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Computer-Aided Detection of Lung Nodules: A Review 
 
Furqan Shaukat,a,* Gulistan Raja,a Alejandro F. Frangib 
aDepartment of Electrical Engineering, University of Engineering & Technology, Taxila 47080, Pakistan. 
bSchool of Computing and School of Medicine, University of Leeds Woodhouse Lane, Leeds LS2 9JT,UK. 5 

Abstract. This paper presents an in-depth review and analysis of salient methods for computer-aided detection (CAD) 
of lung nodules. We evaluate current methods for detecting lung nodules using literature searches with selection 
criteria based on validation dataset types, nodule sizes, numbers of cases, types of nodules, extracted features in 
traditional feature-based classifiers, sensitivity, and false positives (FP)/scans. This review shows that current 
detection systems are often optimized for particular datasets and can detect only one or two types of nodules. We 10 
conclude that in addition to achieving high sensitivity and reduced FP/scan, strategies for detecting lung nodules must 
detect a variety of nodules with high precision to improve on the performances of radiologists. To the best of our 
knowledge, this is the first review on the effectiveness of feature extraction using traditional feature-based classifiers. 
Moreover, we discuss deep-learning methods in detail and conclude that features must be appropriately selected to 
improve the overall accuracy of the system. The aim of this review is to present an analysis of current schemes and 15 
highlight constraints and future research areas.  
 
Keywords: computer-aided detection, lung nodule detection, lung cancer, false positive. 
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1 Introduction 

Lung cancer is currently one of the most common causes of death worldwide, with low rates of 

survival after diagnosis being reported in developed and under-developed countries1. According 

to recent statistics, the 5-year survival rate is only 16%2 and it has been estimated that by the year 

2020, 12 million cancer-related fatalities will occur annually, of which lung cancer will have the 25 

largest share3. However, survival rates can be improved1 if nodules are detected early enough. 

Lung nodules are abnormal growths of tissue that could represent lung cancer. They are typically 

round/spherical in shape with diameters of up to 30 mm4. Nodules are categorized as well-

circumscribed, juxta-vascular, juxta-pleural, and pleural-tail. Well-circumscribed nodules are 

independent and have no extensions into surrounding anatomical structures, whereas juxta-30 
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vascular nodules exhibit strong adherence to proximal vessels, and juxta-pleural nodules are 

attached to neighboring pleural surfaces. Pleural-tail nodules have tails that are adherent to the 

nodule but not to pleural walls. Additionally, pulmonary nodules are categorized as solid and 

subsolid nodules, irrespective of their positions. Subsolid nodules (SSN) are further classified as 

part-solid nodules and pure ground-glass nodules. Solid nodules are the most common type of 35 

nodule, and these repress the underlying functional lung tissues. SSN are pulmonary nodules with 

partial ground-glass opacity (GGO). These nodules exhibit opacifications with higher density than 

the surrounding tissues and do not obscure underlying bronchovascular structures5. Sample images 

of different nodules are shown in Fig. 1.  

 40 

 

 

Fig. 1 Samples of lung nodule types. From left to right, well-circumscribed/solid, juxta-vascular/subsolid, juxta-

pleural, pleural-tail and GGO nodules 

Computer-aided detection (CAD) 6 can assist early diagnosis of lung cancer. The principle aim 45 

of CAD is to identify and accurately extract regions of interest (ROI) in images acquired from 

various imaging modalities, including computed tomography (CT), position emission tomography 

(PET), and magnetic resonance imaging (MRI) 7–9. CAD systems can be further categorized as (i) 

computer-aided detection (CADe) and (ii) computer-aided diagnosis (CADx). The scope of CADe 

systems is limited to identification of suspicious areas in images, whereas CADx systems facilitate 50 

disease diagnosis3. In the present manuscript, we focus on CADe systems. A complete schematic 

of lung CADe processes is shown in Fig. 2. 
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Fig. 2 Typical lung CAD processes: image acquisition, segmentation of lung fields, detection of candiate nodules, 

and false positive reduction 

 Medical images are acquired from various imaging modalities3. Among these, CT is a 

fundamental imaging technique for screening analyses of lung nodules, and the other available 65 

methods are of less importance. Among public databases, such as the Early Lung Cancer Action 

Program (ELCAP) Public Lung Image Database10 and Public Lung Database to Address Drug 

Response11, the Lung Image Database Consortium (LIDC)12 is widely used for its images because 

they carry standard radiological annotations. The most commonly used public databases are 

summarized in Table 1. 70 

Table 1. Public Databases for assessments of Lung CADe Systems, *N/A, Not available 

Database Release Date No of Scans No of images Modality Ground truth 
VIA/ELCAP 10 2003 50 N/A CT Available 
Public Lung Database to 

Address Drug Response 11 
2005 100 N/A CT Available 

LIDC-IDRI 12 2011 1018 244, 527 CT Available  
SPIE-AAPM 13 2015 70 22489 CT Available 
RIDER Lung PET-CT 14 2013 275 269, 511 CT, PET N/A 
RIDER Lung CT 15 2009 46 15,419 CT Available 
QIN Lung CT 16 2016 47 3954 CT N/A 
Lung CT Segmentation 

Challenge 2017 17 
2017 60 9569 CT, RT N/A 

Lung CT-Diagnosis 18 2015 61 4682 CT Available (Tumor 

Slices) 
ANODE09 19 2009 55 N/A CT Available (only for 

5 training scans) 

 

Acquisition

Lung Field 
Segmentation

Nodule Candidate 
Detection

False Positive 
Reduction
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Other platforms that have contributed datasets to the research community include the Dutch–

Belgian randomized lung cancer screening trial NELSON20 and the Lung Cancer Alliance21. The 

main objective of these publicly available databases is to provide data resources to the research 75 

community for the development, evaluation, and benchmarking of CADe systems.  

Lung segmentation is a process by which lung volumes are extracted from CT images and 

insignificant constituents are discarded. The efficiency of lung nodule detection systems is 

increased by accurate lung segmentation and several techniques for extracting lung volumes from 

CT images are used These include, optimal thresholding, rule-based region growing, global 80 

thresholding, 3-D-adaptive fuzzy thresholding, hybrid segmentation, and connected component 

labeling. Following preliminary lung segmentation, juxta-pleural nodules are added by refining 

extracted lung volumes, generally using a chain-code method, a rolling ball algorithm, or 

morphological approaches22–31. 

Nodule detection can be described as a process in which suspicious lung areas are detected 85 

which may be responsible for lung cancer. Among reported techniques for detecting lung nodules 

as candidate lung cancers, multiple gray-level thresholding is the most widely considered, although 

shape-based, template matching-based, morphological approaches with convexity models, and 

filtering-based methods have also been used for this purpose22–26,32–33.  

Following detection of candidate nodules, nodules must be distinguished from non-nodules. In 90 

published studies, this false positive reduction involves feature extraction and nodule classification 

using feature-based classifiers. Various methods are reported for extracting image features and 

classifying nodules, generally based on intensity-based statistical features, geometric features, and 

gradient features22–23. After feature extraction, nodule detection is performed using several 

supervised and unsupervised classifiers to reduce numbers of false positives24–26, 28, 34–36. However, 95 
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developments in deep-learning have made the selection of image features less explicit, and optimal 

loss functions and efficient optimization algorithms that influence the learning process have been 

favored.  

In Sec. 2, we present a review of studies that were selected for their relevance to CADe. We 

only considered studies from 2009 because the approaches reported prior to this time have become 100 

redundant. Our analyses of these studies are presented with a focus on limitations. Abstracts were 

retrieved from PubMed, Science Direct, IEEE Xplore, and Web of Science using the keywords 

“lung,” “nodule,” “detection,” “pulmonary,” “tumor,” “CAD,” “CADe,” and “cancer” with various 

combinations of logical expressions containing “AND” and “OR.” We reviewed only peer-

reviewed archival journal publications and included key conference papers that were published in 105 

the last year. Section 3 presents a discussion of the major constraints on present and future 

prospects. Conclusions are drawn in Sec. 4. The aim of this review was to provide a critical analysis 

of current lung nodule detection systems and highlight the constraints and future research areas. 

