS and (1+1) EA find a solution with at mostm/2 conflicts,
for every graph withm edges. This can be shown by waiting for

free or alternative colors to be applied, similarly to the proof of

Theorem 6.

3.3 General Lower Bounds

To complement our upper bounds and to establish a baseline for

good performance, we now turn to proving lower bounds for RLS

and (1+1) EA. We show two lower bounds that apply to arbitrary

connected graphs. As a first step, we show that the initial coloring

has Θ(m/k) conflicts with high probability.

Lemma 9. For every connected graph with m edges, if an edge

coloring is chosen uniformly at random with colors {1, . . . ,k} then
there are at leastm/(4k) conflicts on mutually disjoint edges, with

probability 1 − e−Ω(m).

To show Lemma 9, we first show the following combinatorial

result.

Lemma 10. Every connected graph withm edges admits a sequence

of mutually disjoint edges e1, . . . e2 ⌊m/2⌋ such that for all i with

1 ≤ i ≤ ⌊m/2⌋, e2i−1 and e2i are incident edges.

Proof. We prove the claim by induction overm. The claim is

trivial form ≤ 1. Assume that the claim holds form−2 and consider
any connected graph G withm ≥ 2 edges.

Consider a spanning tree T of G rooted at an arbitrary but fixed

vertex and denote by degT (v) the degree of a vertex v in T . We

consider leaves in T that have a maximum graph distance from the

root in the subgraph induced by T and call these deepest leaves.

If there is a deepest leaf u that is incident to at least two edges

not belonging to T , we remove two such edges. All vertices remain
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connected viaT and hence we can decompose the remaining graph

of m − 2 edges inductively into ⌊(m − 2)/2⌋ = ⌊m/2⌋ − 1 further

edge pairs.

Otherwise, if there is a deepest leaf u, with a parent that we

call v , that is incident to exactly one edge e not belonging to T , we

remove e and {u,v} and the graph remains connected viaT \ {u,v}
since u is a leaf inT . The remaining graph can then be decomposed

inductively.

Otherwise all deepest leaves in T are also leaves in G. Fix a

deepest leaf u with a parent that we call v . If u has a sibling u ′ in
the tree then u ′ must be another deepest leaf as u was chosen to

have a maximum graph distance to the root. Then the edges {u,v}
and {u ′,v} are incident. Removing these edges leaves a connected

graph withm − 2 edges, which can be decomposed inductively.

If u does not have a sibling in T then, since there are at least 2

edges in the graph, v must have a parent in the tree that we callw .

We note that {u,v} and {v,w} are incident, and removing them

from the graph leaves a connected graph as there are no further

edges at u nor v . Removing {u,v} and {v,w} and decomposing the

remaining graph inductively as above completes the proof. □

Proof of Lemma 9. By Lemma 10 there is a sequence of mu-

tually disjoint edges e1, . . . , e2 ⌊m/2⌋ such that edges e2i−1 and e2i
are incident, for all 1 ≤ i ≤ ⌊m/2⌋. For each such edge pair the

probability that the two edges will be conflicting after a random

initialization is 1/k . These events are independent for all edge pairs,
hence we can apply Chernoff bounds. This yields that, with proba-

bility 1−e−Ω(m), at leastm/(4k) edge pairs e2i−1, e2i are conflicting
after initialization. □

The following lower bound follows now from Lemma 9 and

standard coupon collector arguments.

Theorem 11. The expected time for RLS or (1+1) EA to find a

proper k-coloring on any connected graph G , for any value of k ≤ m,

is Ω(m log(m/k)). This is Ω(m logm) if k = O(m1−Ω(1)); this is the
case, for example, for all regular graphs or graphs where δ = Ω(∆).

Proof. By Lemma 9, with probability 1 − e−Ω(m), the initial

coloring has at leastm/(4k) conflicts on mutually disjoint edges.

Assume that this happens and fix a conflicting pair. The conflict

can only be resolved if one of the two edges is being picked during

mutation. The probability for this event is at most 2/m for both

RLS and (1+1) EA.

The probability that a fixed conflicting pair is not resolved within

t := (m/2 − 1) ln(m/(4k)) mutations is at least
(

1 − 2

m

)t

≥ e− ln(m/(4k ))
=

4k

m
.

The probability that there is a conflict out of them/(4k) conflicts
that is not resolved after time t is at least

1 −
(

1 − 4k

m

)m/(4k )
≥ 1 − 1

e
.

This means that the expected optimization time is at least (1−1/e −
e−Ω(m)) · t = Ω(m log(m/k)). □

Theorem 11 shows that the upper bound from Corollary 7 is

asymptotically tight if ∆ = O(1) as then log(m/k) = Θ(logm).

We also give a lower bound that includes a factor of k (but no

logm factor).

Theorem 12. The expected time of RLS and (1+1) EA to find a

proper k-coloring on any connected graph with minimum degree

δ ≥ 2 and δ ≤ k ≤ m is at least Ω(km/(k − δ + 1)). This is Ω(km)
if k = δ + O(1), for example when the graph is ∆-regular and k ∈
{∆,∆ + 1}.

