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Abstract 
 

Introduction:  

Individuals from older populations tend to have more than one health condition (multimorbidity). 

Current approaches to produce economic evidence for clinical guidelines using decision analytic 

models typically use a single-disease approach, which may not appropriately reflect the competing 

risks within a population with multimorbidity. This study aims to demonstrate a proof-of-concept 

method of modelling multiple conditions in a single decision-analytic model to estimate the impact 

of multimorbidity on the cost-effectiveness of interventions.   

Methods:  

Multiple conditions were modelled within a single decision-analytic model by linking multiple single-

disease models. Individual Discrete Event Simulation models were developed to evaluate the cost-

effectiveness of preventative interventions for a case study assuming a UK National Health Service 

perspective. The case study used three diseases (heart disease, Alzheimer’s disease, and 

osteoporosis) that were combined within a single ‘linked’ model. The linked model, with and without 

correlations between diseases incorporated, simulated the general population aged 45 years and 

older to compare results in terms of lifetime costs and quality-adjusted life years (QALYs). 

Results: 

The estimated incremental costs and QALYs for healthcare interventions differed when three 

diseases were modelled simultaneously (£840; 0.234QALYs) compared with aggregated results from 

three single-disease models (£408; 0.280QALYs). With correlations between diseases additionally 

incorporated, both absolute and incremental costs and QALYs estimates changed in different 

directions, suggesting that the inclusion of correlations can alter model results.    

Discussion:  

Linking multiple single-disease models provides a methodological option for decision-analysts who 

undertake research on populations with multimorbidity.  It also has potential for wider applications 

in informing decisions on commissioning of healthcare services and long-term priority setting across 

diseases and healthcare programmes through providing potentially more accurate estimations of 

relative cost-effectiveness of interventions. 
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Introduction 
 

 

The prevalence of long-term conditions tends to steadily increase with age [1]. This trend results in 

an increased prevalence of multimorbidity, defined as the co-existence of two or more long-term 

health conditions, in populations of older people [2-4]. The increased proportion of individuals with 

multimorbidity may have a significant impact on healthcare and resource allocation decision-making 

[5-7]. Evidence suggests that the number of conditions, rather than specific diseases, is a greater 

determinant of use of healthcare service resources [2]. Multimorbidity is associated with increased 

healthcare costs, service use, mortality, and reduced quality of life than is the case for those of single 

conditions [3, 8, 9]. Some commentators have suggested the need to focus on the prevention and 

management of multimorbidity rather than of single diseases [10].  

Despite the resource and health implications of multimorbidity, most economic evaluations are 

conceptualised and designed to evaluate the incremental costs and benefits (relative cost-

effectiveness) of interventions for single diseases [11] to recommend care and management for 

people with specific conditions. Decision-analytic models used to inform the Clinical Guidelines (CG) 

published by the National Institute for Health and Care Excellence (NICE) in England, and more 

widely [12-14], seldom consider people with multiple conditions [15]. Economic evidence for CG 

development is informed by a decision-analytic model (hereafter ‘economic model’) designed to 

appraise interventions to treat or manage adverse health events which are most likely to occur 

within the same (single) disease [16].  

Consideration of multimorbidity in an economic model should potentially provide more reliable 

estimates than those from a single-disease approach. Consequently, taking account of 

multimorbidity should lead to improved decisions on adoption and implementation of interventions 

for populations with more than one conditions. Taking account of multimorbidity in a single model is 

likely to change the estimates of costs and quality-adjusted life years (QALYs) of treating and 

managing the diseases when compared with modelling separate multiple populations with single 

conditions [17]. Intuitively, the results from two or more separate disease models can be combined 
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to obtain an understanding of the overall outcomes for a multi-morbid population. However, 

combining recommendations produced for single conditions to take account of multimorbidity may 

not represent the clinically optimal or cost-effective use of healthcare resources without jointly 

accounting for the benefits and risks of interventions [10, 18]. Such an approach does not 

incorporate competing risks of death nor does it account for the modification in the risks and health-

related quality of life (HRQoL) of the population with multimorbidity.    