2 Review of Lung Nodule Detection Systems 

Lung nodule detection systems comprise processes for (i) lung segmentation, (ii) nodule candidate 110 

detection, and (iii) false positive reduction. Several reviews of the methods used for nodule 

detection and false positive reduction identify overall sensitivity and numbers of false positives 

(FP)/scan as key performance criteria37–41, but few comparative analyses have been performed to 

determine the effectiveness of the extracted features that are used for false positive reduction. 

Therefore, we summarized the techniques for extracting features using feature-based classifiers 115 

that are used to determine the most relevant feature classes in lung nodule detection systems and 

to facilitate sensitivity and reduce FP/scans of the system. Furthermore, we reviewed reports of 

deep-learning techniques and compared their outcomes with those of traditional feature-based 
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techniques. To the best of our knowledge, our review is comprehensive and up-to-date and 

comprises developments in the field. The present review highlights the challenges and constrains 120 

of the three categories of lung nodule detection system. 

2.1. Lung Segmentation 

Lung segmentation techniques can be broadly classified as (i) deformable boundary-based 

techniques, (ii) edge-based techniques, and (iii) threshold-based techniques. Each lung 

segmentation technique has its own pros and cons. Although threshold-based techniques are 125 

efficacious with high contrast CT images, their performance can vary with low contrast 

pathologies. Moreover, thresholding can be affected by differing imaging protocols and image 

acquisition scanners. Particularly, because lung structures, such as blood vessels, bronchioles, and 

bronchi, exhibit close densities with chest tissues, it is extremely challenging to accurately define 

ROIs and often requires special post-processing for accurate segmentation. Deformable boundary-130 

based techniques have the disadvantage of extra sensitivity to initialization. Furthermore, they are 

unable to overcome the heterogeneity of lung volumes with traditional external forces, such as 

edges and gray levels. Therefore, accurate lung segmentation is difficult using the deformable 

model. In addition, the accuracy of these imaging analyses depends on the accuracy of registration 

of prior shape-models for CT images. Poor registration can affect the overall performance and is 135 

the main limitation of these schemes. Additionally, the diversity of lung pathologies complicates 

the accurate segmentation of lung fields. Selected reports of lung segmentation techniques are 

summarized in Table 2.  
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2.2. Nodule Candidate Detection 

Nodule candidate detection is performed to identify structures within the lung that are suspicious 140 

for being lung nodules. This process is typically performed following lung segmentation to 

decrease the workload 

Table 2. Review of Lung Segmentation Techniques† 

                                                 
† * NA, not available, OM, overlap measure is defined as the volume of the intersection divided by the volume of the 
union of two samples; DSC, dice similarity coefficient is used to compare the similarity of two samples; FM, F-
measure denotes the harmonic mean of predictive value and sensitivity; RmsD, root mean square difference of the 
distance between the segmentation and the ground truth; SCD, symmetrical point-to-mesh comparison error; AD, 
mean absolute surface distance is defined as symmetric border positioning measure integrated along entire surfaces. 
 

CAD Systems 
 

Year No. Cases Image size Proposed 

Technique 
Ground Truth 
 

Performance 
 

Soliman et 

al.50 
2017 105 512 × 512 × 

270ʹ450 
Shape-based 75 Manual 

traced scans 
OM= 0.98 
DSC= 98.4 % 

Filho et al.51 2017 40 CT scans 512 * 512 Shape-based 

deformable 
model 

Semi-

automatic 

(manual + 

commercial 

software) 

FM = 99.14% 

Shi et al.55 2016 23 CT scans 512 * 512 Thresholding 23 manually 

traced data 
OM= 0.98 

Dai et al. 49 2015 NA 512 * 512* 

368 
Shape-based Manually 

traced data 
DSC=0.98 

Mansoor et 

al.48 
2014 400 CT images NA Shape-based 400 manually 

traced data 
OM=0.95 

Sun et al.47 2012 30 scans 512 × 512 × 

424ʹ642, 
0.6ʹ0.7 mm 

thin 
 

Shape-based 30 manually 

corrected 
traced data 
 

DSC = 0.97 
AD = 0.84 mm 

Sofka et al.46 2011 260 scans 0.5ʹ5.0 mm Shape-based 68 manual 

traced data 
SCD = 1.95 

Besbes and 

Paragios45 

 
 

2011 247 image 
radiographs 
 

256 × 256, 
1 mm thin 

Shape-based 123 manual 

traced 
data 
 

OM = 0.94 
AD = 1.39 pixel 

Annangi et 

al.44 
 

2010 1130 image 
radiographs 
 

128 × 128 and 

256 × 
256 
 

Shape-based 

deformable 
model 

1130 manually 

traced 
images 
 

DSC = 0.88 

El-Baz et al.43 
 
 

2008 10 image 

datasets 
512 × 512 × 

182, 
2.5 mm thin 

Statistical 

MGRF model 
1820 manual 

traced 
images 

Accu. = 0.96 
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by removing the background and unwanted areas from input CT images. Various methods have 145 

been described for detecting lung nodule candidates, and multiple gray-level thresholding is 

considered the best method, although shape-based, template-matching-based, morphological 

approaches with convexity models and filtering-based methods have been used.  

Akram et al.56 applied multiple gray level thresholding for nodule candidate detection and 

stated that single threshold values are insufficient because vessels and different types of nodules 150 

exhibit different density values. Choi and Choi4 reported that nodules exhibit a circular or dot-like 

shape of variable size. The authors suggested that single-scale enhancement is not appropriate for 

all nodules and report the use of a multi-scale dot enhancement filter. After enhancement, lung 

nodules were detected using thresholding. Gonçalves et al.57 and Chen et al.58 reported the use of 

Hessian matrix-based approaches for lung nodule detection. Gonçalves et al.57 used the central 155 

adaptive medialness principle for lung nodule identification and segmentation with shape indices 

and curvedness properties. They validated their method with 569 solid nodules of the LIDC-IDRI 

 

Shi et al. 42 
 

2008 247 image 
radiographs 
 

256 × 256 
 

Shape-based 

deformable 
model 

247 manual 

traced 
images 
 

OM = 0.92 
AD = 1.78 pixel 

Gao et al.54 2007 8 subjects 512 × 512 × 

240 
thresholding 8 manual 

traced 
datasets 
 

DSC = 0.99 

Korfiatis et 

al.53 
2007 23 scans 512 × 512 Wavelet edge 

detector 
22 manual 

traced data 
 

OM = 0.98 
AD = 0.77 mm 

Campadelli et 

al.52 
 

2006 487 image 
radiographs 
 

256 × 256 Spatial edge 

detector 
487 manual 

traced 
data 
 

Sen. = 0.92 
Spec. = 0.96 

Sluimer et 

al.27  
 

2005 26 scans 512 × 512, 
0.75ʹ2.0 mm 
 

Shape-based 10 manual 

traced 
Data 

OM = 0.82 
AD = 1.48 mm 
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dataset and demonstrated superior results compared with those obtained via manual segmentation 

by expert radiologists. Choi and Choi9 proposed an entropy-based lung nodule detection system 

involving three stages. In the first stage, CT images are divided into informative and non-160 

informative blocks and the latter are filtered out. In the next step, candidate nodules are detected 

using informative blocks after enhancement using 3-D coherence-enhancing diffusion. Candidate 

nodules are then detected from enhanced informative image blocks using optimal thresholding. 