Proof. By Lemma 9, the probability of initializing with an opti-

mal solution is e−Ω(m).
The best case situation for finding a proper coloring is attained

when there is just one conflict (e1, e2), or two conflicts that share an
edge e1 and form a path of 3 edges. This is because if there are two

conflicts with disjoint edge pairs, or multiple conflicts that have

the same vertex as common vertex, multiple specific edges need to

be recolored to find the optimum in one step. This is impossible for

RLS and has probability O(1/m2) for (1+1) EA.
To find a proper coloring from a coloring with just one conflict,

it is necessary to recolor e1 or e2. For any such edge e , since there

are no other conflicts, at least δ − 1 colors are taken, hence the

number of free colors is at most k −δ + 1. The probability to recolor
one of the two involved edges and to pick a free color is at most

2(k − δ + 1)/(km) and the expected waiting time for this event is at

least km/(2(k − δ + 1)).
In the case of two conflicts with a shared edge e1, e1 must be

recolored with one of k − δ + 1 free colors, which has probability

at most (k − δ + 1)/(km). The expected waiting time in this case is

at least km/(k − δ + 1). □

Together, we obtain the following result for ∆-regular graphs.

Corollary 13. The expected time for RLS and (1+1) EA to find a

proper coloring on any ∆-regular connected graph, with k ≤ ∆+O(1),
is Ω(∆m +m logm).

4 RUNTIME BOUNDS FOR SIMPLE GRAPH
CLASSES

We now consider the performance of RLS and (1+1) EA on a range

of simple graph classes. We start with cycle graphs, that is, graphs

that consist of a single cycle visiting all vertices.

Theorem 14. For every initial coloring, the expected time for RLS

and (1+1) EA to find a proper 2-coloring on every cycle graph C2n

with an even number of nodes is O(m3).

Proof. We first review the notion of a line-graph L(G) of an
arbitrary graph G. The line-graph is a graph with one node for

each edge ofG and an edge between nodes if and only if the corre-

sponding edges in G are incident. It is easy to see that an optimal

edge-coloring of G corresponds to an optimal vertex-coloring of

L(G) and vice versa. Cycle graphs have the appealing property that

its line-graph is again a cycle graph with n nodes andm = n edges.

Since χ ′(G) = χ (L(G)) we can focus on vertex-coloring of L(G)
with 2 colors. An equivalent problem is to minimize the number of

monochromatic blocks which was studied by Fischer and Wegener

[11] in context of the Ising model on rings (cycle graphs). The au-

thors prove an upper bound of O(n3) function evaluations for RLS

and (1+1) EA respectively. This result directly implies a runtime
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of O(m3) for edge-coloring of C2n with 2 colors. The key idea of

[11] is to consider connected monochromatic blocks and the length

of the shortest block in particular. They estimate the number of

so-called relevant steps, i. e., steps that either decrease the number

of monochromatic blocks or the length of the shortest block by

O(n2). The key argument is that the algorithms need to overcome

plateaus of length at most n/2. Here, random walk arguments yield

the quadratic bound. Since n such steps are sufficient we end up

with a runtime bound of O(n3) = O(m3). □

Note that cycle graphs with an odd number of edges do not admit

a proper 2-coloring and hence at least three colors are needed. The

additional color makes the problem much easier, because there is

always a free color for a conflicting edge.

Theorem 15. For every initial coloring, the expected time of RLS

and (1+1) EA to find a proper 3-coloring on a cycle graph C2n+1 with

an odd number of nodes is O(m logm).

Proof. Note that in C2n+1 we have 2∆ − 1 = 3 and hence the

theorem follows directly from Corollary 7. □

We also note for completeness that paths can be colored in the

same way as even cycles, with almost identical proofs.

Theorem 16. For every initial coloring, the expected time of RLS

and (1+1) EA to find a proper 2-coloring on a path withm edges is

O(m3).

Proof. Follows the same arguments as the proof of Theorem 14.

□

Now we consider star graphs, defined as a graph with a vertex

in the center of the graph, to which all edges are incident. This

implies ∆ =m.

Theorem 17. The expected time of RLS and (1+1) EA to find a

proper coloring with k = ∆ =m colors on a star graph withm edges

is bounded by O(m2).

Proof. Consider the number of conflicts Xt at time t ∈ N0
and denote by Xt (i) the number of edges colored with color i ∈
{1, . . . ,m} at time t . Note that Xt (i) ≥ 1 implies that there are

(Xt (i) − 1) edges which shall be colored differently with free colors.

Note further that

Xt =

m
∑

i=1

(

Xt (i)
2

)

=

1

2

m
∑

i=1

Xt (i) · (Xt (i) − 1).

Call the total number of free colors s . With the considerations

from above we can conclude s =
∑m
i=1max{0,Xt (i) − 1}. The max-

function ensures that colors that are not used so far do not have a

negative contribution to s .