This study aimed to present a proof-of-concept approach to taking account of multimorbidity in an 

economic model to generate robust estimates of incremental costs and health outcomes. The main 

focus was to present a methodology that could address multimorbidity within a single economic 

model by linking multiple single-disease models and, therefore, demonstrate the feasibility of using 

published models to incorporate multiple conditions within a single model. The method was 

illustrated using a case study of three selected diseases. The paper is now presented in three main 

sections. Section two describes the linkage methods used and the relevant case study. Section three 

reports the base-case results from the linked models, including a key finding associated with 

interpretation of result. Section four discusses the implications and limitations of using this approach 

in practice.   

 

Methods 
  

This study demonstrates a method for linking multiple single-disease economic models using a 

Discrete Event Simulation (DES) constructed in SIMUL8 (©SIMUL8 Corporation). Three approaches 

to conceptualising and constructing an economic model were directly compared: (i) aggregating 

results from multiple single-disease models; (ii) modelling multiple diseases simultaneously within a 

single economic model; and (iii) incorporating correlations between diseases in the multi-disease 

economic model created in (ii).  

A case study was used to illustrate the methods. Multimorbidity was captured in the case study 

using three example diseases: heart disease (HD), Alzheimer’s disease (AD) and osteoporosis. Three 

diseases were selected to demonstrate the ability of the method to address any number of diseases 

that may co-occur. The selection of the relevant diseases to include in the case study was based on 

the economic, mortality and morbidity burden of each condition and the desire to cover a spectrum 

of conditions (see Appendix 1 for detailed selection criteria). A reference economic model to inform 

decisions on the structure, sources of data and key assumptions for each disease was identified from 
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a rapid review of recently published economic models [19-21]. Using these economic models, the 

current recommended treatments for the three diseases (statins for HD; donepezil for mild to 

moderate AD and memantine for severe AD; and alendronic acid for osteoporosis) were compared 

with no drug treatment. The specific details of the case study and challenges associated with the 

application of the method are reported in Appendices 1-8.   

The analysis was undertaken from the perspective of UK National Health Service (NHS) and Personal 

Social Services (PSS) in line with the reference case stipulated by NICE [22]. A lifetime horizon was 

used to fully assess the long term effect of the interventions. Costs and health outcomes associated 

with a lifetime use of the interventions were presented in terms of pounds sterling (£ in 2012/13 

price) and QALYs, respectively. The relevant population was defined as the UK general population 

aged 45 years and over with or without the diseases, rather than only the elderly, to fully capture 

the prevention effect of the interventions. Age and gender values were randomly sampled from the 

UK mid-2012 population estimates [23]. Those individuals who did not have the disease may or may 

not develop it before death based on the age- and gender-stratified incidence of the disease. A 

discount rate of 3.5% per annum was used for both costs and QALYs. The next section describes the 

methods used to link multiple single-disease models in reference to the conventional DES approach. 

 

Individual patient modelling methods 

 

A DES approach was chosen for modelling the three diseases in which individual patients are 

simulated to move through different disease events sampled from time-to-event distributions. The 

selected diseases were modelled individually and then combined within a single DES model as a 

linked-disease economic model (see Figure 1). Potential correlations between the diseases were 

additionally explored in the linked-disease economic model. Figure 2 illustrates the method for 

model linkage with respect to simulation time. 