Finally, certain features are extracted from lung nodule candidates and false positive reduction is 

performed using a support vector machine (SVM). 165 

In this section, studies are grouped according to the template matching methods for lung nodule 

candidate detection. Jo et al.59 proposed lung nodule detection systems using template matching 

and reported a method based on global rib matching and nodule template matching. In their global 

rib matching analyses, the lungs were aligned at their centers and rigid registration was performed 

using coronal and sagittal maximum intensity projection images. In the second step, lung nodule 170 

candidates were detected using template-matching-based on density similarities and geometrical 

correlations between nodules and other neighboring structures. Moreover, El-Baz et al.60 used 2D 

and 3D deformable templates and a genetic optimization algorithm to detect lung nodule 

candidates. 

Various morphological approaches have been used to detect lung nodule candidates. Cascio et al.61 175 

proposed a lung nodule detection method using 3D Mass Spring Model. In their system, region-

growing and morphological operations for lung volume segmentation were used, and lung nodule 

candidates were detected using a 3D mass spring model. The range of gray values and 

corresponding shape information from the model helped in identifying lung nodule candidates with 

greater accuracy. The authors validated their system using 84 scans obtained from the LIDC 180 
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dataset. Soltaninejad et al.62 proposed a lung nodule detection scheme using active contours and a 

KNN classifier. After performing lung volume segmentation using adaptive thresholding and 

morphological operations, the lung nodule candidates were detected using 2D stochastic features, 

followed by extraction using active contour modeling. Finally, false positives were reduced using 

the KNN classifier. Jiantao et al.32 proposed a shape-based lung nodule detection method 185 

comprising the three main steps: modeling, break, and repair. Initially, ROIs were extracted and 

represented as a shape model using the marching cubes algorithm and the problematic regions 

were identified and removed using principal curvature analyses, which can lead to inaccurate 

segmentation of objects. Finally, incomplete regions were fitted using interpolation and 

extrapolation with a radial basis function for smoothly estimating and repairing suspicious areas. 190 

Kubota et al.33 proposed a lung nodule detection method using morphological operations and 

convexity models. Initially, lung volumes were extracted using voxel transformation and figure 

ground separation. Subsequently, a Euclidian distance map was used to locate the seed point and 

then region growing was applied to identify candidate nodule regions. Finally, the authors 

segmented candidate lung nodules using convex hull. Reported techniques for lung nodule 195 

detection are summarized in Table 3. 

Table 3. Review of Lung Nodule Detection Methods 

CAD Systems 
 

Year Detection Technique 
 

Akram et al.56,  2016 Multiple gray-level thresholding 

Choi and Choi 4 2014 Multi-Scale Dot Enhancement 

Filter 

Gonçalves et al.57, 
Chen et al.58  

 

2016, 2012 Hessian Matrix-Based Method 
 

Choi and Choi 9 2013 Entropy Analysis 
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In summary, the most commonly used lung nodule detection techniques can be broadly 

classified into the three main categories (i) thresholding, (ii) template matching, and (iii) 200 

morphological approaches. Thresholding based results depend on the qualities of techniques for 

threshold adjustment. Template-matching techniques suffer from irregular shapes and diversities 

of lung nodule types. Template-matching methods also generally assume that nodules are spherical 

or cylindrical, and are hence, challenged by nodules that are attached to the pleura and vessels. 

Alternatively, morphological approaches suffer from low detection efficiency for lung wall 205 

nodules. 

2.3. False Positive Reduction 

After detecting nodule candidates, they are classified into nodules and non-nodules. This step is 

commonly referred to as false positive reduction and is performed using the following two broad 

categories of methods: (i) conventional feature-based classifiers and (ii) convolutional neural 210 

Jo et al. 59 2014 Template Matching 

El-Baz et al.60 2013 Template Matching and Genetic 

Algorithm 

Cascio et al.61 2012 Stable 3D Mass Spring Models 

Soltaninejad et al.62 2012 Active Contour and K-Nearest 

Neighbors (K-NN) Classifier 

Jiantao et al.32 2011 Thresholding and Geometric 

Modeling 

Kubota et al.33 2011 Convexity model and 

Morphological Approach 

Riccardi et al.63 2011 3D Fast Radial Transform 

Namin et al.64 and Murphy et 

al.65 
2010, 2007 Shape Index 

Ozekes et al.66 2008 3D Template Matching 
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networks. Conventional feature-based classification is performed using (i) feature extraction and 

(ii) nodule candidate classification techniques. Several methods for feature extraction and nodule 

candidate classification have been proposed. Below, we briefly review published studies in both 

of these categories and highlight the challenges inherent in the respective CAD systems. 

In 2009, Cuenca et al.25 proposed a CAD system using an iris filter to detect isolated pulmonary 215 

nodules from CT images. The system achieved a sensitivity of 80% with 7.7 FP/scan. The system 

could only detect one type of nodule, although the used dataset was quite small and contained only 

77 nodules. In contrast, Murphy et al.67 used a large private dataset of 813 scans for the evaluation 

of their proposed system and achieved a sensitivity of 80% with 4.2 FP/scan. They used local 

image features and the k-nearest-neighbor classification. Despite their large dataset, the sensitivity 220 

of their system was lower than that of other reported systems. Similarly, Guo et al.68, Liu et al.69, 

Retico et al.70, and Messay et al.22 used small datasets comprising 29 scans (34 true nodules), 32 

scans (33 solitary nodules), 42 scans (102 pleural nodules), and 84 scans (150 nodules), 

respectively, for evaluation of their proposed systems. It is presumed that the performances of 

these systems will be poor in realistic scenarios with a broader range of nodule types seen in 225 

clinical scans.  

In 2010, S. Ozekes et al.71 proposed a computerized lung nodule detection method using 3D 

feature extraction and learning-based algorithms. They claimed a sensitivity of up to 100%, but a 

false positive rate of 44 per scan rendered the method inefficient. An automatic CAD system was 

proposed by Sousa et al.72, which used an optimized subset of eight features from a total of 24 230 

initially extracted features. The system achieved a false positive rate of 0.42 and a sensitivity of 

84.84%. However, it was tested with only 33 nodules, making its performance susceptible to 

differing scenarios. In 2012, Mabrouk et al.7 proposed a technique for automatically detecting lung 
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nodules from CT images using two classifiers. A total of 22 image features were extracted for their 

model and feature selection was driven by Fisher scores. Although the system exhibited good 235 

performance with respect to detection of large nodules, it was not able to detect smaller nodules.  

In 2013, Assefa et al.73 proposed a nodule detection scheme based on template matching and 

multi-resolution based false reduction. Seven statistical and two intensity-based features were 

extracted for the false positive reduction stage and the system performed at an 81% classification 

rate. However, this system also had a very high false positive rate (35.15%), leading to 240 

disadvantages in terms of inefficiency. Choi et al.9 proposed a method based on hierarchical block 

classification in which sub-blocks of the image were constructed and entropy-based analysis was 

then used to select those with high entropy. The proposed system achieved a sensitivity of 95.28% 

with only 2.27 FP/scans. This system had good overall performance but failed to detect all types 

of nodules. Tariq et al.74 proposed a computerized system for lung nodule detection from CT scan 245 

images using a neuro-fuzzy classifier; however, no standard datasets or performance metrics were 

used to evaluate its performance. Orozco et al.75 extracted eight texture features from histograms 

and a gray-level co-occurrence matrix, which were given as input to SVM for false positive 

reduction. The system achieved a reliability index of 84% but was evaluated using a private dataset 

of only 38 scans with nodules. Tartar et al.76 detected pulmonary nodules using hybrid features: a 250 

total of 30 intensity-based and geometrical (2D & 3D) features were extracted and given as input 

to four different classifiers. Their system achieved a sensitivity of 89.6% but was evaluated using 

a private dataset comprising only 95 pulmonary nodules. 

