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Retinal Image Synthesis and Semi-supervised

Learning for Glaucoma Assessment
Andres Diaz-Pinto, Adrián Colomer, Valery Naranjo, Sandra Morales, Yanwu Xu, and Alejandro F Frangi

Abstract—Recent works show that Generative Adversarial Net-
works (GANs) can be successfully applied to image synthesis and
semi-supervised learning, where, given a small labeled database
and a large unlabeled database, the goal is to train a powerful
classifier. In this paper, we trained a retinal image synthesizer and
a semi-supervised learning method for automatic glaucoma as-
sessment using an adversarial model on a small glaucoma-labelled
and large unlabeled database. Various studies have shown that
glaucoma can be monitored by analyzing the optic disc and its
surroundings, for that reason the images used in this work were
automatically cropped around the optic disc. The significance andQ#5
novelty of this work are a new retinal image synthesizer and a
semi-supervised learning method for glaucoma assessment based
on the Deep Convolutional Generative Adversarial Network (DC-
GAN). To the best of the author’s knowledge, an unprecedented
number of publicly available images (86926 images) are used to
train both methods. Synthetic images were qualitatively evaluated
using t-SNE plots of features associated with the images and
their anatomical consistency were estimated by measuring the
proportion of pixels corresponding to the anatomical structures
around the optic disc. The resulting image synthesizer is able
to generate realistic cropped retinal images and the glaucoma
classifier is able to classify them into glaucomatous and normal
with high accuracy (AUC=0.9017). The obtained retinal image
synthesizer and the glaucoma classifier could be used to generate
an unlimited number of cropped retinal images with glaucoma
labels.

Index Terms—Glaucoma Assessment, Retinal Image Synthesis,
Fundus Images, DCGAN, Medical imaging

I. INTRODUCTION

G
LAUCOMA is an irreversible eye disease and it is con-

sidered the second leading cause of blindness globally

[1]. It is mainly characterised by optic nerve fibre loss and

that is given by the increased intraocular pressure (IOP) and/or

loss of blood flow to the optic nerve. In a fundus image, the

optic nerve head or optic disc can be visually separated into

two zones, a bright and central zone called optic cup and a

peripheral part called neuro-retinal rim. See Fig. 1.
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Fig. 1. Digital fundus images. (a) Main structures of an original fundus image
and (b) Main structures of the optic disc region.

While the optic disc (OD) and cup are present in all

individuals, an abnormal size of the cup with respect to the

optic disc is a characteristic of a glaucomatous eye. A deep

understanding of the anatomy of the optic disc is crucial

for glaucoma diagnosis. For that reason, different approaches

have been developed towards optic disc analysis for glaucoma

assessment using retinal images. For instance, in a state-of-the-

art method developed by Chen et al. [2], they used cropped

images to train and evaluate a CNN obtaining an area under the

ROC curve of 0.831 on a database of 650 images. However, the

amount of available images is a huge problem when trying to

generalise. For this reason, one of the main focus of this paper

is the development of a retinal image synthesizer algorithm.

II. BACKGROUND

Retinal image synthesis has been a focus of the scientific

community. For instance, Fiorini et al. [3] used a system that

generated the retinal background and the fovea and another

system to generate the optic disc by using a large dictionary

of patches with no vessels that are later registered. After that,

the authors developed a complementary work that is mainly fo-

cused on vessel generation [4]. Although their method allows

the generation of high-quality and large resolution images, the

process of concatenating the generation of the main parts of

the images is a considerable complex computational algorithm

that relies on how well the images are registered.

Another approach to retinal image synthesis is the one

developed by Costa et al. [5]. In their work, they trained an

adversarial method on vessel networks and their corresponding

retinal fundus images. In other words, they learn a transforma-

tion between the vessel trees and the retinal fundus. The main

limitation of their method is the dependency of an independent

algorithm to segment the vessels.

In another paper, Costa et al. presented a method which

improves their previous work. Instead of learning a transfor-

mation between the vessel trees and the corresponding retinal
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image, the authors used the original vessel trees to train an

autoencoder. Then, the synthetic vessel trees are used as input

to the retinal image synthesizer [6].

