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Abstract  

Organic molecular crystals contain long-range dispersion interactions that can be challenging for 

solid-state methods such as density functional theory (DFT) to capture, and in some industrial 
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sectors are overlooked in favour of classical methods to calculate atomistic properties.  Hence, 

this publication addresses the critical question of whether dispersion corrected DFT calculations 

for organic crystals can reproduce the structural and energetic trends seen from experiment, i.e. 

whether the calculations can now be said to be truly ‘on-trend’. In this work, we assess the 

performance of three of the latest dispersion-corrected DFT methods, in calculating the long-

range, dispersion energy:  the pairwise methods of D3(0) and D3(BJ), and the many-body 

dispersion method, MBD@rsSCS. We calculate the energetics and optimized structures of two 

homologous series of organic molecular crystals namely carboxylic acids and amino acids. We 

also use a classical force field method (using COMPASS II) and compare all results to 

experimental data where possible. The mean absolute error (MAE) in lattice energies is 9.59 and 

343.85 kJ/mol (COMPASS II), 10.17 and 16.23 kJ/mol (MBD@rsSCS), 10.57 and 18.76 kJ/mol 

(D3(0)), 8.52 and 14.66 kJ/mol (D3(BJ)) for the carboxylic acids and amino acids respectively. 

MBD@rsSCS produces structural and energetic trends that match experimental trends, 

performing the most consistently across the two series and competing favourably with 

COMPASS II.  

Introduction 

In industry, scientific research and development needs to strike a balance between how 

fundamental the research is, and the time allowed for a product to progress from development 

through to market. Whilst the most fundamental research might be the preserve of academia, 

industry nevertheless has a vested interest in advancing methods and methodology that could 

ultimately shorten the time spent in the product pipeline.  In the pharmaceutical industry, the 

ADDoPT project (Advanced Digital Design of Pharmaceutical Therapeutics: 
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https://www.addopt.org/about_addopt/) has combined expertise from industry, academia and 

small-to-medium enterprises (SMEs) in a combined effort to digitalize the tablet-production 

pipeline, from the atomistic scale of single molecules to molecular crystals to macroscopic bulk-

scale tablets.  Both classical and first-principles atomistic simulations of organic molecular 

crystals play a role in this pipeline, where their calculated lattice energies could inform structure, 

performance, properties and processing 1, such as thermodynamic solubility 2–5, stability 6–8 , and 

crystallization 9–11 as well as crystal structure prediction 12,13. Lattice energies can be calculated 

using classical, atomistic methods 14–20, i.e. molecular mechanics based on force fields, quantum 

mechanical methods (see, for example the work of Yang et al.21 and the 2016 review and 

references within of Hoja, Reilly and Tkatchenko22) and more rarely, hybrid quantum 

mechanics/molecular mechanics 23,24. The choice of method depends on several factors, such as 

in-house expertise, computational resources and time allotted for the research, and not least the 

modelling aims. 

By definition, a lattice energy corresponds to energy differences associated with the static lattice, 

ignoring zero-point vibrations, at zero Kelvin. Our aim here was to evaluate the performance of 

lattice energy calculations. Rigorous derivation of an experimental lattice energy would require 

experimental vibrational energy data and/or information regarding the zero point vibrational 

energy levels, coupled with accurate heat capacity data from the experimental temperature to 

zero Kelvin25,26. Hence, in keeping with many literature studies, we employed a common 

approximation (further detailed in the section ‘Experimental lattice energies’) to estimate the 

experimental lattice energy from the available experimental data at higher temperatures 

(typically 298 Kelvin). Although, in principle, lattice energy is a simple concept – the change in 

energy when infinitely separated, static gas-phase molecules in their lowest energy 
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conformations, condense to form a static lattice6 – calculating the lattice energies of organic 

molecular crystals is not straightforward.  These systems prove challenging to model thanks to 

their diverse inter- and intramolecular forces, such as the covalent forces binding the atoms 

within a molecule, and the different kinds of weaker interactions between molecules i.e. 

intermolecular forces. The balance between the inter- and intramolecular forces results in 

polymorphism, where the same molecules pack in different orientations and potentially different 

conformations to produce different crystal structures 27. The intermolecular forces depend on the 

electrostatic interactions, polarization, exchange-repulsion and dispersion 28. When viewed 

through the lens of electronic structure (i.e. the electron density) the foundations of these 

interactions are closely linked 22. When viewed classically, these interactions are separable and 

encapsulated by the many terms required to build a typical force field 29.  