Note that in both Xt and s all values Xt (i) ≤ 1 lead to a con-

tribution of 0, hence we can focus on values Xt (i) ≥ 2. Using

Xt (i) ≤ 2(Xt (i) − 1) for Xt (i) ≥ 2,

Xt =
1

2

∑

i : Xt (i)≥2
Xt (i) · (Xt (i) − 1)

≤
∑

i : Xt (i)≥2
(Xt (i) − 1)2

≤
(

∑

i : Xt (i)≥2
(Xt (i) − 1)

)2

=

(
∑

i : Xt (i)≥2
max{0,Xt (i) − 1}

)2
= s2,

where the last inequality follows from the Cauchy-Schwarz inequal-

ity. We conclude that s ≥
√
Xt .

If Xt > 1 we can improve by selecting a single edge and recol-

oring this edge with a free color. This happens with probability

at least s/(ekm) ≥ s/(em2) for both RLS and (1+1) EA. Hence, the

overall expected drift is

E(Xt − Xt+1 | Xt ) ≥
1

2

m
∑

i=1

Xt (i) · (Xt (i) − 1) ·
( s

em2

)

= Xt ·
( s

em2

)

≥
X
3/2
t

em2
.

With xmin = 1 ≤ Xt ≤
(m
2

)

< m2 the variable drift theorem yields

an upper bound of

em2
+

∫ m2

1

(

em2
)

x−3/2 dx

= em2
+ em2

∫ m2

1
x−3/2 dx

= em2
+ em2

[

− 2
√
x

]m2

1

= em2
+ em2

(

2 − 2

m

)

≤ 3em2 − 2em = O(m2). □

5 A BOUND FOR TREES

We now show that RLS can efficiently edge-color arbitrary trees

with ∆ colors. We focus on RLS instead of (1+1) EA as the analysis

becomes more involved. Even on simple graphs such as cycles,

Fischer and Wegener’s work shows that the analysis of (1+1) EA

becomes way more complicated than that of RLS [11] and it is not

clear whether (1+1) EA has any advantage over RLS (we shall revisit

this question experimentally, in Section 7).

Theorem 18. On every tree G with ℓ := ℓ(G), RLS with k = ∆

finds a proper ∆-coloring in expected time O(∆ℓ2m logm).

Proof. Let h be the height of the tree, i. e., the length of the

longest simple path from the root to any leaf. Note that h ≤ ℓ ≤ 2h,

hence we only need to show an upper bound ofO(∆h2m logn). For
a vertex v denote by d(v) the depth of v , that is, the length of the

unique simple path from v to the root.

We identify the initial conflicts with tags 1, 2, 3, . . . that move

with the conflicts. Once a conflict is resolved, the tag disappears;

until this happens, the tag is called active. We denote by c(i) the
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color of the conflict tagged i . Define φt (i) := h − d(vt (i)), where
vt (i) denotes the common vertex of the conflict tagged i at time t . If

the tag has disappeared from the graph, we define φt (i) := 0. Note

that, while the tag is active, 1 ≤ φt (i) ≤ h as the common vertex of

any conflict cannot be a leaf, hence 0 ≤ d(vt (i)) ≤ h − 1.

By Lemma 5, a conflict can move up or down in the tree as long

as it is not blocked by another conflict (see Figure 1 for an example

of a blocked conflict). While there is no blocking conflict, there

is only at most one recolor operation that would move a conflict

closer to the root, thus increasing φt , while there is at least one

recolor operation that would move it away from the root, thus

decreasing φt . While φt (i) = 1 the conflict has reached a leaf and

can be resolved by recoloring the edge incident to the leaf. However,

blocking conflicts complicate the situation as they can eliminate

moves that decrease φt . On the other hand, the blocking conflict

has an advantage as it does not have any moves that can increase

φt . We address this by considering the following model that reflects

how conflicts move through the tree.

Consider a conflict tagged i and an edge e that connects levels

d(vt (i)) and d(vt (i) + 1). Assume that e is incident to both edges of

another conflict tagged j on levels d(vt (i) + 1) and d(vt (i) + 2). If a
recolor operation picks edge e and color c(j) then we swap tags i

and j . This is done regardless of whether the recolor operation is ac-

cepted or not. The idea behind this swap is that while a conflict may

be blocked by another conflict, tags can roam more freely. We will

show in the following that the φt -values of tags are stochastically

dominated by a fair random walk.

Lemma 19. For every tag i we have

Pr (φt+1(i) = φt (i) + 1) ≤
1

km
.

Proof. A tag can only move up under the following conditions.

If the two edges of conflict i are on the same level, the only way

the tag can move up is if it is swapped with a tag higher up in the

tree. This requires a specific recolor operation that occurs with

probability 1/(km).
If the two edges of the conflict are on different levels, tag i cannot

be swapped łupwardsž, but a recolor operation canmove the conflict

up. Let e1 be the upper edge of the conflict and e2 be the unique

edge incident to e1 on the level above. For a recolor operation to

move the conflict up, e1 must be recolored with color c(e2). This
operation has probability 1/(km). □

Lemma 20. For every active tag i we have

Pr (φt+1(i) ≤ φt (i) − 1) ≥ 1

km
.

Proof. Consider an edge e = {v1,vt (i)} of the conflict where
d(v1) = d(vt (i)) + 1.