In 2014, Teramoto et al.77 proposed a hybrid method for detecting pulmonary nodules using 

PET/CT. They used 100 PET/CT images to evaluate their method, which achieved a sensitivity of 255 

83.0% with 5 FP/scan. Although their system relied on a novel combination of CT/PET images, it 
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did not achieve high sensitivity. Choi et al.4 introduced a 3D shape-based feature descriptor to 

detect pulmonary nodules in CT images. The system was evaluated using the LIDC dataset with 

148 nodules and achieved a sensitivity of 97.5% with 6.76 FP/scan. Although it showed good 

performance overall, the FP/scan was unfavorable. In 2016, Akram et al.56 reported a SVM-based 260 

classification of lung nodules using hybrid features from CT images. Similar to other studies, their 

system was validated with insufficient nodules to achieve the same performance under various 

scenarios. Other selected studies78-81 that used conventional feature-based classification are 

summarized in Table 4.  

This section presents selected studies that used convolutional neural networks (CNN) for 265 

pulmonary nodule detection. In 2015, Setio et al.82 proposed a multi-view convolutional network-

based lung nodule detection system with three dedicated detectors for large, subsolid, and solid 

nodules. The final detection step was performed using multiple streams of 2D convolutional 

networks and a dedicated fusion method. This system was evaluated using 888 scans from the 

LIDC-IDRI dataset and achieved a detection sensitivity of 90.1% with only 4 FP/scans. Anirudh 270 

et al.83 used a 3D CNN to learn discriminative features for nodule detection. The proposed system 

was evaluated using 67 scans from the SPIE-LUNGx dataset and achieved a relatively lower 

sensitivity of 80% with 10 FP/scan. In 2017, Ding et al.84 proposed a lung nodule detection system 

based on deep CNNs. Their system involved the application of a region-based CNN for nodule 

detection on image slices and employed a 3D CNN to reduce false positives. It was evaluated using 275 

the Lung Nodule Analysis Challenge (LUNA16) dataset and achieved a high sensitivity (94.4%) 

with only 4 FP/scan. Zhu et al.85 developed the automatic lung nodule detection and classification 

system DeepLung, which included nodule detection and classification. Nodule detection was 
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achieved using a 3D Fast regional CNN (R-CNN) and the system achieved a relatively lower 

detection sensitivity of 83.4%.  280 

In 2018, Gruetzemacher et al.86 proposed a novel lung nodule detection method using two 3D 

CNNs: the first was used to generate candidate nodules and the second was used to reduce false 

positives. Using 888 scans from the LIDC dataset, a sensitivity of 89.29% was demonstrated with 

1.78 FP/scan. Xie et al.87 proposed a lung nodule detection method that employed different 

approaches for feature extraction. Feature representations of nodules were learned using deep CNN 285 

and candidate nodules were classified as nodules or non-nodules using the AdaBoost back 

propagation neural network. The proposed system achieved a sensitivity of 84.19% with 7.98 

FP/scan. Similarly, Kim et al.88 proposed a lung nodule detection method using multi-scale gradual 

integration of CNN in a three-step method. Multi-scale patches with differing levels of contextual 

information were gradually integrated using zoom-in and zoom-out streams. The reported CPM of 290 

0.942 indicates an average sensitivity of analyses performed at 7 different false positive rates using 

the LIDC dataset for evaluation. In their CAD system, Qin et al.89 used a 3D CNN model that 

employed 3D U-Net architecture as the backbone for a region proposal network (RPN). It had a 

sensitivity of 98.2% with only 4 FP/scan. In 2019, Xie et al.90 contributed a 2D CNN for pulmonary 

nodule detection. They detected nodule candidates by adjusting the structures of a Faster R-CNN 295 

with two RPNs and a deconvolution layer. Their approach was extensively evaluated using the 

LIDC dataset used in the LUNA16 study and achieved a sensitivity of 86.4% with only 4 FP/scan. 

The CAD systems described above are summarized in Table 4.  

 

 300 
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Table 4. Performance Comparison of Different CAD Systems; *N/A, Not available.  

CAD 

Systems 
 

Data 

Set 
 

No. 

Case

s 

No. 

Nodul

es 

Nodu

le 

Size 

(mm) 

Extracte

d 

Features 

Sensitivit

y 
(%) 

FPR 
 

Type of 
Nodules 

Remarks 
 

Guo et 

al.68 
Private 29 34 N/A Shape 94.77 N/A N/A  

Sousa et 

al.72 
Private N/A 33 3–40 Shape, 

Texture, 

Gradient, 

Histogra

m, 

Spatial 

84.84 0.4

2 
Isolated, 
Juxta-

pleural and 

Juxta-

vascular 

Used dataset 

is too small 

containing 

less number 

of nodules. 

Liu et al.69 Private 32 33 3–17 N/A 93.75 4.6

0 
Juxta-

pleural 
Orozco et 

al.75 
LIDC, 
ELCAP 

128 75 2–30 Texture 84.00 7.0

0 
N/A 

Tartar et 

al.76 
Private 63 95 2–20 Shape 89.60 7.9

0 
Well-

circumscribe

d, 

Vascularized

, Juxta-

pleural, 

Pleural-tail 
Messay et 

al.22 
LIDC 84 143 3–30 Shape, 

Intensity, 

Gradient. 

82.66 3.0

0 
Juxta-

vascular and 

Juxta-

pleural 

 
Systems 

underperfor

m in terms of 

sensitivity/ 

accuracy. 
 
Murphy et 

al.67 

 
Private 
 

 
813 

 
1518 
 

 
2–14 

Shape 

Index, 

Curvedn

ess 

 
80.00 
 

 
4.2

0 
 

Non-solid, 

Part-Solid, 

Solid 

Retico et 

al.70  
Private 42 102 6–30 Morphol

ogical, 

Texture 

72.00 6.0

0 
Pleural 

Teramoto 

et al.77 
Private 100 103 4–30 Shape, 

Intensity 
83.00 5.0

0 
Solitary 

Gong et 

al.80 
LIDC 888 1186 3–30 Intensity, 

Shape, 

Texture 

79.30 4.0

0 
Solid and 

GGO 

Bergtholdt 

et al.91 
LIDC 243 690 3–30 Shape, 

Intensity, 

Gradient. 

85.90 2.5

0 
Juxta-

pleural 

Opfer et 

al.92 
LIDC   91 N/A  3–30 Shape, 

Intensity 
  78.00 2.0

0 
N/A 

Sahiner et 

al.93 
Private

, LIDC 
85   241 3–19 Shape, 

Statistica

l, 

Gradient 

76.00 5.6

0 
N/A 
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Suzuki et 

al.94 
Private 63 121 4–27 N/A 80.30 4.8

0 
Pure GGO, 

Mixed GGO 

and Solid 
Ozekes et 

al.71 
LIDC 11 11 3–16 Shape 100.00 44.

00 
Solitary High false 

positive rate 

makes the 

schemes 

inefficient. 

Assefa et 

al.73 
ELCAP 50 165 N/A Intensity, 

Statistica

l 

81.00 35.

15 
N/A 

Torres et 

al. 95 
LIDC 949 1749 3–30 Shape, 

Intensity 
80.00 8.0

0 
GGO 

Choi et al. 
4 

LIDC 84 148 3–30 Shape-

Based 3D 

Descript

or 

97.50 6.7

6 
Solid, Juxta-

pleural 

Mabrouk 

et al.7  
Private 12 N/A 22–

42 
Shape, 

Intensity 
97.00 2.0

0 
N/A  

SǇƐƚĞŵ͛Ɛ 
ability to 

detect all 

type of 

nodules is 

limited. 
Choi et al.9 LIDC 58 151 3–30 Shape, 

Intensity 
95.28 2.2

7 
Juxta-

pleural 
 

Akram et 

al.56 
LIDC 47 50 3–30 Shape, 

Intensity 
95.31 N/A Juxta-

pleural 
System is 

evaluated 

with small 

number of 

nodules and 

FP/scan is not 

informed 
Wang et 
al.81 

LIDC 1010  673 3–30 CS-LBP 
and 
ORT-
EOH 

95.69 3.0
5 

Solid, GGO, 
Juxta-
vascular and 
Juxta-
pleural 

 

Setio et 

al.82 

LIDC 888 1186 3ʹ30 Convolut

ional 

Neural 

Network 

90.10 4.0

0 

Solid, 

Subsolid, 

Juxta-

pleural  

Develo

pment

s on 

deep-

learnin

g have 

made 

less 

explicit 

the 

selecti

on of 

the 

image 

featur

es, 

which 

has 

Anirudh et 

al.83 
SPIE-

AAPM 

LUNG 

67 N/A 3ʹ30 Convolut

ional 

Neural 

Network 

80.00 10.