Whilst dispersion forces are integral to force field modelling, albeit commonly captured 

imperfectly 30 they have been largely absent from quantum mechanical-based electron density 

modelling until relatively recently. Nonetheless,  following the introduction of a semi-empirical 

method to predict intermolecular forces in 1975 31 the application of dispersion-corrected DFT 

(labelled within this work as ‘DFT-DISP’ to avoid confusion with ‘DFT-D’ which usually refers 

solely to Grimme’s methods) grew steadily throughout the 1990s then exponentially through the 

2000s 32, and today, the development of accurate methods for condensed matter systems is 

thriving. Indeed, it can be said that progress in DFT-DISP is climbing a ‘Jacob’s ladder of 

dispersion functionality’  analogous to the more familiar  Jacob’s ladder of exchange-correlation 

functionals 33.  On the first step of the dispersion stairway is the most basic term required in 

dispersion – the  term – that describes the asymptotic long-range interaction between 
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particles (separated by distance r) in the gas-phase. The total energy is then  

where  

                   (1) 

and the  terms are the pairwise, additive, direction-independent,  dispersion coefficients 

between elements A and B, obtained from a table of constants, which in the case of Grimme’s 

original DFT-DISP method34, is based on empirically derived terms35. The latter are obtained 

by least-squares fitting to molecular  coefficients obtained from the dipole oscillator strength 

distribution method of Meath et al. (e.g.36), although this is not the only means of obtaining the 

coefficients (see Ref.32 and the references within for further examples). The inconsistency of 

deriving the dispersion coefficients led to the development of Grimme’s DFT-DISP2 scheme37, 

where the ionization potentials are coupled with static polarizabilities of isolated atoms to 

generate a more first-principles scheme for deriving the  coefficients. 

The second step of the dispersion stairway was to include the local chemical environment that 

accounts for the number of neighbours and hence the hybridization state of elements, which 

means the coefficients are no longer constant but instead decrease as the number of  neighbour 

atoms increases. Grimme et al. developed this DFT-D3 scheme38 using two- and three-body 

terms, where the former are dipole-dipole interactions and the latter triple-dipole. The dispersion 

 coefficients are calculated using accurate, ab initio time dependent DFT (TDDFT) methods 
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and are tabulated in a look-up table to be employed according to the geometrical environment of 

each atom.  

Grimme et al.38 extended DFT-D3 further by enabling the calculation of the   coefficients 

on-the-fly and including the local electron density as opposed to purely geometrical information. 

As in DFT-D3, TDDFT polarizabilities are tabulated but for the extended (DFT-D4) method they 

are scaled according to a calculated charge, (not simply the number and location of the nearest 

neighbours) which leads to charge- and coordination number-dependent   coefficients 39.   

On the third step of the dispersion stairway sit the methods that calculate the dispersion 

interaction directly from the electron density, which in principle are an improvement over the 

methods below on steps one and two where the  coefficients are pre-calculated. The step three 

methods are described as ‘non-local correlation functionals’ because they add long-range 

correlations to local or semi-local correlation functionals, perhaps the most well-known of which 

is the van der Waals density functional (vdW-DF) 40. Although they showed some 

improvements, further developments were needed 41,42.  Step three and below accommodates 

methods that are pairwise additive, which means that two atoms or molecules have the same 

dispersion interaction regardless of the other atoms or molecules with which they interact. 

Although this seems to be ‘good enough’ for small molecules in the gas-phase, this is not 

representative of materials in the condensed phase 43. Although organic molecular crystals are 

not as densely packed as metals, semi-conductors and ionic crystals, they contain many-body 

long-range correlation and dispersion, which explains the instances of failure of pairwise 

methods when applied to molecular crystals25,44,45. (The interested reader is directed to reference 
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32 for further details of the step three methods.) Many-body dispersion energy includes many-

body effects such as the dispersion interactions between two atoms (i.e. the pairwise 

interactions), between three atoms described by the Axilrod-Teller-Muto term46, and between 

four, five, six etc. up to an infinite number of atoms47,48.  In addition, many-body dispersion 

inherently includes screened polarizability effects, which are prevalent in, for example 2D 

nanomaterial systems49,50 where long-range charge fluctuations are present. Considering the 

organic molecular crystals under focus in our research, it could be possible to find 2D planes of 

aligned molecules forming a metallic-like layer51, and therefore enhanced, screened 

polarizability. Essentially, the many-body effects become significant in the absence of other 

interactions dominating, such as covalent and hydrogen-bonding and where a system is strongly 

anisotropic.  