Although the latter system proposed by Costa et al. is a

substantial improvement in their previous work, both methods

are dependent on how well the independent method extracts

the vessels. The quality of the segmented vessel tree will affect

the synthetic vessel trees and then, the final retinal image.

Although Costa’s work is focused on synthesizing a bigger

field of view, we trained their algorithm on cropped retinal

images to compare the images synthesized by their method

and our method.

Regarding the glaucoma assessment algorithms available

in the literature, there is a great effort in pushing forward

the state of the art in this area. For instance, Chen et al.

[7] proposed and trained from scratch a CNN architecture

to automatically classify glaucomatous fundus images using

two databases: ORIGA-(light) (650 images) and SCES (1676

images), obtaining an AUC of 0.831 and 0.887 in the two

databases. A study conducted by Alghamdi et al. [8] makes

use of eight databases (four public and four private databases)

to detect optic disc abnormalities. They developed a method

using two CNNs: one CNN was trained to first classify and

delimit the optic disc region and the other CNN to classify the

optic disc region into normal, suspicious and abnormal classes.

Another study worthy to mention was made by Orlando et al.

[9], where they showed how two different CNNs, OverFeat and

VGG-S, could be used as feature extractors. They also inves-

tigate how the performance of these networks behaves when

Contrast-Limited Adaptive Histogram Equalization (CLAHE)

and vessels deletion are applied to the fundus images. In their

work, they used Drishti-GS1 database to test the performance

of the fine-tuned CNNs. They observed that OverFeat CNN

performed better than VGG-S, obtaining an AUC of 0.7626

and 0.7180, respectively. All these works have obtained great

results in detecting glaucoma using glaucoma-labelled images.

However, there are no works that take advantage of the huge

amount of unlabelled data publicly available.

In this paper, we focused on the development of an im-

age synthesizer and a semi-supervised learning method for

glaucoma assessment using cropped retinal fundus images. To

reach these goals, we trained two systems on 86926 retinal

images cropped around the optic disc using the Deep Con-

volutional Generative Adversarial Network (DCGAN) [10]:

an image synthesizer and a semi-supervised learning method.

Synthetic images generated by our method were qualitatively

compared with images generated by the Costa’s method and

the real images by using t-SNE plots. Moreover, quantitative

evaluation was carried out by analyzing the structural prop-

erties of synthetic and real images. To do this, we measured

the proportions of the area occupied by the vessel network

and optic disc. The consistency in colour terms between the

synthetic and real images is also measured by extracting the

2D-histogram (or chromaticity diagram) and computing the

mean-squared error.

Additionally, we compared the performance of the proposed

glaucoma classifier obtained from the semi-supervised learn-

ing method with the state-of-the-art algorithms. To the best

of the author’s knowledge, there are no works in the literature

that use a semi-supervised learning method and a retinal image

synthesizer that are able to generate unlimited number of

glaucoma-labelled images.

III. MATERIAL AND METHODS

A. Material

A total of 86926 images from fourteen public databases:

ORIGA-light [11], which contains 650 images, Drishti-GS1

[12], which is composed of 101 images (training and test set),

RIM-ONE [13], which consists of 455 images, sjchoi86-HRF

[14] with 401 images, HRF [15], which contains 45 images,

DRIVE [16], which contains 40 images, MESSIDOR [17],

which is composed of 1200 images, DR KAGGLE [18] with

82447 images (training and test set), STARE [19] with 195,

e-ophtha [20] with 431, ONHSD [21] with 89, CHASEDB1

[22] with 28, DRIONS-DB [23] with 105 and SASTRA [24]

with 34 images and a private database, ACRIMA1, composed

of 705 images were used to train the models presented in this

work. All these databases are described in detail in Table I.