00 
Solid, Part-

solid and 

Non-solid 

Ding et 

al.84 
LIDC 888 1186 3ʹ30 Convolut

ional 

Neural 

Network 

94.40 4.0

0 
N/A 

Gruetzem

acher et 

al.86 

LIDC 888 1186 3ʹ30 Convolut

ional 

Neural 

Network 

89.29 1.7

9 
Juxta-

pleural and 

Juxta-

vascular 
Xie et al.87 LIDC 1018 2669 3ʹ30 Convolut

ional 

84.19 N/A N/A 
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Neural 

Network 
now 

turned 

to 

select 

optima

l loss 

functio

ns and 

efficie

nt 

optimi

zation 

algorit

hms 

influen

cing 

the 

learnin

g 

proces

s. 

Beside

s, CNN 

may 

have a 

high 

compu

tationa

l cost 

and 

requir

es a 

large 

datase

t for 

trainin

g. 

Kim et 

al.88 
LIDC 888 1166 3ʹ30 Convolut

ional 

Neural 

Network 

95.20 2.0

0 
N/A 

Qin et al. 
89 

LIDC 888 1186 3–30 Convolut
ional 
Neural 
Network 

98.2 4.0
0 

N/A 

Xie et al.90 LIDC 1018 N/A 3–30 Convolut
ional 
Neural 
Network 

83.2 4.0
0 

Solitary, 
Vascularized
, Juxta-
pleural and 
Pleural-tail  

Dou et 

al.96 
LIDC 888 1186 3ʹ30 Convolut

ional 

Neural 

Network 

90.70 4.0

0 
Solitary, 

GGO Pleural 

Jiang et 

al.97 
LIDC 1006 2669 3ʹ30 Convolut

ional 

Neural 

Network 

80.06 4.7

0 
Juxta-

pleural 

nodule 

Jin et al.98 LIDC 888 1186 3ʹ30 Convolut

ional 

Neural 

Network 

92.40 2.0

0 
Solid, 

Subsolid, 

Pleural 

Dou et 

al.99 
LIDC 888 1186 3ʹ30 Convolut

ional 

Neural 

Network 

90.60 2.0

0 
N/A 

 

3. Discussion  

To identify challenges and future research directions, we summarized selected lung nodule 305 

detection systems reported in the literature since 2009. In this review of current methods, direct 

comparisons of research results were hampered by diverse performance metrics and evaluation 

protocols. Nonetheless, we evaluated the present systems according to datasets used, number of 

subjects considered, nodule sizes, nodule numbers, and the standard performance metrics 
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sensitivity and FP/scan. We also compared lung nodule features that were extracted in the reviewed 310 

studies, and identified the most relevant features for effective lung nodule detection systems. To 

this end, we grouped reported systems into the following categories: 

i. Papers with small datasets and small numbers of nodules; the performance of these 

systems will likely deteriorate under more realistic scenarios with more various nodule 

types, as present in clinical scans. 315 

ii.         Papers reporting systems with poor accuracy/sensitivity compared with other systems;  

iii.       Papers in which high false positive rates hamper efficiency 

91–99 were included in the table based on relevance, and the results of some other studies 100–102 

were omitted due to the absence of relevant information. Collectively, the studies included in Table 

4 indicate that the major challenge for lung nodule detection systems is robustness to diverse 320 

clinical data of varying quality. In particular, most algorithms were optimized using private 

datasets, thus limiting comparability and generalization of the results. In addition, to ensure 

robustness, the proposed methods need to be validated with sufficiently large datasets that include 

all nodule types. Accordingly, methods that were evaluated with fewer nodules will likely lose 

accuracy under clinical conditions in which, nodule types are more varied. Feature extraction 325 

serves as an important step in differentiating nodules from other anatomic structures present in 

lung lobes. Yet, optimal set of features for nodule detection remain a subject of debate. The major 

constraints of lung nodule detection are summarized as follows: 

i. Nodule detection methods are demonstrated using particular datasets.  

ii.  Few methods have been validated with large datasets. 330 

iii.  Optimal selection of features for nodule detection. 

iv. Robustness to diverse nodule types.  
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v. Inconsistent use of performance metrics. 

vi. Robustness to diverse lung nodule size. 

Constraints that influence nodule detection remain a challenge in this area, in part because 335 

reported systems have been developed to accommodate the specific requirements of the 

investigating practitioners. The remaining challenge is to develop more accurate and robust 

systems that identify a broad range of nodules with increased sensitivity and reduced FP/scan. 

Some of the present studies, however, have the potential to facilitate the development lung cancer 

diagnosis tools. Specifically Choi et al.4, El-Baz et al.43, Mansoor et al.48, Dai et al.49, Soliman et 340 

al.50, Filho et al.51, Setio et al.82, Ding et al.84 and Shaukat et al.78 achieved high performance 

metrics and validated their methods using large public datasets, such as the LIDC12. This database 

is distinguished by standard radiological annotations that were generated by four expert 

radiologists in two consecutive sessions. 

3.1 Future Prospects 345 

Much further research is required to improve CAD systems for lung cancer. Despite the 

considerable volume of research in this area, no commercial products are available for use in 

hospitals, reflecting the need for further research and development of the related technologies. The 

following critical topics can be identified in collective considerations of the present reviewed 

studies: 350 

1. Segmentation of suspected pulmonary nodules requires further research and development. 

Accurate pulmonary nodule segmentation can increase the detection sensitivity of CAD systems. 

2. CAD systems need to be validated with sufficiently large datasets to demonstrate robustness. 

Many CAD systems have only been evaluated on relatively small datasets, and their performance 
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will likely be reduced in real clinical scenarios. More extensive experiments will provide 355 

assessments of the generalizability and clinical performance of these detection systems. 

3. Selection of optimal features for lung nodule detection is another area needing further 

investigation. Although deep-learning technologies avoid handcrafting and selecting image 

features, they instead require selection of a loss function, network architecture, and an efficient 

optimization method, all of which influence the learning process. 360 

4. Future CAD systems should be able to detect all types of nodules with the same precision and 

sensitivity and with reduced FPs/scan.  

4. Conclusion  

The existing methods for detecting lung nodules need to be improved, and this may be achieved 

by proposing new techniques and providing novel solutions. Future CADe systems will be 365 

expected to detect all types of nodules with high precision and sensitivity, and with few false 

positives per scan. To ensure robustness, proposed systems will need to be evaluated on large 

datasets so that evaluations of multiple datasets with standard performance metrics can be 

performed with accuracy. A well performing CAD system would save many lives by facilitating 

early detection of lung nodules and providing a second opinion to that of expert radiologists. 370 

Disclosures 

The authors declare no conflicts of interest. 

Acknowledgments 

The authors would like to thank Enago (www.enago.com) for the English language review. 

http://www.enago.com/


 

22 

References 375 

1. R. Siegel, K. Miller, and A. Jemal, “Cancer statistics, 2018.,” CA Cancer J Clin 68(1), 7–30 (2018).  

2. P. Bach, et al., Benefits and harms of CT screening for lung cancer,” JAMA 307(22), 2418–2429 

(2012). 