It is only beyond step three that we find the development of the many-body dispersion (MBD) 

method 52 that captures the aforementioned, long-range, many-body dispersion energy that has 

shown itself to be accurate for a range of molecular systems47,53.  The MBD method combines 

the (step two) van der Waals method of Tkatchenko and Scheffler54 (TS) with the self-consistent 

screening equation of classical electrodynamics. The TS method uses reference atomic 

polarizabilities and coefficients from which it is possible to calculate the coefficients for a 

pair of unlike atoms. The dispersion coefficients representing the chemical environment are 

obtained from effective atomic volumes by comparing the Hirshfeld-partitioned electron density 

of an atom-in-a-molecule with that of a free atom, which gives a  scaling factor for a reference 

atom thereby changing the value of the dispersion energy. The MBD method uses these 
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environment-dependent  values including effective long-range screening in the atomic 

polarizabilities, together with a scheme based on the coupled fluctuating dipole model55 to 

account for many-body effects.  

The original MBD method has since been revised as the range-separated self-consistent screened 

MBD i.e. MBD@rsSCS56, that separates short- and long-range correlation, whereby the former 

Coulomb interaction is calculated using semi-local or hybrid DFT, and the latter, long-range 

correlation using the localized, coupled atomic response functions of MBD. Determination of the 

range separation is achieved via a single parameter that is fitted to accurate quantum chemistry 

benchmarks (see reference56 for full details). MBD@rsSCS has been shown to be a highly 

efficient and accurate method for calculating the long-range correlation energy in finite-gap 

systems including molecular crystals -see for example, Ambrosetti’s et al. results56 for the X23 

set of structures45,57. With MBD@rsSCS we have reached the current state-of-the-art modelling 

method for the inclusion of dispersion forces in the condensed phase, for systems of any size that 

DFT already models ‘comfortably’, where ‘comfortably’ means using whatever hardware and 

resources are currently used for non-dispersion DFT calculations.   

Even once the quantum chemical or classical method for computing the energies of the solid 

state and gas phase structures is selected, lattice energies can be calculated in a number of 

different ways, depending on whether, for example, the unit cell parameters are allowed to relax 

or are kept fixed at their experimental values, the extent to which the gas phase molecules 

extracted from the crystal structure are allowed to relax etc.58. The pharmaceutical industry 

partners involved in the ADDoPT project mainly employ classical force field methods for lattice 

energy calculations. One outcome of the ADDoPT project was to determine an optimum protocol 
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for calculating lattice energies of pharmaceutically relevant organic molecular crystals, and this 

protocol involves the classical force field COMPASS II59. This is an extension of COMPASS60, 

(condensed-phase optimized molecular potentials for atomistic simulation studies) that is itself 

based on the polymer consistent force field, (PCFF) that forms part of a second generation of 

closely related force fields that were designed specifically for polymers and organic materials61. 

COMPASS was parameterized using ab initio calculations and empirical data, which entailed 

adding new molecular classes to PCFF. In addition, non-bond parameters were re-parameterized 

whereby the electrostatic and van der Waals terms combine quantum mechanical calculations 

and fitting to experimental condensed phase properties of liquids and crystals.  COMPASS II 

extends this to include parameters specific to polymers and drug-like molecules, hence its wide 

adoption in the pharmaceutical industry. However, given the current availability of DFD-DISP 

options, is it time to re-think this default position of using classical methods to calculate lattice 

energies? Attempting to answer this question generated the research we present in this paper, in 

which we assess whether state-of-the-art DFT-DISP methods are comparably predictive to, or 

better than classical methods We use two different simulation methods to calculate the lattice 

energies of the organic molecular crystals, namely classical molecular mechanics using a force 

field, and ab initio density functional theory (DFT) plus dispersion (DFT-DISP). The molecular 

mechanics was performed using the Forcite module of Materials Studio62, with the 

aforementioned COMPASS II force field, and the DFT-DISP calculations were carried out using 

the pseudopotential, plane wave code CASTEP 63 employing Grimme et al.’s Dγ(0)38 and 