First assume that e has a free color. Note that this is implied by

φt (i) = 1 as then e is incident to a leaf; since two edges at v are

colored c(i) and deg(e) = deg(v) ≤ ∆ there must be a free color by

the pigeon-hole principle. Choosing a free color would remove the

tag, yielding φt+1(i) = 0 ≤ φt (i) − 1. The probability of applying a

free color to e is at least 1/(km).
Now assume that e has no free color, which implies φt (i) ≥ 2. By

Lemma 5, if there is no other conflict that has v1 as shared vertex,

there must be a free color or an alternative color that moves the

conflict further down in the tree, leading to φt+1(i) = φt (i) − 1. The

probability for this event is at least 1/(km).
Finally, we assume that e has no free color but there is a conflict

tagged j with v1 as shared vertex. We consider two sub-cases. First

assume that e is incident to at least 2 edges of color c(i). Then,
arguing similarly to Lemma 3, there must be two colors that, when

applied to e , only lead to one conflict that involves e . More formally,

let x be the number of colors that appear at least twice. Then if

there is no free color the number of edges incident to e must respect

x · 2 + (k − x) · 1 ≤ 2∆ − 2, which is equivalent to x ≤ ∆ − 2.

With probability at least 1/2, conflict i will be declared resolved (cf.

Section 2.2). The probability for these events is at least 2/(km)·1/2 =
1/(km).

If e is only incident to one edge of color c(i) (the other edge of
conflict i) then trying to recolor e with color c(j) will be rejected as

it would increase the number of conflicts. However, it would swap

tags i and j and, consequently, φt+1(i) = φt (i) − 1. The probability

for this recolor operation is 1/(km). □

We conclude thatφt is dominated by a lazy2 fair randomwalk on

{0, . . . ,h} where the probability of changing the current state is at

least 1/(km). By the first statement of Lemma 27 in the appendix, the

expected time to reach state 0 is at most h2km. Since there are up to

m2 fair randomwalks for all tags (which are not necessarily indepen-

dent), the third statement of Lemma 27 yields that the expected time

for all tags to disappear is O(h2km log(m2)) = O(h2km logm). □

6 TOWARDS AN ANALYSIS OF TOROIDS

We now turn our attention to the performance of RLS on toroids,

which are essentially two-dimensional grids with edges łwrapping

aroundž. The reason for studying toroids is that they represent

a simple graph class featuring many cycles. We will see in the

following that cycles play a key role in edge coloring, and that

the analysis can become quite involved. We believe that many of

the arguments applied to bipartite toroids also apply to general

∆-regular bipartite graphs, or even arbitrary bipartite graphs.

Toroids are formally defined as graphs with vertices (i, j) for
1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 and edges from (i, j) to vertices (i + 1, j),
(i−1, j), (i, j+1) and (i, j−1), where for ease of notation we identify

indices 0withn1 andn1+1with 1 for the first argument and likewise

for n2 and the second argument. The number of vertices in a toroid

is n1 · n2.
We imagine a toroid drawn as a 2-dimensional grid, with edges

wrapping around, such that edges are drawn either horizontally

or vertically (see Figure 2 for an example). We speak of rows and

columns in an obvious way.

Note that a toroid with parameters n1,n2 is bipartite if both n1
and n2 are even. We always assume that n1,n2 ≥ 4 as then the

toroid is 4-regular, that is, every vertex has degree 4. This implies

that the number of edges ism = 2n. In the following, we tacitly

assume that all toroids are 4-regular.

Bipartite toroids are 4-edge-colorable, and the number of proper

colorings is exponential. For example, all colorings where rows

are colored with alternating colors 1 and 2 (say) and columns are

colored with alternating colors 3 and 4, are proper colorings. For

2The term lazy means that the random walk has a positive self-loop probability.
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each row and column we can choose independently which of the

two colors comes first, which gives rise to 2n1+n2 different proper

colorings. There are many further proper colorings that do not

follow patterns of rows and columns (see Figure 2 for a coloring

that is nearly proper). Note that, since k = 4 colors are used and

toroids are k-regular, every vertex in every proper coloring must

be incident to exactly one edge of each color. The orientation of

these edges can vary between neighboring vertices.

For improper colorings we show that there exist unique paths

of alternating colors that start and end in a common vertex of a

conflict. We refer to a simple path as i-j-path if colors i and j are

alternating on the path.

Lemma 21. Consider a conflict (e1, e2) with color i and common

vertex v , where e1 = {v1,v} and e2 = {v,v2}. Then the following

statements hold:

(1) For all colors j , i , there is a unique i-j-path that starts at v ,

uses e1 but not e2 and ends in a vertexw that is the common

vertex of a conflict. The same holds when the roles of v1 and

v2 are swapped.

(2) For all colors j , i , the unique i-j-path starting with e1 does

not share any edges with the unique i-j-path starting with e2.

(3) All i-j-paths where j is a free color at v end in a different

conflict.

Proof. We follow this i-j-path, starting fromv andmoving tov1.

For every vertex u on this path, the following holds. If u has more

than one incident edge colored j or u has more than one incident

edge colored i ,w = u and the claim holds. Ifu only has one incident

edge colored i or j, by the pigeon-hole principle u must have two

incident edges of a different color and we can take w = u. If the

above cases do not occur, u has exactly one i-colored edge and

one j-colored edge, and the path can be extended, while remaining

unique.

