

This is a repository copy of *Effect of core cross-linking on the physical properties of poly(dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil.*

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/150519/

Version: Supplemental Material

Article:

Rymaruk, M.J., O'Brien, C.T., Brown, S.L. et al. (2 more authors) (2019) Effect of core cross-linking on the physical properties of poly(dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil. Macromolecules, 52 (18). pp. 6849-6860. ISSN 0024-9297

https://doi.org/10.1021/acs.macromol.9b01488

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Macromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.macromol.9b01488

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting information for:

Effect of Core Crosslinking on the Physical Properties of Polydimethylsiloxane-based Diblock Copolymer Worms Prepared in Silicone Oil

Matthew J. Rymaruk,^{a,*} Cate T. O'Brien,^a Steven L. Brown,^b Clive N. Williams,^b and Steven P. Armes^{a,*}

a. Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.

b. Scott Bader Company Ltd, Wollaston, Wellingborough, Northamptonshire, NN29 7RL, UK.

*Authors to whom correspondence should be addressed (<u>s.p.armes@sheffield.ac.uk</u>, m.rymaruk@sheffield.ac.uk).

Table S1. Summary of GPC data and TEM morphology assignment for the $PDMS_{66}$ - $PDMA_{105}$ and $PDMS_{66}$ - $PDMA_{190}$ diblock copolymers examined in this study.

Target Block	DMA	Actual block	Mn	M _w /M _n	TEM
composition	conversion	composition			Morphology
PDMS ₆₆ -PDMA ₁₀₅	95	PDMS ₆₆ -PDMA ₁₀₀	20,900	1.21	Worms
PDMS ₆₆ -PDMA ₁₉₀	93	PDMS ₆₆ -PDMA ₁₇₆	35,500	1.24	Vesicles

Figure S1. ¹H NMR spectrum recorded at 20 °C (after heating to 100 °C) for a 5.0 % w/w dispersion of PDMS₆₆-PDMA₁₀₀ diblock copolymer worms in D5 The NMR tube was equipped with a coaxial inner tube containing toluene-d₈ as a lock solvent and 0.1 M pyridine as an external standard. The lack of PDMA core-forming signals in this spectrum confirms that the increase in solvation of the core-forming PDMA block observed above 40 °C is fully reversible.

Figure S2. Small-angle X-ray scattering patterns recorded for: (a) a 1.0 % w/w dispersion of PDMS₆₆-PDMA₁₀₀ linear worms at 25 °C, prior to heating (black open circles). The same sample was then heated to 110 °C, equilibrated for 20 min, cooled to 25 °C and equilibrated for a further 20 min before being reanalyzed (open red squares). The change in the low *q* gradient from approximately -1 to approximately 0 indicates a worm-to-sphere transition. Dashed lines representing gradients of – 1 (black dashed line) and 0 (red dashed line) are included as a guide to the eye. (b) A 1.0 % w/w dispersion of BIEE cross-linked PDMS₆₆-PDMA₁₀₀ worms (BIEE/DMA molar ratio = 0.15) at 25 °C (open black squares). The same dispersion was then heated to 110 °C, equilibrated for 20 min, cooled to 25 °C and reanalyzed (open red circles). The almost perfect overlap for these two SAXS patterns confirms that these cross-linked worms do not undergo a worm-to-sphere transition at 110 °C.

Figure S3. Angular frequency sweep conducted at an applied strain of 1% for a series of BIEE crosslinked PDMS₆₆-PDMA₁₀₀ worm dispersions (BIEE/DMA molar ratio = 0.15) at copolymer concentrations of 1% w/w (black data), 2% w/w (red data), 4% w/w (blue data), 6% w/w (purple data) and 8% w/w (green data). In each case, open diamonds denote G' and filled diamonds denote G''.

PDMS₆₆-PDMA₁₀₀ diblock copolymer worms at various concentrations in D5 silicone oil

8 % w/w

6 % w/w

4 % w/w

1% w/w

BIEE (BIEE/DMA molar ratio = 0.15) 5 days 20 °C

2 % w/w

8 % w/w

6 % w/w

2 % w/w

1% w/w

Figure S4. Digital photographs recorded for a series of PDMS₆₆-PDMA₁₀₀ worm dispersions over a range of copolymer concentrations in D5 silicone oil. BIEE (BIEE/DMA molar ratio = 0.15) was added to each of these dispersions and quaternization was allowed to occur over 5 days at 20 °C.

Figure S5. Assigned ¹H NMR spectra recorded during the reaction of 25% w/w PDMS₆₆-PDMA₁₇₆ vesicles at in D5 silicone oil with BIEE cross-linker at 20 °C (15 mol % BIEE relative to the DMA residues). Aliquots were removed from the reaction mixture at regular intervals and diluted ten-fold in chloroform before being analyzed. Each NMR tube was equipped with a coaxial inner tube containing toluene-d₈ as a lock solvent and 0.1 M pyridine as an external standard. The attenuation of the oxymethylene protons assigned to the PDMA block (labeled **f**), and the protons assigned to the BIEE (**I**, **m** and **n**) were monitored relative to the pyridine external standard (labeled **a**).

Figure S6. TEM images recorded at a copolymer concentration of 0.25 % w/w for (a) Linear PDMS₆₆-PDMA₁₇₆ vesicles in D5 silicone oil. (b) PDMS₆₆-PDMA₁₇₆ vesicles cross-linked with BIEE (DMA/BIEE molar ratio = 0.15) in D5 silicone oil. (c) Linear PDMS₆₆-PDMA₁₇₆ vesicles in chloroform. Chloroform is a good solvent for both the PDMS and the PDMA blocks, therefore, molecular dissolution takes place to yield diblock copolymer chains. (d) PDMS₆₆-PDMA₁₇₆ vesicles cross-linked with BIEE (DMA/BIEE molar ratio = 0.15) in chloroform. The covalent stabilization afforded by the BIEE ensures the vesicles remain intact in chloroform.