D3(BJ)64, and Ambrosetti et al.’s MBD@rsSCS56. (The improvement of CASTEP to implement 

state-of-the-art DFT-DISP methods efficiently, was catalysed by the ADDoPT project:  

https://www.addopt.org/news/latest_news/castep_archer/). These methods are described as 
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‘Forcite’, ‘Dγ’, ‘D4’ and ‘MBD*’ (and ‘MBD’ in the figures) respectively from this point 

onwards. (At the time of developing CASTEP, implementing Grimme’s extended DFT-D3 

method, i.e. DFT-D439 was out-of-scope; for the purposes of simplifying labelling, the label ‘D4’ 

is used to distinguish DFT-D3(BJ) from DFT-D3(0) only.)  We also include synthon (i.e. 

intermolecular) analysis of the dispersion contributions within the calculated structures, using the 

software HABIT9865. (For an overview of synthonic analysis see for example, the work of 

Roberts et al.66,67.) We have chosen two series of homologous crystals – carboxylic acids and 

amino acids - where in both the dispersion forces are expected to increase with an increasing 

number of carbon atoms, and where the carboxylic acids are expected to have a higher ratio of 

van der Waals to hydrogen bonding, and the reverse is true for the amino acids. The amino acid 

series also potentially exhibit charge-charge interactions, due to being zwitterionic in the solid 

state. 

In the following sections we explore trends in the calculated lattice energies, compare lattice and 

molecular structures, and bonding, as well as the contribution of dispersion energy, with 

comparison to the experimental structures and experimental data where possible. Our aim is to 

compare the performance of the different methods throughout the two series, and to draw 

conclusions based on the analysis of their trends as to whether current, ‘off-the-shelf’ DFT-DISP 

methods are now worthy of becoming part of industry’s modelling pipeline toolkit. 

  

Crystal structures, models and methods  

 Two homologous series of organic molecular crystals were explored. Series 1 comprises the set 

of carboxylic acids from 1 to 10 carbon atoms in the hydrocarbon backbone, i.e. formic, acetic 
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propanoic, butyric, valeric, hexanoic, heptanoic, ocatanoic, nonanoic and decanoic acids (see 

Fig. 1). Series 2 comprises the amino acids with one to four carbon atoms in the hydrocarbon 

backbone: alpha-glycine, L-alanine, L-valine and L-isoleucine (see Fig. 2).  

All CIF files were obtained from the Cambridge Structural Database (2017) 68, and uploaded into 

Materials Studio 62 where they were visualized, inspected, and supplemented with missing 

hydrogen atoms by-hand.  (All REFCODES can be found in the Supplementary material as well 

as in Figs 1 and 2). The input parameters were set (as described below) to optimise the geometry 

of the crystal structures, where geometry optimisation involved relaxing the lattice lengths and 

angles according to the structures’ symmetry constraints, including all molecules and their 

constituent atoms. For the gas-phase calculations for both force field and DFT methods, a single 

molecule from each of the unrelaxed crystals was also geometry-optimized until the respective 

force field and DFT convergence criteria were met. Lattice energies (LE) were calculated using 

the following equation:    where Ec is the total, calculated energy of the unit cell, Z 

is the number of molecules per unit cell and Eg is the total energy of a single gas-phase molecule. 

From this point onwards ‘experimental structures’ and ‘pre-optimized structures’ are used 

interchangeably. 

Formic C = 1 
Pna21 

FORMAC01 

Acetic C = 2 
Pna21 

ACETAC07 

Propanoic C = 3 
P21/c 
PRONAC 

Butyric C = 4 
C2/m 
BUTRAC 

Valeric C = 5 
P21/c 
VALRAC 
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Hexanoic C = 6 
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Heptanoic C = 7 
P21/c 
ISENOJ 

 
Octanoic C = 8   
P21/c 
ISENUP 

 
Nonanoic C = 9   
P21/c 
ISEPAX 

 
Decanoic C = 10 
P21/c 
ISEPEB 

 

 
 

 

 
  

 

 

 

 
 

 

 
 

 
Figure 1 Carboxylic acid series - Experimental structures (after the addition of hydrogen atoms where 
applicable) of the first 10 carboxylic acids, the number of carbon (C) atoms, their symmetry groups and CSD 
REFCODES. 