The reason some of the databases shown in Table I have no Q#3

images for Glaucoma and Normal categories is because they

were used for other tasks such as diabetic retinopathy classi-

fication or segmentation. For instance, DR KAGGLE and e-

ophtha are databases especially designed for scientific research

in Diabetic Retinopathy (DR). On the other hand, MESSIDOR,

ONHSD, DRIVE, STARE, CHASEDB1, DRIONS-DB and

SASTRA were designed for optic disc, optic cup or vessel

segmentation.

All the fundus images were automatically cropped around Q#1

the optic disc, except the RIM-ONE database which came

originally cropped around the optic disc (See Fig. 5). To do

this cropping, we employed the CNN-based method proposed

in [25]. In their method, Xu et al. used a basic CNN to find the

most probable pixels in the optic disc region. Then, they sort

out those candidate pixels via using a threshold. The reasons

we used this method are performance and because we want

our pipeline to be completely CNN-based.

In order to fully covered the optic disc, we used a bounding

box with ten more pixels around it. After cropping the images, Q#2

the first author of this work manually discarded cropped

images following the next criteria:

• Images with no presence of optic disc.

• Images with very low resolution in which optic disc is

not discernible.

• Images with bright spots that occult a significant part of

the optic disc.

For that reason, we used fewer images of the DR KAGGLE

database (82447 instead of the 88702 images).

For all the experiments carried out in this work, the open

source deep learning library Keras [26] and NVIDIA Titan Xp

GPU were used.

1The publication of this database is pending of a journal review process
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TABLE I
DATABASES USED TO TRAIN THE IMAGE SYNTHESIZER AND

SEMI-SUPERVISED LEARNING METHOD

Database Glaucoma Normal Total

ORIGA-light [11] 168 482 650

Drishti-GS1 [12] 70 31 101

RIM-ONE [13] 194 261 455

sjchoi86-HRF [14] 101 300 401

HRF [15] 27 18 45

ACRIMA 396 309 705

DRIVE [16] - - 40

MESSIDOR [17] - - 1200

DR KAGGLE [18] - - 82447

STARE [19] - - 195

e-ophtha [20] - - 431

ONHSD [21] - - 89

CHASEDB1 [22] - - 28

DRIONS-DB [23] - - 105

SASTRA [24] - - 34

956 1401 86926

B. Generative Adversarial Network

Generative Adversarial Networks, or GAN, are deep neural

network architectures comprised of two networks. One is

called the generator and the other (the adversary) is called

the discriminator. These two networks play a game, where

the generator is trained to produce realistic samples, and the

discriminator is trained to distinguish generated or synthetic

data from real data. They are trained simultaneously, and the

competition drives the synthetic samples to be indistinguish-

able from real data.

For this work, a class of CNN called Deep Convolutional

Generative Adversarial Networks (DCGAN) that are based

on the adversarial strategy was used. This architecture was

a major improvement on the first GAN, generating better

quality images and more stability during the training stage.

As in the GAN network, synthetic image generation using the

DCGAN mainly consists of two phases: a learning phase and

generation phase. For the training phase, the generator draws

samples from an N-dimensional normal distribution that run

through the generator to obtain a synthetic sample and the

discriminator attempts to distinguish between images drawn

from the generator and images from the training set. A schema

of the DCGAN architecture can be seen in Fig. 2.

C. Semi-supervised Classification

Semi-supervised classification is an area in machine learn-

ing and a special form of classification in which a large amount

of unlabeled data, along with the labeled data, are used to build

better classifiers. Other names for this technique are “learning

from labeled and unlabeled data” or “learning from partially

labeled/classified data” [27].

Semi-supervised learning has been of great interest both in

theory and in practice because it requires less human effort and

Real Images

Synthetic 
ImagesGENERATOR

DISCRIMINATOR

Real or 
Fake

La
te

nt
 V

ar
ia

bl
es

Fig. 2. Schema of the DCGAN architecture. The generator takes as input a
vector of latent variables to synthesize retinal images while the discriminator
tries to predict whether the input is a real or a generated image.

gives higher accuracy. Given the scarce number of glaucoma-

labelled images, this technique can significantly help the

development of automatic glaucoma assessment systems using

retinal images. For that reason, we decided to use the power of

the DCGAN to develop a semi-supervised learning method for

training a glaucoma classifier and at the same time an image

synthesizer.