The path cannot have any loops, hence it must reach a conflict

without using edge e2 or return to v via e2. We show that the latter

case is impossible. Assume for a contradiction that it returns to v

via e2, closing a cycle. Then the first and the last edge of the path

were colored i . Since colors must alternate on the path, the cycle

must have odd length, contradicting the assumption that the toroid

is bipartite. Hence the path must end in a conflict without using e2.

This argument also shows that the unique i-j-path starting with

e1 has no common edges with the unique i-j-path starting with e2,

proving the second statement.

For the third statement, if j is a free color at v , there can be no

i-j paths looping back to v as the last edge cannot be colored j (as j

is a free color at v) nor i (as it would close an odd cycle). □

Lemma 21 in particular implies that every improper coloring

must have at least two conflicts.

The following lemma shows that conflicts can move along i-j

paths, where i is the color of the conflict and j is a free color at

its common vertex. After one such step, the roles of i and j are

swapped. A requirement for the lemma to hold is that no other

conflicts interfere.

Lemma 22. Consider a conflict (e1, e2) with color i and common

vertex v , where e1 = {v1,v} and e2 = {v,v2}. Assume there is no

other conflict that has v , v1 or v2 as common vertex. Then

(1) there is a unique free color j at v

(2) the only accepted moves involving the conflict (e1, e2) are those
where e1 or e2 respectively is recolored j

(3) after such a move is applied, the conflict has color j and i is a

free color at its joint vertex.

Proof. There must be a unique free color at v since deg(v) = 4

and the two remaining edges must have different colors to each

other and different from i (as otherwise there would be another

conflict with v as common vertex). Let the free color be j.

Since there is no conflict with v1 as common vertex, all colors

must be present exactly once at v1. The same holds for v2.

If e1 is recolored j then e1 and e2 stop being conflicting, and e1
starts being conflicting with the unique j-colored edge at v . This is

a fitness-neutral move that moves the conflict towards a new joint

vertex v1.

If e1 is recolored s ∈ {1, . . . , c}\{i, j} then the number of conflicts

increases as there is one s-colored edge at v1 and another s-colored

edge atv . Hence the only accepted move for e1 is to recolor is with j ,

the free color at v .

All the above holds analogously for e2, completing the proof of

the second statement.

The third statement holds since, before applying themove, e1 and

e2 are the only i-colored edges atv1 andv2, respectively. When one

of these edges is recolored, i becomes a free color at the respective

vertex. □

We also characterize edges that cannot be recolored as they lead

to rejected moves.

Lemma 23. Consider an edge e that is not part of any conflict. If

e has an end point where all other colors are present then all local

moves recoloring e will be rejected.

Proof. Let e = {u,v} and w. l. o. g. let all other colors be present
at v . Since e is not part of any conflict, no conflicts will be resolved

by recoloring e . However, a new conflict will be created with v as

common vertex. Thus the number of conflicts will increase and the

move will be rejected. □

In the following, we consider the time to resolve the last two

remaining conflicts.We show a lower bound ofΩ(m3)when starting
with a particular coloring with just two conflicts. Then we argue

why we believe that this bound is asymptotically tight and why

this is difficult to prove formally.

Theorem 24. For every bipartite toroid, there is a search point with

just two conflicts from which RLS with k = 4 colors needs expected

time Ω(m3) to find a proper 4-coloring.

Proof. A cycle is called chordless if no two vertices are con-

nected by an edge that does not itself belong to the cycle (the cycle

highlighted in Figure 2 is chordless).

We construct a coloring with two conflicts lying on a chordless

cycle C of length Θ(m). The colors on the cycle are alternating,

bar the two conflicts. The conflicts are placed at an initial distance

of Θ(m). A chordless cycle of length Θ(m) can be constructed by

łsnakingž left and right and leaving a safety gap to parts of the cycle

that are already constructed. (Taking care when choosing those
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Figure 2: Sketch of a worst-case initial coloring for toroids.

The cycle drawn in bold uses only colors red and blue, with

colors alternating, bar two conflicts.

gaps that the remainder of the graph can still be properly colored.)

Figure 2 shows an example. Note that the construction can easily

be scaled up for larger graphs by duplicating rows and/or columns

appropriately.

Call the common vertices of the two conflicts v1 and v2, respec-

tively. We have two i-j-paths between v1 and v2 that together form

the cycleC , where i and j are the colors of the conflicts and the free

colors at v1 and v2. We call these paths augmenting paths (inspired

by well-known algorithms for maximummatchings and subsequent

studies of EAs [13]) as swapping colors on all edges of the path

yields a fitness improvement (and in this case, a proper coloring).

We shall pay particular attention to the length of the shortest

augmenting path. Once this length has reduced to 1, RLS is able

to recolor this edge and, if the right color is chosen, this yields a

proper coloring. The idea of considering the shortest augmenting

path is borrowed from Fischer and Wegener’s analysis of coloring

problems on cycle graphs [11]. On the cycle C , the length of the

shortest augmenting path corresponds to the graph distance of v1
and v2 on the subgraph induced by C .