 
Į-Glycine  
P21/n 
GLYCIN86 

L-Alanine   
P212121 

LALNIN24 

L-Valine 
P21 

LVALIN05 

L-Isoleucine 
P21 
LISLEU02 

 
 

 

 

 

 

 
 

 
Figure 2 Amino acid series - Experimental structures of the first four amino acids, their symmetry groups 
and CSD REFCODES. 

 

Force field Calculations  

All force field calculations were performed using the Forcite module of Materials Studio. 

Detailed instructions for how to repeat these calculations are provided under ‘Forcite 

calculations’ in the Supplementary Material. Following structure pre-processing, including bond 
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assignment required for force field calculations, geometry optimisations then proceeded as 

described above. The force field used was COMPASS II 59; the total energy was converged to 

8.37* kJ/mol, forces to 0.0042 kJ/mol/Å, stress (i.e. for bulk crystals) to 0.001 GPa and 

displacement to 1.0* Å. Ewald summation 69,70 was employed throughout for all electrostatic 

interactions. 

All Forcite calculations were run using a single core  on a desktop computer (Intel(R) Core(TM) 

i5-6300U CPU @  2.40GHz, 7.41 GB usable RAM) running Windows 7 Enterprise (Service 

Pack 1, 64-bit).   Running each optimization operation took under one minute, including Forcite 

module start-up time, based upon timing the operations for L-valine (starting from the CIF file 

prepared from CSD refcode LVALIN05) 

DFT Calculations  

All DFT calculations were performed using the plane wave, pseudopotential code, CASTEP 

v19.0.63 and visualized in Materials Studio62. For the gas phase calculations, a single molecule 

was copied from the unrelaxed bulk phase and placed in a cube of vacuum, 20 Å3.  The plane 

wave basis set representing the valence electron wave functions was converged to an accuracy of 

greater than 0.001 meV/atom, (i.e. 0.1 Jmol-1) corresponding to a kinetic energy cut-off of 700 

eV. The exchange-correlation interactions were described by the generalized gradient 

approximation density functional of Perdew, Burke and Ernzerhof, i.e., PBE-GGA71, and the 

electron-ion interactions were described by corresponding ultrasoft pseudopotentials generated 

on-the-fly. Three types of long-range dispersion forces were applied using the semi-empirical 

dispersion correction (SEDC) module72 including the many-body MBD@rsSCS interactions of 
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Ambrosetti  et al.56  and the newly implemented Grimme et al.’s D3(0)38 and D3(BJ)64. We also 

used PW91-GGA73 without any dispersion corrections to serve as a control. 

For the bulk phase molecular crystals, the Brillouin zone was sampled on various Monkhorst-

Pack grids74 as listed in Table S1. For the gas phase molecules a single sampling point 

corresponding to the gamma point was used. The geometry of both the molecular crystals and the 

gas-phase molecules was optimized using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm 75 and the electronic method used in the self-consistent field (SCF) calculations was 

density mixing. The following convergence criteria were also applied: electronic energy for the 

SCF cycles:  1 × 10-12 eV; total energy following geometry optimisation: 5 × 10-8 eV; maximum 

force component: 0.001 eVÅ-1 and geometrical displacement 5 x 10-4Å.  

All DFT calculations were run using between 24 to 96 core processors (Intel Xeon processors - 

Ivy Bridge E5-2697v2 2.7GHz) optimized according to the number of atoms, volume of the unit 

cell and type of calculation. The calculations took from less than one hour (formic acid crystal) 

to approximately seventy hours (decanoic acid crystal), before the aforementioned convergence 

criteria were met. 

 

Experimental lattice energies 

Sublimation enthalpy data at a defined temperature were retrieved, or - in the case of valeric acid 

- estimated (see below), for all compounds studied, save for the following entries in the 

carboxylic acid series:  hexanoic (C = 6), heptanoic (C = 7) and nonanoic (C = 9) acids. 

Synonyms were retrieved via consulting the corresponding CSD entry and used to search the US 

National Institute for Standards and Technology (NIST) Chemistry Webbook: 
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https://webbook.nist.gov/chemistry/name-ser/   and the literature 76–80 for standard enthalpy of 

sublimation data at 298-298.15 Kelvin, or, if no such data were available, enthalpy of 

sublimation data at the closest temperature to 298 Kelvin. Efforts were made to trace 

experimental sublimation data points back to their primary reference, although these could not 

always be accessed.  