IV. PROPOSED METHOD

As it was previously mentioned, we based our work on the

DCGAN model. We followed the guidelines to construct the

generator and discriminator described in the paper written by

Radford et al. [10].

1) Model Architecture and Hyperparameters: The DCGAN

architecture has several improvements on the vanilla GAN.

Among them are the replacement of all pooling layers with

strided convolutions in the discriminator and fractional-strided

convolutions in the generator, the use of batch normalization

(batchnorm) in both the generator and the discriminator, the

replacement of fully connected hidden layers with the average

pooling at the end, the use of ReLU activation in the generator

for all layers except for the output and the use of LeakyReLU

activation for all layers in the discriminator.

TABLE II
THE DISCRIMINATOR AND GENERATOR CNNS USED FOR RETINAL IMAGE

SYNTHESIS. CONV STANDS FOR CONVOLUTION, UPCONV STANDS FOR

UPCONVOLUTION, FC STANDS FOR FULLY CONNECTED AND BATCHNORM

STANDS FOR BATCH NORMALIZATION.

Discriminator D Generator G

Input 128×128 Color image Input ∈ IR
100

5×5 conv, LeakyReLU (alpha 0.2), FC 32×32×256, ReLU, batchnorm
stride 2, Dropout 0.4

5×5 conv, LeakyReLU (alpha 0.2), UpSampling2D size 2
stride 2, Dropout 0.4 5×5 upconv, ReLU, stride 1, batchnorm

5×5 conv, LeakyReLU (alpha 0.2), UpSampling2D size 2
stride 1, Dropout 0.4 5×5 upconv, ReLU, stride 1, batchnorm

FC-1 output layer, sigmoid activation 5×5 upconv, ReLU, stride 1, batchnorm
(Output for DCGAN)

FC-3 output layer, softmax activation 5×5 upconv, Tanh, stride 1
(Output for SS-DCGAN)

The architecture of the image synthesis and semi-supervised

learning method differs only on the last output layer (Fully

connected layer) of the discriminator: one neuron for im-

age synthesis (Synthetic or Real, FC-1) and three neurons

for semi-supervised learning method (Normal, Glaucoma and
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Synthetic class FC-3. See Fig. 3). The architecture details are

presented in Table II.

It is worthy to highlight that in Table II are presented

two different systems. One system is the DCGAN, that only

synthesizes images and a second system that synthesizes and

trains a glaucoma classifier (SS-DCGAN).

Regarding image resolution, we modified the architecture to

handle 128×128 px, which is closer to the average resolution

of the cropped retinal images. No pre-processing was applied

to the training images, no data augmentation was used and

class weights for the Glaucoma, Normal and Not-labelled

images were set to train the semi-supervised learning method.

Although research in adversarial models continues to im-

prove, stability on training these models is still a challenging

task. For that reason, we followed the recommendations given

in [28] to reach stability on training the DCGAN and the semi-

supervised learning method (SS-DCGAN). Recommendations

such as normalizing the input images between -1 and 1,

using Stochastic Gradient Descent (SGD) optimizer for the

discriminator and ADAM optimizer for the generator, using

a Gaussian distribution for the latent space and mini-batches

containing only all real images or all generated images were

used for training the models in this work.

2) Model Losses: As in a regular GAN, the DCGAN

model emulates a competition in which the Generator G

attempts to produce realistic images, while the Discriminator

D classifies between images from the training set with their

corresponding labels and images produced by the generator.

The main goal of the DCGAN model is to maximise the miss-

classification error of the Discriminator while the generator

produces more realistic images trying to fool the discriminator.

This competition is also called a two-player minimax game

and it can be described as follows:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))],

(1)

where Ex∼pdata(x) is the expectation over the training data

and Ez∼pz(z) is the expectation over the data produced by the

generator. D(x) represents the probability that x came from

the training data rather than the data produced by the generator

and G(z) represents the probability of z being produced by

the generator. Therefore, the system is trained to minimize

log(1−D(G(z))) and maximise log(D(x)) [29].