By Lemma 23, as long as v1 and v2 are not adjacent on the cycle,

only local moves at the conflicting edges will be accepted. This is

because the cycle is chordless and v1 and v2 can only be adjacent if

they are adjacent on the cycle. All other vertices have edges of all

four colors, thus every non-conflicting edge meets the conditions

of Lemma 23. In other words, the only accepted moves are those

moving one of the conflicts along the cycle, unless the conflicts’

common vertices have reached a distance of 1. Once this happens,

we pessimistically assume that a proper coloring has been found.

Both conflicts can travel in either direction with equal probability

1/(km). This implies that, if the length of the shortest augmenting

path is less than |C |/2, there are two local moves that reduce this

length by 1, and there are two local moves that increase this length

by 1. If the maximum possible length of |C |/2 is reached3, there are
4 local moves that decrease the length of the shortest augmenting

path.

Hence the process can be regarded as a fair random walk on

states {1, 2, 3, . . . , |C |/2} with a reflecting state |C |/2 and transition
probabilities to neighboring states of 2/(km) (and 4/(km) in the

case of |C |/2). With the remaining probability, the random walk

stays put.

Since |C | = Θ(m), the initial distance is Θ(m), and transitions

happen with probability 4/(km), by Lemma 27 the expected time

to reach state 1 is Θ(m3). □

It seems plausible that the last non-optimal fitness level is the

most difficult one, in the worst case. We conjecture that the lower

bound from Theorem 24 is tight and that the last non-optimal

fitness level is optimized in expected time O(m3) for all colorings
with two conflicts remaining. We do not have a formal proof for

this conjecture for reasons explained in the following.

Call the common vertices of the two conflicts v1 and v2. By

Lemma 21 there are two unique i-j-paths connecting v1 and v2
that form a cycle C . As in the proof of Theorem 24 we consider the

length of the shortest augmenting path, or equivalently the graph

distance between the conflicts’ common vertices on C . The proof

of Theorem 24 has already established an upper bound of O(m3)
for reaching a state 1, assuming that C is chordless. Note that from

state 1 there is a probability of at least 1/(km) = Ω(1/m) of finding
the optimum in the next step. There is also a probability of at most

3/m = O(1/m) of making any other accepted move (for instance,

increasing the current state) as in this situation, by Lemma 23, only

moves affecting one of the 3 edges that are part of a conflict may be

accepted. Hence, there is a constant probability that the optimum

will be found within the nextO(m) steps before any other accepted

move is made. If this is not the case, we repeat the above arguments.

Thus, if suffices to bound the expected time to reach state 1 by

O(m3).
A problem arises if C is not chordless and if v1 and v2 are con-

nected by an edge not on C . Let a < {i, j} denote the color of

{v1,v2}. Both conflicts must have the same color i as otherwise

every path betweenv1 andv2 would have even length and the edge

{v1,v2} would close an odd cycle. But in this situation the edge

{v1,v2} can be recolored j in a fitness-neutral operation as j is a

free color for both v1 and v2 (note that Lemma 23 does not apply).

This means that the free color at both v1 and v2 switches from j

to a, and there is a corresponding cycle C ′ with alternating colors

i-a betweenv1 andv2 on which the conflicts are able to move. Note

that the colors may switch back to i and j at {v1,v2}4, but the colors
might also switch again towards arbitrary combinations of colors

on further cycles C ′′,C ′′′, and so on.

The same effect may happen even in chordless cycles when the

distance of the shortest augmenting path has reduced to 1. Then

the edge {v1,v2} is incident to two edges of the two colors different
from i and j. Recoloring the edge with such a color is a fitness-

neutral move as it removes the two conflicts on C , while creating

two new conflicts with joint vertices v and w . This switches the

3Note that |C |/2 is an integer as C must be of even length.
4In other words, if we consider the state graph of all possible colorings that can be
reached via fitness-neutral local moves, that graph is undirected.
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random walk to another cycle C ′, while the length of the shortest

augmenting path remains at 1. Even ifC was chordless,C ′ may not

be chordless. Hence, to get a rigorous upper bound of O(m3) for
the last fitness level, we would have to assume that all cycles that

can ever be reached are chordless.

The situation is complicated further when more than two con-

flicts are present. Other conflicts may interfere with the process

described above in various ways:

• They can block augmenting paths at one end. While this

is the case (and no other interference happens), one end of

the augmenting path will be fixed, while the other end can

perform a random walk. Then the previous random walk

arguments can still be applied with transition probabilities

reducing from 2/(cm) to 1/(cm).
• Augmenting paths may become blocked at both ends, in

which case they cease to be łaugmentingž. For trees we used

the idea of tags being swapped, so that tags could roam more

freely even though the original conflicts were being blocked.

Tags could always be removed when reaching leaves. It is

not clear whether or how this idea can be applied for toroids

as we are lacking conditions on when tags will disappear.

• If two conflicts share the same common vertex v , there are

two free colors at v , possibly increasing the number of aug-

menting paths.

• Augmenting paths that are blocked can become unblocked,

which may suddenly and drastically increase the length of

the shortest augmenting path.