3. D. Forman et al. “The global and regional burden of cancer.” World Cancer Report 2014, 16–53 

(2014). 380 

4. W.J. Choi and T.S. Choi, “Automated pulmonary nodule detection based on three-dimensional shape-

based feature descriptor,” Comput. Methods Programs Biomed. 113(1), 37–54 (2014). 

5. H. MacMahon, et al., “Guidelines for Management of Incidental Pulmonary Nodules Detected on CT 

Images: From the Fleischner Society 2017,” Radiology 284(1), 228–243 (2017).  

6. S.S. Parveen and C. Kavitha, “A Review on Computer Aided Detection and Diagnosis of lung cancer 385 

nodules,” Int. J. Comput. Technol. 3(3), 393–400 (2012). 

7. M. Mabrouk, A. Karrar, and A. Sharawy, “Computer Aided Detection of Large Lung Nodules using 

Chest Computer Tomography Images,” Computer (Long. Beach. Calif). 3(9), 12–18 (2012). 

8. S.K. Vijai Anand, “Segmentation coupled textural feature classification for lung tumor prediction,” in 

2010 Int. Conf. Commun. Control Comput. Technol.(IEEE, 2010), pp. 518–524. 390 

9. W.J. Choi and T.S. Choi, “Automated pulmonary nodule detection system in computed tomography 

images: A hierarchical block classification approach,” Entropy 15(2), 507–523 (2013). 

10. C.I. Henschke, et al., “Early lung cancer action project: a summary of the findings on baseline 

screening.,” Oncologist 6(2), 147–52 (2001). 

11. “Public Lung Image database to address drug response. Vision and Image Analysis Group (VIA) and 395 

International Early Lung Cancer Action Program (I-ELCAP) Labs, Cornell University.” (accessed 24-

04-16). [http://www.via.cornell.edu/crpf.html; 2008] 



 

23 

12. S.G. Armato, et al., “The Lung Image Database Consortium (LIDC) and Image Database Resource 

Initiative (IDRI): a completed reference database of lung nodules on CT scans.,” Med. Phys. 38(2), 

915–931 (2011).  400 

13. S.G. Armato et al., “Guest Editorial: LUNGx Challenge for computerized lung nodule classification: 

reflections and lessons learned,” J. Med. Imaging 2(2), 020103 (2015). 

14. P. Muzi et al., “Data From RIDER Lung PET-CT. The Cancer Imaging Archive.,” (2015) 

[http://doi.org/10.7937/K9/TCIA.2015.OFIP7TVM] 

15. B. Zhao et al., “Evaluating Variability in Tumor Measurements from Same-day Repeat CT Scans of 405 

Patients with Non–Small Cell Lung Cancer,” Radiology 252(1), 263–272 (2009). 

16. J. Kalpathy-Cramer et al., “A Comparison of Lung Nodule Segmentation Algorithms: Methods and 

Results from a Multi-institutional Study,” J. Digit. Imaging 29(4), 476–487 (2016). 

17. J.S. Yang et al., “Data from Lung CT Segmentation Challenge. The Cancer Imaging Archive.,” 

(2017) [http://doi.org/10.7937/K9/TCIA.2017.3r3fvz08] 410 

18. O. Grove et al., “Quantitative Computed Tomographic Descriptors Associate Tumor Shape 

Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma,” PLoS One 

10(3), e0118261 (2015). 

19. B. van Ginneken et al., “Comparing and combining algorithms for computer-aided detection of 

pulmonary nodules in computed tomography scans: The ANODE09 study,” Med. Image Anal. 14(6), 415 

707–722 (2010). 

20. Y. Ru Zhao, et al., “NELSON lung cancer screening study.,” Cancer Imaging 11(1A), S79–84 

(2011). 

21. “Lung Cancer Alliance,” (accessed 13-04-18) [https://lungcanceralliance.org] 

22. T. Messay, R.C. Hardie, and S.K. Rogers, “A new computationally efficient CAD system for 420 

pulmonary nodule detection in CT imagery,” Med. Image Anal. 14(3), 390–406 (2010). 



 

24 

23. W.J. Choi and T.S. Choi, “Genetic programming-based feature transform and classification for the 

automatic detection of pulmonary nodules on computed tomography images,” Inf. Sci. (Ny). 212, 57–

78 (2012).  

24. J. Dehmeshki, et al., “Automated detection of lung nodules in CT images using shape-based genetic 425 

algorithm,” Comput. Med. Imaging Graph. 31(6), 408–417 (2007). 

25. J.J. Suárez-Cuenca, et al., “Application of the iris filter for automatic detection of pulmonary nodules 

on computed tomography images,” Comput. Biol. Med. 39(10), 921–933 (2009). 

26. X. Ye, et al., “Shape based computer-aided detection of lung nodules in thoracic CT images,” IEEE 

Trans. Biomed. Eng. 56(7), 1810–1820 (2009). 430 

27. I. Sluimer, M. Prokop, and B. van Ginneken, “Toward automated segmentation of the pathological 

lung in CT,” Med. Imaging, IEEE. 24(8), 1025–1038 (2005). 

28. G. De Nunzio, et al., “Automatic lung segmentation in CT images with accurate handling of the hilar 

region,” J. Digit. Imaging 24(1), 11–27 (2011). 

29. A.M. Ali and A.A. Farag, “Automatic Lung Segmentation of Volumetric Low-Dose CT Scans Using 435 

Graph Cuts,” in Adv. Vis. Comput. Pt I, Proc.(Springer Berlin Heidelberg, 2008), pp. 258–267. 

30. E. van Rikxoort, B. de Hoop, and M. Viergever, “Automatic lung segmentation from thoracic 

computed tomography scans using a hybrid approach with error detection,” Med. Phys. 36(7), 2934 

(2009). 

31. D.S. Paik, et al., “Surface normal overlap: a computer-aided detection algorithm with application to 440 

colonic polyps and lung nodules in helical CT,” Med. Imaging IEEE Trans. 23(6), 661–675 (2004). 

32. J. Jiantao Pu, et al., “Shape ‘break-and-repair’ strategy and its application to automated medical 

image segmentation.,” IEEE Trans. Vis. Comput. Graph. 17(1), 115–24 (2011). 

33. T. Kubota, et al., “Segmentation of pulmonary nodules of various densities with morphological 

approaches and convexity models,” Med. Image Anal. 15(1), 133–154 (2011). 445 

34. S.L.A. Lee, A.Z. Kouzani, and E.J. Hu, “Random forest based lung nodule classification aided by 

clustering,” Comput. Med. Imaging Graph. 34(7), 535–542 (2010). 



 

25 

35. M. Niemeijer, et al., “On Combining Computer-Aided Detection Systems,” IEEE Trans. Med. 

Imaging 30(2), 215–223 (2011). 

36. P.G. Espejo, S. Ventura, and F. Herrera, “A Survey on the Application of Genetic Programming to 450 

Classification,” IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev 40(2), 121–144 (2010). 

37. S.L.A. Lee, A.Z. Kouzani, and E.J. Hu, “Automated detection of lung nodules in computed 

tomography images: A review,” Mach. Vis. Appl. 23(1), 151–163 (2012). 

38. K. Suzuki, “A review of computer-aided diagnosis in thoracic and colonic imaging.,” Quant. Imaging 

Med. Surg. 2(3), 163–76 (2012). 455 

39. L.H. Eadie, P. Taylor, and A.P. Gibson, “A systematic review of computer-assisted diagnosis in 

diagnostic cancer imaging,” Eur. J. Radiol. 81(1), e70–e76 (2012). 

40. A. El-Baz et al., “Computer-aided diagnosis systems for lung cancer: challenges and methodologies.,” 

Int. J. Biomed. Imaging 2013, 942353 (2013). 