However, regarding the semi-supervised learning method

using the DCGAN architecture, instead of binary classifica-

tion, the discriminator is transformed into a K-class classifier

[30], [31]. Therefore, the semi-supervised setting loss function

is composed of two parts; the supervised and the unsupervised

loss function [32]:

L = Lsupervised + Lunsupervised, (2)

where the supervised loss is defined by the cross-entropy loss

function as in a supervised learning setting with K classes:

Lsupervised = −Ex,y∼pdata(x,y) log(pmodel(y|x, y < K + 1)),
(3)

and the unsupervised loss function is, in fact, the standard

GAN minimax game:

Lunsupervised = −
{

Ex∼pdata(x) logD(x) + Ez∼pz(z) log(1−D(G(z)))
}

,

(4)

where D(x) = 1 − pmodel(y = K + 1|x), being pmodel(y =
K+1|x) the model predictive distribution and K the number

of real classes.

In other words, the unsupervised loss function is computed

to differentiate real training images and fake images and the

supervised loss computes the individual real classes probabil-

ities. In this work, these classes are Glaucoma and Normal.

V. RESULTS AND DISCUSSION

In this work, we trained an image synthesizer and a semi- Q#7

supervised learning method on 86926 cropped retinal images

from fourteen different databases. In the process of training

these models, we tested a range of N-dimensional latent spaces

from 32 to 100 latent variables. Each latent space was explored

in order to check that the systems do not memorise the

training database and, at the same time, it generates plausible

retinal images. To accomplish this goal, we used spherical Q#1

interpolation to evaluate intermediate latent representation

points as it was done in [6]. It turns out that using a spherical

interpolation, instead of linear interpolation, better results are

obtained when finding a path between two samples (z1 and

z2) [33]. The spherical interpolation (slerp) is defined by the

following equation:

slerp(z1, z2, t) =
sin((1− t)θ)

sin(θ)
z1 +

sin(tθ)

sin(θ)
z2 (5)

where θ represents the angle between z1 and z2 and t is

a value ranging from 0 to 1. For t = 0, the output of the

slerp is equal to z1, for t = 1 the slerp is z2 and for an

intermediate value of t, slerp outputs a spherical interpolated

point. Examples of this exploration can be seen in Fig. 4.

It is possible to observe from Fig. 4 that all images resulting

from the spherical interpolation are plausible images. This

implies the latent space does not contain zones outside the

manifold learned during training and the system does not

memorize the training set.

Regarding the image size, all the images were rescaled into

128×128 px because this size represents the nearest power

of two to the averaged height and width of a retinal image

cropped around the optic disc. We utilised a power of two

image size to optimise speed and computational performance.

A. Retinal Image Synthesis

Although a great effort to develop objective metrics that Q#7

correlate with perceived quality measurement has been made

in recent years, it is still a challenging task. In the case of

quality evaluation of synthetic images, it should be specific for

each application [34]. For that reason, we created a database

composed of 400 images: 100 synthetic images from the

DCGAN, 100 synthetic images from the SS-DCGAN, 100

images from a state-of-the-art method (Costa’s method [5]),
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Fig. 3. Schema of the DCGAN architecture used as a Semi-supervised learning method. The DCGAN discriminator is converted into a 3-class classifier
(Normal, Glaucoma and Real/Fake class).

Fig. 4. Examples of the latent space exploration using the spherical interpo-
lation.

and 100 real images (randomly selected from the training set

with the exception of ORIGA-light database. It will be used for

qualitative evaluation) to perform a qualitative and quantitative

evaluation. The synthetic images use for this evaluation were

generated after training the DCGAN for 15 Epochs and the

semi-supervised learning method for 150 Epochs. To train the

SS-DCGAN algorithm, we weighted the classes during the

training stage because there is less number of glaucomatous

images in the training set than normal and/or images without

labels.