===== Place Figure 1 here ===== 

======Place Figure 2 here======= 

 

Individual patient modelling was used to provide more flexibility to incorporate heterogeneity 

among patients when compared with cohort modelling.  Whilst cohort-based models can 

theoretically account for different characteristics of individuals such as age, risk factors, and history 

of other diseases, the number of dimensions needed for the relevant health states become 
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exponentially large [24]. The ‘time-to-event’ approach used in DES provided a practical option for 

linking multiple diseases. Transition probabilities for pre-specified equal-length cycles as in state-

transition cohort (Markov) models are not required, allowing for greater flexibility in the times when 

events can occur. DES models can also record more individual attributes to account for patient 

history than Markov models: the rate of Event 1,𝑟(𝐸𝑣𝑒𝑛𝑡 1), is updated once an individual 

experiences Event 2, such that 𝑟(𝐸𝑣𝑒𝑛𝑡 1|𝐸𝑣𝑒𝑛𝑡 2) ≠ 𝑟(𝐸𝑣𝑒𝑛𝑡 1). 

Figure 2(a) represents an economic model for a disease shown as a course of changes over time in 

‘variables’ that define the modelled system (the process of disease progression). Figure 2(a-ii) 

depicts a Markov model in the same format as the DES model for a selected individual from a cohort. 

Any occurrences that alter any set of such variables can be considered as ‘events’. The variables 

describing the state of a disease process at a point in time include: global variables that apply to all 

simulated individuals (e.g. discount rates and unit costs of interventions); and individual attributes 

that may or may not change over time (e.g. age, sex and individual’s disease history or changes in 

state membership if an individual from a Markov cohort is considered). The model outcomes such as 

lifetime costs and QALYs are based on the trajectories of these variables. Figure 2(a) shows how the 

DES allows for changes in the system variables to occur at any discrete point in time such that, 

multiple events can occur within a short period of time. The calculation of costs and QALYs is then 

made only when events occur, not at every cycle as in Markov models, hence allowing a large 

number of disease events to be incorporated in DES models.  

 

Modelling methods for linked model: general approach 

 

The flexibility of the DES approach means that it is possible to merge existing single-disease 

economic models to create a linked-economic model by combining all event-defining variables 

within one system (see Figure 2(b)). In the linked economic models, costs were assumed to be 

additive. Four approaches (additive, minimum, multiplicative and linear index methods) to combine 

utility values for joint health conditions are possible in the absence of actual data for a population 

with more than one health condition. There is no agreement on the best approach and current 

recommendations suggest using the multiplicative method, which was the approach adopted in this 

study [25].    

Individuals with multiple diseases may have a higher risk of death. Multimorbidity is taken into 

account for disease-related death as competing risks: HD- and fracture-related deaths.  The earliest 
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time to disease-related death was determined at the central router in the DES. Death may not be 

related to any of the diseases explicitly modelled. Non-disease mortality rates in the linked model 

were defined as all-cause mortality obtained from the UK Interim Life Tables [26] minus the death 

rates associated with the diseases included in the model.  

Two versions of the linked-economic model were constructed which assumed (i) independence 

between the three diseases; or (ii) correlation between the diseases. A probabilistic analysis was 

conducted using the linked economic model assuming correlation. Next section describes how the 

linked economic model assuming independence between the three diseases was constructed. 

Independence assumes that the presence of one disease does not affect the risk of the others 

(denoted hereafter as ‘independently linked model’). 

 

Linked economic model: assuming independence 

 

All variables used in the single-disease DES models (Figure 2(b-i)) were combined to produce the 

independently linked economic model (Figure 2(b-ii)). This approach unifies variables, such as age 

and gender, commonly included in all single-disease economic models (Figure 2(b-ii)). In the linked 

economic model, the sequence of events is redefined to represent the times when any variables 

combined in the linked model are scheduled to change (Figure 2(b-ii)).  Creating a linked economic 

model involves adding a central routing variable that directs simulated individuals to the earliest 

next event. This routing is done by taking a value indicating which of the diseases the identified next 

event is associated with (Figure 2(b-ii)).  Competing risks across all individual disease models can also 

be compared and individuals are directed to move to the event corresponding to the earliest 

scheduled time to event. This linked-economic model can provide a seamless approach especially 

when populations at increased risks of multimorbidity are modelled and when existing models are 

available for the individual diseases.  