It seems plausible that search points with many conflicts have

many augmenting paths. However, proving this does not seem ob-

vious, even when we consider paths that are blocked on exactly one

end as augmenting paths. Even proving that a single augmenting

path exists is not obvious. It is possible to construct colorings where

several conflicts all block each other on both ends. Hence, it is an

open problem to prove or disprove that in every improper coloring

there exist conflicts that are not blocked on both ends.

Note, however, that even if all conflicts end up being blocked, it

may still be likely that conflicts become unblocked once other con-

flicts have moved about. And all the above considerations arise from

a worst-case perspective, and trying to prove statements that apply

to every improper coloring. Observing simulations suggests that

blocked conflicts does not seem to be a real issue for performance.

In all runs observed, RLS found a proper coloring in a time that

seems close to a function am3 for a small constant a (see Section 7).

We therefore formulate the following conjecture for future work.

Conjecture 25. For every bipartite toroid G and every initial

coloring, RLS finds a proper 4-coloring in expected time O(m3).

7 EXPERIMENTS

In the following we supplement our theoretical findings with ex-

tensive experimentation. We consider all graph classes analyzed

in the foregoing sections: paths, even cycles, star graphs, binary

trees as a special case of trees and toroidal graphs with dimensions

n1 = n2 =
√
n and

√
n an even integer. Additionally, we consider

complete graphsKn with evenn, complete bipartite graphsKn/2,n/2
with equally sized partitions and d-dimensional hypercubes as spe-

cial cases of ∆-regular graphs. It seems natural to consider the

number of edges m as an upper limit for the size of the graphs.

Here, we perform experiments for graphs with at mostm = 512

edges. Note that this allows values ofm ∈ {4, 12, 32, 80, 192, 448}
for hypercubes, butm ∈ {1, 2, . . . , 512} for, e. g., paths. For reasons
of comparability and to keep the computational effort justifiable

we take the values for the hypercube as the baseline and consider

similar values for all other graph classes. For statistical soundness

we perform 50 independent runs on each graph instance for both

RLS and (1+1) EA and measure the number of function evaluations

until a proper coloring with χ ′(G) colors is generated for the first

time. Plots of the average running times of RLS5 and fitted regres-

sion models with 95% confidence intervals are depicted in Figure 3.

Accompanying results of the regression analysis are provided in

Table 2.6 A visual inspection of the fitted regression curves reveals

that the models seem to fit the data very well. This observation

is supported by the R2 indicator and the root mean squared error

(RMSE). While the former measures the fraction of variation in

the data explained by the model (the closer to 1 the better), the

latter describes the average deviation of predicted values and actual

observations from the data. The R2 values are ≥ 0.99 for all trained

models, indicating a very good fit. This is supported by the low

RMSE values (relative to the potential range of fitness evaluations

for the corresponding graph class).

Moreover, we observe a clear pattern in the quotient of the

estimated model coefficients a for (1+1) EA and RLS which are all

very close to e ≈ 2.71. Since e reflects the waiting time for (1+1) EA

to perform a single local move, this suggests that (1+1) EA is most

effective when only recoloring a single edge.

In summary, the experimental study supports all theoretical

results obtained in this paper.

In all graphs studied here, the runtime was bounded by, or is

conjectured to be bounded by O(∆ℓ2m logm). (In some cases, such

as cycles, paths, star graphs or potentially toroids, the logm factor

may be dropped.) The experiments gave further strong evidence

for this bound for further graph classes, including hypercubes,

complete graphs and complete bipartite graphs. In all cases we

obtained a very good fit with functions a∆ℓ2m logm or a∆ℓ2m with

very reasonable leading constants a. Again, the model suitability is

supported by R2-values close to 1 and very low RMSE. In fact, in

particular for complete bipartite graphs and all interesting special

cases of bipartite graphs, i. e., toroids, complete binary trees and

hypercubes, RMSE values are negligible and the model fit is almost

perfect. We hence state the following conjecture for future work.

Conjecture 26. RLS and (1+1) EA find a proper ∆-coloring for

every bipartite graph G with maximum degree ∆ and ℓ := ℓ(G) in
expected time O(∆ℓ2m logm).

8 CONCLUSIONS

We have presented the first runtime analysis of evolutionary algo-

rithms on the edge coloring problem, for which it is NP-hard to

decide whether ∆ or ∆ + 1 edge colors are sufficient. We presented

general results on the time to obtain (2∆ − 1)-colorings, reducing
the number of conflicts down tom and two lower bounds that apply

5We do not show plots for (1+1) EA since they do not reveal any more information.
6For regression analysis the statistical programming language R [23] (version 3.5.2)
was used. In particular we used the lm(...) function to fit regression models.
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Figure 3: Average runtime of RLS (black dots) and fitted regression functions with 95% confidence intervals separated by graph

classes.

Table 2: Results of a regression analysis with different regression models for RLS and (1+1) EA for optimal edge-colorings on

different graph classes.