With regards to the qualitative evaluation, we think thatQ#7

a good way to compare synthetic and real retinal images is

by comparing the features extracted by a CNN trained to

classify retinal images. Therefore, we fine-tuned the ResNet50

architecture [35] on the ORIGA-light database as a glaucoma

classifier. Once this network was fine-tuned, we took 100

features for each image using a fully connected layer with

100 neurons on the top model, in which each neuron’s output

represents one feature.

After obtaining the 100 features for each image, we quali-Q#7

tatively show with t-SNE [36] the feature differences between

real images and synthetic images generated by the DCGAN,

the semi-supervised learning method (SS-DCGAN) and the

Costa’s method [5].

It is important to highlight that Costa’s method [6] wasQ#7

originally presented to synthesize images with a wider field

of view and fewer images. For that reason, we retrained their

method, following all the recommendations given in their

paper, on the 86926 cropped retinal images with a resolution

of 128×128 px. Examples of images used for this comparison

are shown in Fig. 5.

Real Images

DCGAN 
Method

Costa’s 
Method

SS-DCGAN 
Method

Fig. 5. Examples of real images (first row), synthetic images generated by the
DCGAN method (second row), synthetic images generated by Costa’s method
(third row) and synthetic images generated by the Semi-supervised DCGAN
(fourth row).

As it can be seen from the Fig. 5, synthetic images obtained

from the DCGAN model are sharper, they present well-defined

optic disc shapes, how the blood vessels clearly converge into

the optic disc and right/left eye symmetry is evidenced in the

resulting images. From this comparison, we found out that

synthetic images from the Costa’s algorithm have artifacts

inside the optic disc as it is shown in Fig. 6

(a) (b)

Fig. 6. Image sample generated by the Costa’s (a) and the DCGAN (b)
methods. Artifacts inside the optic disc are visible on the image generated by
the Costa’s method.

These observations can be also qualitatively evaluated mak-

ing use the t-SNE plots (See Fig. 7). From Fig. 7 it is possible

to see that features of the synthetic images generated by the

DCGAN architecture are closer to the real images than the

other methods and the features of images generated by Costa’s
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method are closer to the real images than the SS-DCGAN

method.

The quality of the images generated by the SS-DCGANQ#7

was expected to be low due to this method is not only

synthesizing images but also training a glaucoma classifier

using labelled and not-labelled glaucomatous images. It was

empirically demonstrated in [31] that a good semi-supervised

learning method and a good generator cannot be obtained at

the same time.

Regarding the quantitative evaluation, we analyzed twoQ#1

important features: the anatomic characteristics such as vessels

and the optic disc and the colour properties of the images. To

evaluate the anatomic characteristics, we measured the average

proportion of pixels belonging to the vessel and optic disc

structures (See Table III). Optic disc masks were manually

segmented by clinical experts and the vessel masks were

automatically segmented using a method based on morpho-

logical operators, curvature evaluation and k-means filtering to

detect the vessels [37]. The trade-off between time consuming

and performance is the main reason of using this method to

segment the vessels.

TABLE III
MEAN AND STANDARD DEVIATION OF PIXEL PROPORTION OCCUPIED BY

THE VESSELS, OPTIC DISC, AND BACKGROUND ON THE EVALUATION

DATABASE.

Real Images DCGAN method SS-DCGAN method Costa’s method

Vessel proportion 0.1519± 0.0306 0.1431± 0.0306 0.2224± 0.0620 0.1026± 0.0195

Optic Disc proportion 0.2456± 0.0722 0.1776± 0.0339 0.1599± 0.0291 0.1851± 0.0396

Background 0.6025± 0.0795 0.6792± 0.0428 0.6177± 0.0555 0.7122± 0.0437

It is possible to observe from Table III that the mean pro-Q#8

portions between synthetic images from the DCGAN method

and real images are very similar. The small difference between

the mean proportion of the DCGAN and real optic discs

depends on the normal variation of the optic disc size among

real fundus images. Moreover, the vessel proportion obtained

from the Costa’s images (0.1026) is significantly less than

the averaged vessel proportion obtained from the real images

(0.1519). It is also possible to see that the mean vessel

proportion of the SS-DCGAN images is significantly higher

(0.2224) than the mean vessel proportion of the other type

of images. These results could also be observed from the

Fig. 6, in which vessels of the Costa’s images and the optic

discs of the SS-DCGAN are not as sharp as in the real or

DCGAN images, which may confused the automatic vessel

segmentation algorithm.