Table 1 provides additional detail on the process used to update event times and routing. The table 

shows how to follow an individual through the DES from model entry. Individuals can have zero, one, 

two or three of the diseases, and enter the combined model with characteristics sampled at the 

entry point. These characteristics are used for the sampling of times to next event (TTNEs) and/or 

the calculation of aggregate costs and QALYs. Individuals enter the DES model through the central 

routing point where the transition to the next event is executed. Once the individuals move to the 

event and all relevant parameters are updated, they return to the central router to be routed to the 
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next event. This process is repeated until an individual has been simulated up until the point at 

which they die. Recording the history of previous events means that the DES can account for 

multimorbidity, in terms of event costs, HRQoL and influence on risks of future events. The times to 

all further predicted events are then either resampled based on updated parameters or reduced by 

the TTNE to account for the passing of time. For example, at the central routing point, TTNEs for the 

other diseases are subtracted by the time spent in the previous event. Other time-related variables 

such as time before the effect of treatments stops, and time before the end of the first year of any 

cardiac events or osteoporotic fractures, are then re-calculated.    

 

===Place Table 1 here=== 

 

Linked economic model: assuming correlations between diseases  

 

This section describes how correlation between the three diseases was taken into account in the 

linked economic model.  Incorporating correlations between diseases assumes that having one 

disease can affect the risk of other diseases and hence correlations between diseases are 

incorporated (denoted hereafter as ‘correlated linked economic model’). The correlated linked 

economic model assigns disease history and event probabilities based on the status of the other 

diseases included in the DES model. Correlations associated with prevalence were incorporated to 

set the distribution of diseases at the start of the model, and correlations associated with incidence 

were used to dynamically change the incidence of one disease conditional on the occurrence of 

other disease events.  

The model assumed that the occurrence of HD events affects the incidence of AD, but not vice versa 

due to the relatively later onset of AD compared with that of HD [27]. There is growing evidence that 

supports osteoporosis is correlated with both HD and AD as greater vascular dysfunction is 

associated with lower bone mineral density [28-30]. Excess fracture risk has been reported among 

patients with a diagnosis of myocardial infarction with a hazard ratio of 1.73 [95% CI, 1.32-2.27] [31]. 

The DES assumed that a history of HD events would increase fracture risks and those with previous 

fracture would be at an increased risk of stroke and AD onset [31, 32]. 

For demonstrating a proof-of-concept model, correlations regarding selected prevalence and 

incidence estimates were deemed sufficient. Five types of correlations (see Appendix 2 for detail) 

were incorporated in the correlated linked model: i) prevalence and ii) incidence of AD in people 
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with and without HD; iii) incidence of hip fracture for people with a history of MI; iv) the risk of 

stroke among people with a history of hip fracture; and v) incidence of AD in people with low bone 

mineral density. Correlations associated with prevalence were incorporated at the start of the model 

by setting the distribution of diseases across individuals. Correlations associated with incidence were 

incorporated using a more dynamic approach. For example, after an individual develops an HD event, 

the incidence of AD for that individual was changed from the time of that HD event.  To incorporate 

the correlation between AD and HD, the total proportion of people who have AD was divided into 

the proportion of AD patients among people with HD and the proportion among people without HD. 

The incidence of AD for the total population was divided into that for population with HD and for 

population without HD, such that the sum of the incidence values equals the total incidence.  

  

 

 

Constructing single-disease models   

 

This section describes how the three single-disease economic models (heart disease, Alzheimer’s 

disease and osteoporosis) were conceptualised and built for the case study (see Figure 3). A rapid 

review was undertaken to identify economic models published as part of the UK National Institute 

for Health Research (NIHR) Health Technology Assessment (HTA) monograph series 

(https://www.journalslibrary.nihr.ac.uk/HTA/). Two of the three identified relevant single-disease 

models were Markov cohort models (HD and AD). The core structure of each identified economic 

model for each single disease was maintained but adapted to be implemented on a DES platform. 