RLS (1+1) EA

Graph class Model Coeff. a R2* RMSE2 Coeff. a R2 RMSE Coeff. ratio3

a∆ℓ2m 3.4644 0.9992 5064.7 10.6784 0.9973 28286.2 3.082
Toroid

a∆ℓ2m log m 0.5779 0.9997 2979.8 1.7822 0.9994 13721.1 3.084

Complete bin. tree a∆ℓ2m log m 0.2504 0.9986 365.2 0.6278 0.9988 829.5 2.507

Kn/2,n/2 a∆ℓ2m log m 0.4494 0.9993 5545.1 1.2033 0.9999 4924.0 2.678

Cycle (even) am3 0.0647 0.9990 86286.4 0.1555 0.9999 60392.9 2.403

Path am3 0.1352 0.9994 132298.6 0.3403 0.9998 194497.0 2.517

Star am2 0.8612 0.9981 3047.9 2.3638 0.9982 8234.7 2.745

Hypercube a∆ℓ2m log m 0.5667 1.0000 1591.2 1.5923 1.0000 2456.4 2.810

Kn (n even) a∆ℓ2m log m 0.8455 1.0000 804.3 2.1024 1.0000 1138.7 2.487

* R2 : Fraction of variance explained by model; 2 RMSE: Root Mean Squared Error; 3 Quotient of regression coefficients of (1+1) EA and RLS

to all connected graphs. For cycles, paths, star graphs and arbitrary

trees we have shown that simple evolutionary algorithms such as

RLS and (1+1) EA are able to find proper colorings with a minimum

number of ∆ colors efficiently, for all initial colorings (see Table 1

for details).

We then considered toroids as a graph class with many cycles,

where the analysis of RLS turned out to be surprisingly complex.
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We presented a lower bound on the expected time to resolve the

final two conflicts, starting from a worst-case initial coloring with

two conflicts. Then we discussed the challenges involved in proving

rigorous upper bounds for the time to resolve the last two conflicts,

and for analysing dynamics with more than two conflicts. Experi-

ments support our conjecture that RLS finds proper ∆-colorings on

bipartite toroids in expected time O(m3).
More generally, both theory and experiments support the con-

jecture that RLS can find proper ∆-colorings on all bipartite graphs

in expected time O(∆ℓ2m logm).
Avenues for future work include proving the above conjectures

and finding graphs that are hard to color optimally for RLS. We

know that such graphs must exist as edge coloring is NP-hard.

However, RLS and (1+1) EA performed well on all graph classes

that were so far considered theoretically and/or experimentally.
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A RANDOMWALK TOOLS

The following results on fair random walks are folklore and/or

follow from standard arguments. We gather them here as we are

not aware of a reference presenting these statement in this form.

The lemma is used in the main part and may be of future use.

Lemma 27. Consider a fair random walk Xt on {0, . . . ,k} where
0 is an absorbing state and k is a reflecting state. More formally,

abbreviatingpi , j := Pr (Xt+1 = j | Xt = i), for all 0 < i < k ,pi ,i+1 =

pi ,i−1 = 1/2, p0,0 = 1 and pk ,k−1 = 1. Let T be the first hitting time

of state 0. Then the following statements hold:

(1) For all X0, E (T | X0) = X0(2k − X0 − 1) < k2.

(2) For all X0 and all r ∈ N, Pr
(

T ≥ 2rk2 | X0
)

≤ 2−r .
(3) Consider s > 1 not necessarily independent random walks with

the given transition probabilities. Let T (s) denote the time for

all s random walks to hit state 0. Then E
(

T (s)
)

= O(k2 log s).
All statements also hold for a lazy random walk with a self-loop

probability of 1 − p, when multiplying all time bounds by 1/p.

Proof. The first statement follows from the following folk-

lore argument. Imagine a fair random walk X ′
t on a state space

{0, . . . ,k, . . . , 2k − 1} where states 0 and 2k − 1 are both absorbing.

Now, for every 0 ≤ i ≤ k −1, state i is identified with state 2k −1−i .
Then X ′

t is identical to Xt , but the reflecting state k has been re-

placed by an absorbing state 2k − 1. Now gambler’s ruin, applied to

X ′
t with an initial state of X0, yields E (T | X0) = X0(2k − X0 − 1).

The right-hand side is at most k2.
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The second statement follows from standard arguments on in-

dependent phases. By the first statement and Markov’s inequality,

Pr
(

T ≥ 2k2
)

≤ 1/2, irrespective of the initial state X0. Consider

r phases, each of 2k2 subsequent steps, then the probability that

state 0 will be missed in all r phases is 2−r .
The third statement follows from applying the second statement

with r := log(s) + 1. This implies that a fixed random walk will

not have hit state 0 with probability at most 2−r = 1/(2s) after
a period of 2rk2 steps. Taking a union bound over all s random

walks, the probability that one of them will not have hit state 0 is

at most 1/2. In this case we reiterate the above arguments with

another period of 2rk2 steps. In expectation, only 2 periods are

needed, hence E
(

T (s)
)

≤ 4rk2 = O(k2 log s).
For the lazy random walk, the first statement still holds as the

expected waiting time for a transition is 1/p, thus E (T | X0) =
X0(2k − X0 − 1)/p. The applications of Markov’s inequality and

the union bound in the proofs of the second and third statements,

respectively, remain unaffected when introducing a factor of 1/p
appropriately. □
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