41. M. Firmino, A.H. Morais, R.M. Mendoça, M.R. Dantas, H.R. Hekis, and R. Valentim, “Computer-460 

aided detection system for lung cancer in computed tomography scans: review and future prospects.,” 

Biomed. Eng. Online 13, 41 (2014). 

42. Yonghong Shi et al., “Segmenting Lung Fields in Serial Chest Radiographs Using Both Population-

Based and Patient-Specific Shape Statistics,” IEEE Trans. Med. Imaging 27(4), 481–494 (2008). 

43. A. El-Baz, et al., “A New Stochastic Framework for Accurate Lung Segmentation,” in (Springer, 465 

Berlin, Heidelberg, 2008), pp. 322–330. 

44. P. Annangi, et al, “A region based active contour method for x-ray lung segmentation using prior 

shape and low level features,” in 2010 IEEE Int. Symp. Biomed. Imaging From Nano to Macro 

(IEEE, 2010), pp. 892–895.  

45. A. Besbes and N. Paragios, “Landmark-based segmentation of lungs while handling partial 470 

correspondences using sparse graph-based priors,” in 2011 IEEE Int. Symp. Biomed. Imaging From 

Nano to Macro (IEEE, 2011), pp. 989–995. 



 

26 

46. M. Sofka, et al., “Multi-stage learning for robust lung segmentation in challenging CT volumes,” in 

Proceedings of the International Conference on Medical 27 Imaging Computing and Computer-

Assisted Intervention (MICCAI ’11), 2011, pp. 667–674.  475 

47. Shanhui Sun, C. Bauer, and R. Beichel, “Automated 3-D Segmentation of Lungs With Lung Cancer 

in CT Data Using a Novel Robust Active Shape Model Approach,” IEEE Trans. Med. Imaging 31(2), 

449–460 (2012). 

48. A. Mansoor et al., “A Generic Approach to Pathological Lung Segmentation,” IEEE Trans. Med. 

Imaging 33(12), 2293–2310 (2014). 480 

49. S. Dai, K. Lu, J. Dong, Y. Zhang, and Y. Chen, “A novel approach of lung segmentation on chest CT 

images using graph cuts,” Neurocomputing 168, 799–807 (2015). 

50. A. Soliman et al., “Accurate Lungs Segmentation on CT Chest Images by Adaptive Appearance-

Guided Shape Modeling,” IEEE Trans. Med. Imaging 36(1), 263–276 (2017). 

51. P.P. Rebouças Filho, et al., “Novel and powerful 3D adaptive crisp active contour method applied in 485 

the segmentation of CT lung images,” Med. Image Anal. 35, 503–516 (2017). 

52. P. Campadelli, E. Casiraghi, and D. Artioli, “A Fully Automated Method for Lung Nodule Detection 

From Postero-Anterior Chest Radiographs,” IEEE Trans. Med. Imaging 25(12), 1588–1603 (2006). 

53. P. Korfiatis, et al., “Combining 2D wavelet edge highlighting and 3D thresholding for lung 

segmentation in thin-slice CT,” Br. J. Radiol. 80(960), 996–1004 (2007).  490 

54. Q. Gao, et al., “Accurate Lung Segmentation For X-ray CT Images,” in Third Int. Conf. Nat. Comput. 

(ICNC 2007)(IEEE, 2007), pp. 275–279. 

55. Z. Shi et al., “Many Is Better Than One: An Integration of Multiple Simple Strategies for Accurate 

Lung Segmentation in CT Images,” Biomed Res. Int. 2016, 1–13 (2016). 

56. S. Akram, M.Y. Javed, M.U. Akram, U. Qamar, and A. Hassan, “Pulmonary Nodules Detection and 495 

Classification Using Hybrid Features from Computerized Tomographic Images,” J. Med. Imaging 

Heal. Informatics 6(1), 252–259 (2016). 



 

27 

57. L. Gonçalves, J. Novo, and A. Campilho, “Hessian based approaches for 3D lung nodule 

segmentation,” Expert Syst. Appl. 61, 1–15 (2016). 

58. B. Chen et al., “Automatic segmentation of pulmonary blood vessels and nodules based on local 500 

intensity structure analysis and surface propagation in 3D chest CT images,” Int. J. Comput. Assist. 

Radiol. Surg. 7(3), 465–482 (2012). 

59. H.H. Jo, H. Hong, and J. Mo Goo, “Pulmonary nodule registration in serial CT scans using global rib 

matching and nodule template matching,” Comput. Biol. Med. 45, 87–97 (2014)  

60. A. El-Baz, et al., “Automatic Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans.,” Int. 505 

J. Biomed. Imaging 2013, 517632 (2013). 

61. D. Cascio, et al., “Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring 

models,” Comput. Biol. Med. 42(11), 1098–1109 (2012). 

62. S. Soltaninejad, M. Keshani, and F. Tajeripour, “Lung nodule detection by KNN classifier and active 

contour modelling and 3D visualization,” 16th CSI Int. Symp. Artif. Intell. Signal Process. (AISP 510 

2012) (Aisp), 440–445 (2012). 

63. A. Riccardi, et al., “Computer-aided detection of lung nodules via 3D fast radial transform, scale 

space representation, and Zernike MIP classification,” Med. Phys. 38(4), 1962–1971 (2011). 

64. S. Taghavi Namin, et al., “Automated detection and classification of pulmonary nodules in 3D 

thoracic CT images,” 2010 IEEE Int. Conf. Syst. Man Cybern. 3774–3779 (2010). 515 

65. K. Murphy, et al., “Automated detection of pulmonary nodules from low-dose computed tomography 

scans using a two-stage classification system based on local image features,” in edited by M.L. Giger 

and N. Karssemeijer (International Society for Optics and Photonics, 2007), p. 651410. 

66. S. Ozekes, O. Osman, and O.N. Ucan, “Nodule detection in a lung region that’s segmented with using 

genetic cellular neural networks and 3D template matching with fuzzy rule based thresholding,” 520 

Korean J. Radiol. 9(1), 1–9 (2008).  



 

28 

67. K. Murphy, et al., “A large-scale evaluation of automatic pulmonary nodule detection in chest CT 

using local image features and k-nearest-neighbour classification,” Med. Image Anal. 13(5), 757–770 

(2009). 

68. W. Guo, et al., “An adaptive lung nodule detection algorithm,” Chinese Control Decis. Conf., IEEE, 525 

2361–2365 (2009). 

69. Y. Liu, et al., “Computer aided detection of lung nodules based on voxel analysis utilizing support 

vector machines,” FBIE 2009 - 2009 Int. Conf. Futur. Biomed. Inf. Eng. 90–93 (2009). 

70. A. Retico, et al., “Pleural nodule identification in low-dose and thin-slice lung computed 

tomography,” Comput. Biol. Med. 39(12), 1137–1144 (2009). 530 

71. S. Ozekes and O. Osman, “Computerized lung nodule detection using 3D Feature extraction and 

learning based algorithms,” J. Med. Syst. 34(2), 185–194 (2010). 

72. J.R.F.D.S. Sousa, et al., “Methodology for automatic detection of lung nodules in computerized 

tomography images.,” Comput. Methods Programs Biomed. 98(1), 1–14 (2010).  

73. M. Assefa, et al., “Lung nodule detection using multi-resolution analysis,” 2013 ICME Int. Conf. 535 

Complex Med. Eng. 457–461 (2013).  

74. A. Tariq, M.U. Akram, and M.Y. Javed, “Lung nodule detection in CT images using neuro fuzzy 

classifier,” 2013 Fourth Int. Work. Comput. Intell. Med. Imaging 49–53 (2013). 