Data sources reported in the published HTA reports were also used as model input parameters (see 

Appendix 3). All transition probabilities reported in the published economic models were converted 

to rates. Event rates reflect the instantaneous likelihood of the event occurring per unit of time. For 

each model, the appropriate number of simulated individuals to ensure stable outcomes was 

identified by examining the standard error of the mean estimates of (incremental) cost and QALYs, 

and the mean and jackknife confidence interval for the incremental cost per QALY estimate [33]. The 

results from the three single-disease models were compared with those of the published models to 

externally validate the model. 

 

===== Place Figure 3 here======= 

https://www.journalslibrary.nihr.ac.uk/HTA/
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Heart disease model 

 

The state transition cohort model developed by Ward et al. [19], and used to inform guidance 

recommended by NICE, was used as the single disease model for heart disease (HD; Figure 3a). 

Statins, assuming a common class effect, were the intervention used for the secondary prevention of 

HD in patients with angina, MI, PAD or a history of stroke, and for primary prevention in patients 

who are at increased risk of coronary events. High-risk patients were defined as those whose 

estimated 10-risk of developing CVD is greater than 20% according to NICE TA94 [19]: however, the 

threshold was amended to 10% in 2014 [34]. 

Sources of data and key assumptions reported in Ward et al. [19] were considered as the main 

reference for the model. A review of existing models suggested that the single-disease economic 

model for HD should be adapted to include peripheral artery disease (PAD) and that it was necessary 

to update some parameter estimates (see Appendix 3). 

First-year events and events in subsequent years were kept distinct because of the differences in the 

cost of interventions and HRQoL within these time periods. No difference in event rates was 

assumed between the first year and subsequent years after PAD because there was no clinical 

evidence identified distinguishing the two periods. The DES uses continuous time which means it 

was possible for an individual to have multiple events, and associated utility values, within a 12-

month period. It was therefore possible for one individual to incur two or more utility modifiers 

associated with first-year events. An event updating utility values was added to the model to ensure 

that changes in HRQoL were handled appropriately.  

 

 

Alzheimer’s disease 

 

A DES model for Alzheimer’s disease (AD) was constructed (Figure 3b) based on the Markov model 

published in the HTA report by Bond et al. [20]. After a diagnosis of AD, the model structure 

replicated the three-state model in Bond et al. [20]. In line with current NICE recommendation [35], 

it was assumed that patients with a Mini-Mental State Examination (MMSE) score between 10 and 

26 at diagnosis (i.e. 10≤ MMSE ≤26) received donepezil. Memantine was assumed for patients with 

MMSE < 10. 
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A simulated population representative of the UK population aged 45 and over was assumed to enter 

the model. This analysis assumed that some individuals have AD when entering the model. Those 

entering the model without AD may or may not develop AD before death based on the sampled time 

to onset of AD. It was assumed that diagnosis of AD is not instantaneous as the development of 

symptoms is gradual.   

 

Osteoporosis model 

 

The economic model produced by Stevenson et al. [21] was used as a basis for osteoporosis model 

constructed for the case study (see Figure 3c).  

Events included in the DES model for osteoporosis were defined by four index fracture sites (hip, 

vertebral, wrist and proximal humerus fractures) and the risks of: nursing home entry from hip 

fracture; death following fracture; and non-fracture related death. The events representing initiation 

and discontinuation of a preventative pharmacological intervention (70mg alendronate taken once 

weekly) were also included. The model included fractures occurring to both osteoporotic and non-

osteoporotic populations [21]. It was possible to have two first year utility multipliers acting 

simultaneously. An event to update utility values was included in the model to reflect that utilities 

for the first year and subsequent years after a fracture could be different.  
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Results 
 

This section presents illustrative simulation results for the UK general population aged 45 years and 

older from the case study. The three single-disease models produced comparable results with those 

from the published reference models despite the difference in model populations (see Appendix 4). 

