UNIVERSITY OF LEEDS

This is a repository copy of *Photodynamically Active Electrospun Fibers for Antibiotic-Free* Infection Control.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/150411/

Version: Supplemental Material

Article:

Contreras, A, Raxworthy, MJ, Wood, S et al. (2 more authors) (2019) Photodynamically Active Electrospun Fibers for Antibiotic-Free Infection Control. ACS Applied Bio Materials, 2 (10). pp. 4258-4270. ISSN 2576-6422

https://doi.org/10.1021/acsabm.9b00543

© 2019 American Chemical Society. This is an author produced version of a paper subsequently published in ACS Applied Bio Materials. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supporting Information

Photodynamically Active Electrospun Fibres for Antibiotic-Free Infection

Control

Amy Contreras,¹ Michael J. Raxworthy,^{1,2} Simon Wood,³ Jessica D. Schiffman,⁴

Giuseppe Tronci^{3,5} *

¹ Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2

9JT, UK (mnasm@leeds.ac.uk)

² Neotherix Ltd., The Hiscox Building, Peasholme Green, York, YO1 7PR, UK

(mike.raxworthy@neotherix.com)

³ School of Dentistry, University of Leeds, Leeds, LS2 9JT, UK

(s.r.wood@leeds.ac.uk)

⁴ Department of Chemical Engineering, University of Massachusetts Amherst, 240

Thatcher Rd, Amherst MA 01003-9364, USA (schiffman@ecs.umass.edu)

⁵ School of Design and School of Dentistry, University of Leeds, Leeds, LS2 9JT, UK

(g.Tronci@leeds.ac.uk)

* Email correspondence: <u>g.tronci@leeds.ac.uk</u> (G.T.)

Table S1. Loadin	g efficiency (LE) a	nd percent release	measured in PC	L and PLGA	scaffolds
electrospun in the	presence of eithe	r MB or ER.			

Sample ID	PCL-MB	PCL-ER	PLGA-MB	PLGA-ER
LE /wt.%	103±16	103±31	110±16	97±30
% release /wt.% (1)	114±4	28±2	7±4	2±1

⁽¹⁾ Percent release following 8-week sample incubation (PBS, 37 ⁰C).

Figure S1. (A) Macroscopic images of PS-free and PS-encapsulated scaffolds. (B) Aggregation of MB molecules results in a purple colour of PS-encapsulated fibres. (C) Encapsulation of MB in the monomeric state results in a blue colour of respective fibres.

Figure S2. Typical pore size flow distribution measured via porometry in electrospun scaffolds of PCL (A) and PLGA (B). (\blacksquare): PS-free (ND); (\star): MB-encapsulated; (\blacktriangle): ER-encapsulated.

Figure S3. Macroscopic images of electrospun PCL scaffolds following electrospinning (A-C) and 8-week hydrolytic incubation (D-F) in 37 0 C distilled water. (A, D): PCL-ND; (B, E): PCL-MB; (C, F): PCL-ER. Scale bar: ~ 1 cm.

Figure S4. Macroscopic images of electrospun PLGA scaffolds following electrospinning (A-C) and 8-week hydrolytic incubation (D-F) in 37 ^oC distilled water. (A, D): PLGA-ND; (B, E): PLGA-MB; (C, F): PLGA-ER. Scale bar: ~ 1 cm.

Figure S5. Water uptake measured gravimetrically following incubation (H_2O , 37 ^{0}C) of either PS-loaded or electrospun control samples. '*' and '**' denote significantly different means (p <0.05, t-test).

Figure S6. Scanning Electron Microscopy (SEM) of electrospun PLGA scaffolds following 8-week hydrolytic incubation (PBS, 37 $^{\circ}$ C). (A-C): samples PLGA-ND following 1 (A), 4 (B) and 8 (C) weeks. (D-F): samples PLGA-MB following 1 (D), 4 (E) and 8 (F) weeks. (G-I): samples PLGA-ER following 1 (G), 4 (H) and 8 (I) weeks.

Figure S7. Mass loss measured on samples PCL-ND (black) and PLGA-ND (grey) following hydrolytic degradation (H₂O, 37 0 C). Lines are guidelines to the eye.