In one case (valeric acid), no experimental sublimation enthalpy could be found. Hence, the 

approach of Lifson et al. 81 was applied: the sublimation enthalpy at 298.15 Kelvin was estimated 

via adding the melting enthalpy81 to the enthalpy of vaporization81,82 at 298.15 Kelvin. In another 

case (L-valine), the sublimation enthalpy estimate recommended by Dorofeeva et al. 78, obtained 

via the difference in enthalpy of formation in the gaseous and solid states, was used. 

For only one datapoint - one of the datapoints 80 retrieved for decanoic acid linked to CSD 

refcode ISEPEB - was experimental metadata identified that allowed confirmation that the 

sublimation data corresponded to the polymorph for which the crystal structure was retrieved 

from the CSD. However, pairwise differences in calculated lattice energies and the related 2 

experimental sublimation enthalpies between polymorphs are reported to typically be less than 2 

kJ/mol (greater than 7.2 kJ/mol in only 5% of cases)83, and a few percent84 respectively. Indeed, 

these are comparable to some estimates of typical experimental error in sublimation enthalpies, 57 

albeit these may scale with molecular size85, and variation between literature values 86 for the 

same compound. Moreover, an analysis, documented in the Supplementary Material, of known 

polymorphism for all dataset entries, found that only formic acid and alpha-glycine were 

associated with known polymorphism in the CSD (version 5.38). 

https://webbook.nist.gov/chemistry/name-ser/
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In the case of decanoic acid and propanoic acid, multiple sublimation enthalpy data points were 

retrieved according to the noted selection criteria. Hence, the arithmetic mean enthalpy value 

was used.  

After all crystal structures were associated with a single sublimation enthalpy datapoint, the 

experimental lattice energy ( ) was estimated from the (average) sublimation enthalpy 

( ) using the following approximate relationship2,25, where  is the molar gas constant 

and  is the temperature in Kelvin, which ranged from 223 - 455 Kelvin, across different dataset 

entries: . N.B. The assumptions made in obtaining this relationship 

are discussed in the cited references. These approximate experimental lattice energies were used 

to benchmark the lattice energy calculations obtained in the current work. 

An Excel workbook linking all CSD refcodes, compound names, sublimation enthalpy data / 

experimental estimates and the sublimation datapoint specific reference is provided in the 

Supplementary Material. In addition, the experimental lattice energies derived from these data, 

along with a Python script for performing the derivation, is also provided in the Supplementary 

Material. 

Synthon analysis 

Synthon analysis was carried out on all of the geometry-optimized structures with the aim of 

rationalizing the contribution of dispersion forces to the overall lattice energy. The dispersion 

synthons were approximated by measuring the distance between the centres of the molecules in 

the relaxed crystals, and comparing this distance to the distance measured between the two same 

molecules in the pre-optimized structure. Although this is not a direct comparison with the 

analysis of the DFT dispersion energy contributions of the relaxed MBD*, D3 and D4 structures 



 

17 

to the total energy, both types of analyses (classical and DFT) are expected to produce similar 

trends.  

Results and Discussion 

Carboxylic acid series: Series 1  

Crystal structure and lattice energies  

Table 1 gives the details of the experimental  lattice energies, lattice lengths and angles for the 

pre-optimized CIF (labelled ‘Exp’) and all structures (except PW91) following relaxation using 

Forcite, MBD*, D3 and D4, together with the mean absolute errors (MAE) of the calculated 

lattice energies, volumes and ȕ-angles. These and further details of carbonyl and hydroxyl 

torsions, and hydrogen bond lengths are shown in the graphs of Fig 3. Figures of the crystal 

structures obtained following relaxation under each method (except PW91) can be found in the 

Supplementary material in Fig S17. 