Results are reported from two types of linked models: those from the independently linked model; 

followed by those from the correlated linked model. For all results reported in this section, 

stochastic variability between simulated individuals was examined to ensure stable outcomes (see 

Appendix 5).  

 

Linked economic model: assuming independence  

 

Table 2 reports the base-case results from the linked economic model assuming independence 

between the three diseases. Incremental cost-per-QALY estimates for the three interventions 

(statins, donepezil or memantine, alendronate) for the three diseases in combination (HD, AD, 

osteoporosis, respectively) differed between the linked economic model and the individual disease 

DES models. There were higher incremental costs (£840) and lower incremental QALYs (0.234) in the 

linked economic model compared with the sum of the three single-disease model results (£408, 

0.280) (see Appendix 6). The absolute costs from the independently linked model (£14,776 for 

intervention arm) were slightly lower than the sum of the absolute costs from the three single-

disease models (£15,520). The absolute QALYs (8.956 for intervention arm) were also lower than the 

minimum of the equivalent values from the three individual disease models (9.249), as utility levels 

were generally lower in the model including multiple diseases than in the models that consider only 

one disease.  

=== Place Table 2 here ====== 

 

 

 

Table 3 presents incremental cost and QALYs, and cost per QALY estimates of each intervention 

(statins, donepezil or memantine, alendronate) from the independently linked model based on 

700,000 simulated individuals. This analysis assumed that the interventions for the other two 

conditions were available to individuals. The results differed from the results from the single disease 
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models: the linked model produced larger incremental costs and smaller incremental QALYs in 

absolute values than the single disease models (see Appendix 6). 

This difference was most noticeable for AD intervention which produced lower QALYs with lower 

costs than no treatment in the linked model (incremental QALYs of -0.001; incremental cost of -£24) 

whilst it was dominating no treatment in the individual AD model (Appendix 6). The results in Table 3 

did not have face validity because it was not considered plausible to have negative incremental 

QALYs associated with AD intervention: donepezil or memantine only delays cognitive impairment 

and the model did not capture the impact of adverse drug events. Therefore, the number of 

simulated individuals was increased to two million, from 700,000, individuals, and then face validity 

improved with the AD intervention dominating no treatment with a very small QALY gain. The small 

incremental values were in line with the results from the Bond et al. study [20, 36].  

 

=== Place Table 3 here====== 

 

 

 

Impact of imbalance between the linked diseases on the interpretation of the 

results 

 

Making a direct comparison between the absolute size of incremental QALYs and costs per person 

across the single-disease economic models (Figure 4 and Appendix 6), it is clear that the effect of HD 

intervention was much larger than those interventions for AD or osteoporosis. The results were 

shown to be stable within individual disease models. The relative cost-effectiveness of individual 

interventions estimated from the linked economic model could potentially be affected by the level 

of balance between the size of QALYs and cost outcomes from the individual diseases included in the 

linked economic model (regardless of whether independence or correlation was assumed). This 

effect was observed when the QALY gains from one disease (in the case study, HD) were much larger 

than those for the remainder and there were different levels of Monte Carlo sampling error between 

diseases. Hence, an acceptable level of sampling error in one disease for robust adoption decision 

for that disease could significantly impact the QALYs and cost outcomes for the other diseases.   
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====Place Figure 4 here===== 

 

 

The margin of error, defined as half-width of the 95% confidence interval in this study, around the 

mean incremental QALYs, was used to describe the amount of random sampling error in the 

simulation results [37].  In the individual HD model, the margin of error was estimated to be 0.0288 

QALYs based on 200,000 simulated individuals. To estimate the predicted margin of error of the 

mean incremental QALYs with increased number of simulated individuals (N), a power regression 

model was used to fit a non-linear curve that decreases proportionally by √𝑁 (R2=0.9999). Using the 

fitted equation, the margin of error in incremental QALYs for HD intervention with 700,000 

individuals was predicted to be 0.0155 QALYs. With 10 million individuals simulated, this value 