In order to evaluate the colour properties of the syntheticQ#1

and real images, we also obtained the averaged 2D-histogram

[38] of real and synthetic images generated by the DCGAN,

SS-DCGAN and Costa’s method. These 2D-histograms are

a practical way of representing the colour properties of the

images, which are constructed by using the red and green

channels normalized by the luminance (See Fig. 8).

It can be seen in Fig. 8 that the shape of the histogram

obtained from the DCGAN and SS-DCGAN images (Fig. 8(b-

c)) are more similar to the shape of the histogram obtained

from the real images (Fig. 8(a)) than the shape of the histogram

obtained from the images generated by Costa’s method (Fig.

8(d)). This means that the colour properties of the images

generated by the DCGAN and the SS-DCGAN method are

closer to the properties of real retinal images.

Additionally, we calculated the mean-squared error between Q#8

the averaged 2D-histograms and the chromaticity diagram of

each of the 400 images of the database (100 Real images,

100 synthetic images using the DCGAN, 100 synthetic images

using the SS-DCGAN and 100 images using Costa’s method).

In other words, we compute for example the mean-squared

error between the averaged 2D-histogram of real images and

each image synthesized by the DCGAN, the SS-DCGAN and

the Costa’s method. The obtained results are presented in Table

IV.

TABLE IV
AVERAGE AND STANDARD DEVIATION OF THE MEAN-SQUARED ERROR

BETWEEN THE AVERAGED 2D-HISTOGRAMS OF THE DCGAN,
SS-DCGAN, COSTA’S METHOD, AND ALL IMAGES.

Averaged 2D-histogram Real Images DCGAN method SS-DCGAN method Costa’s method

Real 0.0028± 0.000325 0.0036± 0.000543 0.0090± 0.000540 0.0013± 0.000262

DCGAN method 0.0031± 0.000461 0.0022± 0.000562 0.0078± 0.001100 0.0016± 0.000439

SS-DCGAN method 0.0026± 0.000626 0.0045± 0.001100 0.0062± 0.001400 0.0015± 0.000564

Costa’s method 0.0031± 0.000126 0.0035± 0.000178 0.0091± 0.000164 0.0010± 0.000163

In Table IV it is possible to see that images generated by

the DCGAN and SS-DCGAN method are more heterogeneous

among them than the images generated by the Costa’s method

(0.0036 for DCGAN and 0.0090 for the SS-DCGAN images).

This is represented by the mean error distance between the

averaged 2-D histogram and each image generated by the

Costa’s method (0.0013).

B. Glaucoma Diagnosis

In the qualitative and quantitative evaluation we showed that

although the SS-DCGAN system does not generate synthetic

images better than the DCGAN or Costa’s method, the result-

ing discriminator/classifier of the SS-DCGAN could be used

as a glaucoma classifier. This classifier is the result of using

glaucoma, normal and not-labelled images for training.

In order to test the performance of the SS-DCGAN as a Q#4

glaucoma classifier, images with glaucoma and normal labels

were divided into train and test using a typical division: 70%

for training (669 glaucomatous and 981 normal images) and

30% for test (287 glaucomatous and 420 normal images).

Using all the unlabelled images (84569) and the 70% of the

labelled images, we trained the SS-DCGAN and evaluated the

performance of the resulting discriminator/classifier on the test

set (30% of labelled data).