75. H.M. Orozco, et al., “Lung Nodule Classification in CT Thorax Images Using Support Vector 

Machines,” 2013 12th Mex. Int. Conf. Artif. Intell. 277–283 (2013).  540 

76. A. Tartar, N. Kilic, and A. Akan, “Classification of pulmonary nodules by using hybrid features,” 

Comput. Math. Methods Med. 2013, 1–11 (2013). 

77. A. Teramoto, et al., “Hybrid method for the detection of pulmonary nodules using positron emission 

tomography/computed tomography: A preliminary study,” Int. J. Comput. Assist. Radiol. Surg. 9(1), 

59–69 (2014).  545 

78. F. Shaukat, et al., “Fully automatic detection of lung nodules in CT images using a hybrid 

feature set,” Med. Phys. 44(7), 3615–3629 (2017). 



 

29 

79. F. Shaukat, et al., Artificial neural network based classification of lung nodules in CT images using 

intensity, shape and texture features, J. Ambient Intell. Humaniz. Comput. 1–15 (2019). 

80. J. Gong, et al., “Automatic detection of pulmonary nodules in CT images by incorporating 3D tensor 550 

filtering with local image feature analysis,” Phys. Medica 46, 124–133 (2018). 

81. B. Wang, et al., False positive reduction in pulmonary nodule classification using 3D texture and edge 

feature in CT images, Technol. Heal. Care Preprint(Preprint), 1–18 (2019). 

82. A.A.A. Setio, et al., “Pulmonary Nodule Detection in CT Images: False Positive Reduction Using 

Multi-View Convolutional Networks,” IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016).  555 

83. R. Anirudh, et al., “Lung nodule detection using 3D convolutional neural networks trained on weakly 

labeled data,” in edited by G.D. Tourassi and S.G. Armato (International Society for Optics and 

Photonics, 2016), p. 978532. 

84. J. Ding, et al., “Accurate Pulmonary Nodule Detection in Computed Tomography Images Using Deep 

Convolutional Neural Networks,” in Medical Image Computing and Computer-Assisted Intervention 560 

− MICCAI 2017 (Springer, Cham, 2017), pp. 559–567. 

85. W. Zhu, et al., “DeepLung: 3D Deep Convolutional Nets for Automated Pulmonary Nodule Detection 

and Classification,” arXiv preprint arXiv:1709.05538, (2017). 

86. R. Gruetzemacher, A. Gupta, and D. Paradice, “3D deep learning for detecting pulmonary nodules in 

CT scans,” J. Am. Med. Informatics Assoc. 25(10), 1301–1310 (2018). 565 

87. Y. Xie, et al., “Fusing texture, shape and deep model-learned information at decision level for 

automated classification of lung nodules on chest CT,” Inf. Fusion 42, 102–110 (2018). 

88. B.-C. Kim, J.-S. Choi, and H.-I. Suk, “Multi-Scale Gradual Integration CNN for False Positive 

Reduction in Pulmonary Nodule Detection,” arXiv preprint arXiv:1807.10581 (2018). 

89. Y. Qin, et al, “Simultaneous Accurate Detection of Pulmonary Nodules and False Positive Reduction 570 

Using 3D CNNs,” in 2018 IEEE Int. Conf. Acoust. Speech Signal Process.(IEEE, 2018), pp. 1005–

1009.  



 

30 

90. H. Xie, et al., Automated pulmonary nodule detection in CT images using deep convolutional neural 

networks, Pattern Recognit. 85, 109–119 (2019). 

91. M. Bergtholdt, R. Wiemker, and T. Klinder, “Pulmonary nodule detection using a cascaded SVM 575 

classifier,” in edited by G.D. Tourassi and S.G. Armato (International Society for Optics and 

Photonics, 2016), p. 978513. 

92. R. Opfer and R. Wiemker, “Performance analysis for computer-aided lung nodule detection on LIDC 

data,” Proc. SPIE 6515, 65151C–65151C–9 (2007). 

93. B. Sahiner et al., “Effect of CAD on radiologists’ detection of lung nodules on thoracic CT scans: 580 

analysis of an observer performance study by nodule size.,” Acad. Radiol. 16(12), 1518–30 (2009). 

94. K. Suzuki, et al., “Massive training artificial neural network (MTANN) for reduction of false 

positives in computerized detection of lung nodules in low-dose computed tomography,” Med. Phys. 

30(7), 1602–1617 (2003). 

95. E. Lopez Torres, et al., “Large scale validation of the M5L lung CAD on heterogeneous CT datasets,” 585 

Med. Phys. 42(4), 1477–1489 (2015). 

96. Q. Dou, et al., “Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule 

Detection,” IEEE Trans. Biomed. Eng. 64(7), 1558–1567 (2017). 

97. H. Jiang, et al., “An Automatic Detection System of Lung Nodule Based on Multigroup Patch-Based 

Deep Learning Network,” IEEE J. Biomed. Heal. Informatics 22(4), 1227–1237 (2018). 590 

98. H. Jin, et al., “A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection,” 

Med. Phys. 45(5), 2097–2107 (2018). 

99. Q. Dou, et al., “Automated Pulmonary Nodule Detection via 3D ConvNets with Online Sample 

Filtering and Hybrid-Loss Residual Learning,” in (Springer, Cham, 2017), pp. 630–638. 

100.S.A. Patil and V.R. Udupi, “Geometrical and texture features estimation of lung cancer and TB 595 

images using chest X-ray database,” Int. J. Biomed. Eng. Technol. 6(1), 58 (2011). 

101.S. Aravind Kumar, et al., “Robust and Automated Lung Nodule Diagnosis from CT Images Based on 

Fuzzy Systems,” in 2011 Int. Conf. Process Autom. Control Comput.(IEEE, 2011), pp. 1–6. 



 

31 

102.F. Zhang, et al., “Overlapping node discovery for improving classification of lung nodules,” Annu. 

Int. Conf. IEEE Eng. Med. Biol. Soc 2013, 5461–5464 (2013). 600 

 

Furqan Shaukat is currently working as an Assistant Professor in 

Department of Electronics Engineering UET Taxila Sub Campus 

Chakwal. He completed his BSc in Electrical Engineering from UET 

Lahore in 2007. He received his MSc and PhD degrees from UET 605 

Taxila in 2011 and 2018 respectively. He has also worked as Research 

Associate in University of Sheffield UK during his PhD. His research interests include medical 

image analysis and classification. 

 

Gulistan Raja received his B.Sc. Electrical Engineering Degree from 610 

UET Taxila in 1996. He completed Masters in Information Systems 

Engineering from Osaka University, Osaka, Japan in 2002 and PhD in 

Electrical Engineering from UET Taxila in 2008. He is currently serving 

as Professor of Electrical Engineering at UET Taxila. He has 

authored/co-authored >90 research publications in reputed international 615 

journals and refereed conferences. His research interests include digital image/video signal 

processing and VLSI design.  

 



 

32 

 Dr. Frangi is Diamond Jubilee Chair in Computational Medicine at 

the University of Leeds, Leeds, UK, with joint appointments at the 620 

School of Computing and the School of Medicine. He has been 

awarded a Chair in Emerging Technologies by the Royal Academy of 

Engineering. He leads the CISTIB Center for Computational Imaging 

and Simulation Technologies in Biomedicine. His main research 

interests are in medical image computing, medical imaging, and image-based computational 625 

physiology. 

 
Caption List 
 
Fig. 1 Samples of lung nodule types. From left to right, well-circumscribed/sloid, juxta-630 

vascular/subsolid, juxta-pleural, pleural-tail and GGO nodules 

Fig. 2 Typical lung CAD processes: image acquisition, segmentation of lung fields, detection of 

candiate nodules, and false positive reduction 

Table 1 Public Databases for assessments of Lung CADe Systems, *N/A, Not available 

Table 2. Review of Lung Segmentation Techniques 635 

Table 3. Review of Lung Nodule Detection Methods 

Table 4. Performance Comparison of Different CAD Systems; *N/A, Not available.  