(0.0042 QALYs) was still large compared with the incremental QALYs associated with the 

interventions for AD (0.001 QALYs) and osteoporosis (0.008 QALYs). This shows that, where the 

treatment of one disease has a much larger absolute impact on cost and QALYs than the impact of 

treatments for other, a very large number of individuals may need to be simulated for stable results 

to be achieved in a linked model. Appendix 7 describes a hypothetical scenario in which a similar 

level of QALY gains was assumed for all three interventions, and the adoption decision within the 

linked model for each individual intervention was robust.   
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Linked economic model: assuming correlation between diseases 

 

 

Table 4 reports the base-case results from the linked economic model incorporating correlations. 

The incremental cost-per-QALY results for the combination of the three interventions were similar to 

the results from the independently linked model (£3,583 per QALY gained). When the three diseases 

were assumed to be correlated, the absolute values of QALYs and life years increased and costs were 

lower.  This was the result of positive correlations between diseases resulting in multimorbidity 

being more concentrated within a narrower population. Table 5 shows the results of running the 

model with two million individuals simulated to reduce the impact of the aforementioned sampling 

error issue. A probabilistic sensitivity analysis (PSA) using the correlated linked model was 

undertaken and its feasibility in the multi-disease DES context is discussed in Appendix 8. All of the 

300 PSA samples showed incremental cost-per-QALY being lower than the threshold of £20,000 per 

QALY gained (Figure S8.1, Appendix 8). Conducting 300 PSA runs required 1.9 days of computing 

time for each intervention arm (Intel CoreTM i7CPU 3.40GHz processor with 16GB RAM).  

 

===Place Table 4 here===== 

 

 

==== Place Table 5 here===== 
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Discussion 
 

This study aimed to demonstrate a proof-of-concept method to link multiple single-disease models 

using a case study involving three diseases (HD, AD and osteoporosis) managed with three 

interventions (statins, donepezil or memantine, alendronate). The inclusion of multiple diseases in a 

single DES model also enabled correlation between the diseases to be incorporated.  This illustrative 

example showed that producing a linked economic model was feasible using DES and also allowed a 

PSA to be performed. The results from the three single-disease models were broadly comparable 

with those from the published economic models despite differences in model populations, costs and 

health events included (Appendix 4).  The linked economic model results showed that incorporating 

multiple diseases and correlations between them in a model can produce different estimates of 

aggregate costs and QALYs for a disease when compared with those estimates derived from single-

disease models. In general, the magnitude of the difference between single and linked model results 

increased with the proportion of the model population developing multiple diseases. These results 

confirm a priori expectations that when considering a population of individuals that are susceptible 

to multiple health conditions, producing an economic model that focusses on a single disease will 

not only misrepresent actual care pathways but seriously bias the estimated costs and QALYs. 

Consequently, an intervention could be mistakenly estimated to be cost-effective when it is not. This 

potential for bias is relevant in the context of both allocation of healthcare resources and clinical 

guidelines. An economic model that appropriately links multiple diseases is likely to produce 

different decisions on technology adoption, which in turn could alter the nature of the NHS funded 

treatment options made available in clinical practice [38, 39]. 

To be able to appropriately measure the impact of multimorbidity, it is necessary to carefully select 

the relevant co-existing diseases for a specified decision problem. Ideally, the use of pre-defined 

criteria (as exemplified in Appendix 1) should be used to guide the selection of relevant diseases.  

Careful consideration should be paid to how many of the relevant diseases should be included in a 

linked economic model. The same principles used for single-disease modelling also apply to the 

selection of multiple diseases: the diseases considered to alter model outcomes that are important 

for the population being studied and to policy makers (such as costs and QALYs) should be included. 