We computed the ROC curve, AUC, specificity, sensitivity Q#7

and F-score to evaluate the performance of the proposed

glaucoma classifier on the test set. Moreover, the obtained

results were compared with other works in the literature such

as the CNNs proposed by Chen et al. [7] and Alghamdi et

al. [8]. These networks were trained from scratch and tested

on the same 70% and 30% of the labelled data. Additionally,

we fine-tuned the ResNet50 architecture using the ImageNet

weights. The obtained results from those models and our

method are presented in Fig. 9 and Table V.
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(a) (b) (c)

Fig. 7. t-SNE plots of features associated to the different types of synthetic images. Yellow and blue dots indicate real and synthetic features respectively.
Features of synthetic images using (a) DCGAN method, (b) Costa’s method and (c) Semi-supervised DCGAN (SS-DCGAN).
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Fig. 8. Averaged 2D-histograms of synthetic and real images. (a) Averaged
2D-histogram of real images, (b) Averaged 2D-histogram of synthetic images
generated by the DCGAN model, (c) Averaged 2D-histogram of synthetic
images generated by the SS-DCGAN model and (d) Averaged 2D-histogram
of synthetic images produced by Costa’s method. X-axis represents the
normalized red channel and the Y-axis represents the normalized green
channel.
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Fig. 9. ROC curve for the glaucoma classifier trained by the Semi-supervised
learning method.

It is possible to see, from the Fig. 9 and Table V, that

although the obtained results using the ResNet50 model,

Chen’s and Alghamdi’s methods present a high AUC, the

proposed glaucoma classifier outperforms them.

It is important to highlight that the architecture of the dis-

criminator/classifier in the SS-DCGAN model is less complex

than most of the works in the literature (4 layers). For instance,

TABLE V
COMPARISON RESULTS OF THE PROPOSED GLAUCOMA CLASSIFIER.

Model Specificity Sensitivity AUC F-score

Chen [7] 0.7440 0.8150 0.8330 0.8188

Alghamdi [8] 0.6894 0.8384 0.8365 0.8174

ResNet50 [35] 0.8055 0.7775 0.8607 0.8137

SS-DCGAN 0.7986 0.8290 0.9017 0.8429

the CNN proposed by Chen is composed of 6 layers, the

CNN proposed by Alghamdi is composed of 10 layers, and

the ResNet50 architecture is composed of 50 layers. This

improvement is given by the images without label and the

synthetic images used to train the semi-supervised DCGAN.

It was empirically demonstrated in [31] that generative adver-

sarial networks used as semi-supervised learning method boost

the task performance because it uses the synthetic images

generated while training the discriminator/classifier.

We made publicly available a dataset of 10.000 images

synthesized by the DCGAN and 10.000 samples synthesized

by the SS-DCGAN. Labels to the synthetic images were given

by the SS-DCGAN classifier and all cropped images used for

training our models were also made publicly available at the

following link https://figshare.com/s/6e4cbba780b81a59964c

VI. CONCLUSIONS

In this paper, a generative model was trained on cropped

retinal images from one private and fourteen public databases

(86926 retinal images). In contrast to other approaches to

retinal image synthesis, the model presented in this work does

not need previous vessel segmentation to generate images

and the number of retinal images used during training is

significantly greater than any other work in the literature.

Qualitative and quantitative evaluation were carried out on the

obtained synthetic images, showing an improvement in quality

when comparing with the current works in the literature.

Additionally to the image synthesizer, a semi-supervised

learning method based on the DCGAN architecture was

trained on the 86926 cropped retinal images. An AUC of

0.9017 was obtained from the proposed SS-DCGAN model.

After the comparison made with the current works in the

literature, the obtained results demonstrate that our method

could be used as computer-aided glaucoma diagnosis system.

In summary, a system capable of generating high plausible

cropped retinal images and a high discriminative glaucoma

https://figshare.com/s/6e4cbba780b81a59964c


IEEE TRANSACTIONS ON MEDICAL IMAGING, SEPTEMBER 2018 8

classifier could be used to generate an unlimited number of

glaucoma-labelled images. It is possible to utilise the images

generated by the DCGAN model and make the SS-DCGAN

model to put a label to the generated images.

Future work will focus on using advance generative adver-

sarial networks such as image-to-image translation methods

for retinal image synthesis and semi-supervised learning with

the aim of improving both the quality of the generated images

and the glaucoma classification.
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