Epidemiological data that identify commonly co-existing health conditions (for example, see [10]) 

can be used to inform the choice of which diseases are most relevant. The assessment of marginal 

returns to adding more diseases in the linked model could be investigated empirically.  
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This proof-of-concept analysis suggested that when one disease had a much larger impact on costs 

and QALYs than the other diseases in a linked economic model, the sampling error around the 

disease with larger impact could make a significant difference to the estimated cost-effectiveness of 

the other individual treatments. This result could lead to lack of face validity for the diseases with 

smaller incremental gains. The implication is that the number of simulated patients required to 

stabilise the adoption decisions within linked economic models may be greater than the maximum 

of the numbers required for single-disease models. In circumstances where the QALY gains are 

similar across individual treatments, then it is likely that the proposed methods of linking single 

disease models produce more accurate estimates for multi-morbid populations. Further research on 

approaches to addressing this problem, in particular when incremental costs and QALYs are small in 

magnitude, would be beneficial. 

The analysis showed that including correlations between diseases may potentially change the 

relative cost-effectiveness of interventions. When correlations were implemented, absolute QALYs 

were higher than when the diseases were assumed independent due to the concentration of co-

morbidities onto an already diseased population, resulting in lower QALY loss from having an 

additional disease. Hence, adding correlations better reflects the relationship between 

multimorbidity and mortality.  This paper demonstrated how to include correlations, based on the 

currently available data. Further evidence on correlations between diseases may become available in 

the future which would allow the model to be extended and improved.    

The DES approach, as illustrated in this paper, showed how it was sufficiently flexible to allow the 

impact of different types of individuals in a population to be quantified.  The general population was 

used as the entry population in the DES model, but it is possible to define more specific populations 

with different distributions of individual characteristics, for example, a population of individuals with 

prevalent HD but without osteoporosis.  In turn, a particular health intervention could be evaluated 

for these individuals in a population, which mirrors the approach in conventional HTA analyses for 

interventions in single diseases.  

There were some limitations to this proof-of-concept method. The use of the DES framework 

enabled the seamless linkage of the three disease distinct economic models, but future work could 

explore the application of the linkage method using methods other than DES. Also, the multiplicative 

method was used to combine utility values for the co-occurring health conditions. There are three 

other possible methods: additive, minimum and linear index methods. Each of these methods is 

likely to produce different utilities for any combination of health states, but the direction of the 

changes in the observed utility values will be the same. A future study could investigate the impact 
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of  using different methods to combine utility values on the magnitude of the cost-effectiveness of 

interventions in a linked model for more than one disease [40]. 

In this proof-of-concept study, time-to-event distributions and random numbers were used to 

represent the variability among individual observations (first-order uncertainty) as reported in 

Appendix 5.  Uncertainty around the structure of the economic model was not examined. A 

probabilistic sensitivity analysis (PSA) is required to understand the impact of second-order 

uncertainty arising from uncertainty in the model input parameters [41].  A feasibility run of PSA was 

undertaken that showed significant model running time would be required to conduct a large-scale 

PSA for this model (Appendix 8).   A study designed to understand the impact of parameter and 

structural uncertainty in a linked economic model could be a topic for future research using parallel 

computing or expedited PSA with non-parametric regression modelling [42]. Also, running the model 

for a more narrowly defined population with specific characteristics and higher disease prevalence, 

rather than for the general population, would accelerate convergence to mean outcomes at each 

deterministic run. 

In conclusion, this proof-of-concept study used DES to produce a linked economic model and 

demonstrated that this is a feasible approach to inform decision-making relevant to interventions for 

populations with multimorbidity. This study provided a modelling framework that has the potential 

to be modified and/or expanded to incorporate other diseases and interventions to inform the 

development of clinical guidelines using evidence about the relative cost-effectiveness of 

interventions for people with multimorbidity. This study has shown that using a linked economic 

model that incorporates correlations between diseases is likely to influence the potential decisions 

made about the allocation of healthcare resources to support interventions relevant to multi-morbid 

populations, increasing the health benefits experienced by those patients.
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