The lattice energies for the dispersion corrected calculations generally show monotonic increases 

in magnitude (i.e. they become increasingly negative) with an increasing number of carbon 

atoms (see Figure 3). This is also the general trend for the non-dispersion corrected calculations 

of PW91, although the increase in magnitude is much less significant. Consequently, we do not 

include any further analysis of the PW91-relaxed structures. The experimental values for 

hexanoic, heptanoic and nonanoic acids have been interpolated by drawing straight lines between 

the lattice energies of valeric, octanoic and decanoic acids. The Forcite lattice energies 

underestimate the experimental lattice energies by an almost-consistent 10kJ/mol, whereas the 

MBD* values typically over-estimate the experimental values by between 7 to 20 kJ/mol, with 

the largest difference occurring for decanoic acid. This larger difference occurs because the 

MBD* trend is slightly positively quadratic compared to the experimental values that show a 
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more linear trend. For the carboxylic acids with up to three carbon atoms, MBD*, D3 and D4 

have similar lattice energies and agree with the experimental value from between 10% to 15%; 

this trend is broken by butyric acid, whose D3 and D4 lattice energies are smaller (in magnitude)  
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Structure Lattice Energy Magnitude (kJ/mol) Lattice lengths (Å),  Lattice angles (º) 
Exp Forcite MBD* D3 D4 Exp Forcite MBD* D3 D4 Exp Forcite MBD* D3 D4 

Formic  
acid 

65.07  
 
 
 

55.84 70.89 72.44 71.34 a:10.24 
b: 3.54 
c: 5.36 
v:194.4 

10.46 
3.48 
5.38 
195.9 

10.42 
3.66 
5.33 
203.4 

10.72 
3.63 
5.47 
213.1 

10.53 
3.66 
5.38 
207.5 

Į: 90.00 
ȕ: 90.00 
Ȗ: 90.00 

90.00 
90.00 
90.00 

90.00 
90.00 
90.00 

90.00 
90.00 
90.00 

90.00 
90.00 
90.00 

Acetic  
acid 

70.71  
 

63.22 79.83 80.78 77.56 a:13.15 

b: 3.92 
c: 5.76 
v:297.3 

14.28 
3.81 
5.26 
286.5 

12.93 
3.94 
5.73 
291.6 

13.23 
3.93 
5.86 
305.1 

13.14 
3.95 
5.83 
302.4 

Į: 90.00 
ȕ: 90.00 
Ȗ: 90.00 

90.00 
90.00 
90.00 

90.00 
90.00 
90.00 
 

90.00 
90.00 
90.00 

90.00 
90.00 
90.00 

Propanoic 
acid  

77.37  
 
 

67.36 85.34 85.02 82.43 a: 4.04 
b: 9.06 
c:11.00 
v:402.5 

3.88 
8.96 
10.81 
375.9 

3.91 
8.77 
11.03 
377.7 

3.96 
9.23 
11.17 
406.8 

3.95 
9.02 
11.08 
395.3 

Į: 90.00 
ȕ: 91.25 
Ȗ: 90.00 

90.00 
90.76 
90.00 

90.00 
92.48 
90.00 

90.00 
85.00 
90.00 

90.00 
89.26 
90.00 

Butyric 
acid 

80.12  

 
 

74.62 92.59 87.69 89.36 a: 8.01 
b: 6.82 
c:10.14 
v:515.6 

7.75 
6.68 
9.92 
460.9 

7.74 
6.58 
10.09 
470.9 

8.09 
6.60 
10.31 
513.1 

8.00 
6.67 
10.13 
500.6 

Į: 90.00 
ȕ:111.45 
Ȗ: 90.00 

95.49 
114.05 
96.04 

96.78 
112.5 
91.07 

96.85 
109.8 
91.22 

96.49 
110.9 
91.16 

Valeric 
acid 

88.46  
 
 

82.37 98.56 110.97 111.17 a: 5.55 
b: 9.66 
c:11.34 
v:595.4 

5.51 
9.19 
11.14 
552.8 

5.52 
9.57 
10.93 
566.1 

5.56 
10.33 
11.27 
637.3 

5.50 
11.05 
10.96 
657.8 

Į: 90.00 
ȕ:101.82 
Ȗ: 90.00 

90.00 
101.65 
90.00 

90.00 
101.3 
90.00 

90.00 
100.3 
90.00 

90.00 
99.21 
90.00 

Hexanoic 
acid 

----- 
 

86.10 107.85 117.36 120.18 a:15.02 
b: 5.02 
c: 9.94 
v:719.0 

14.61 
4.83 
9.95 
673.4 

14.8 
4.89 
9.36 
638.9 

18.76 
4.03 
9.24 
683.8 

18.59 
4.02 
9.08 
666.5 

Į: 90.00 
ȕ:106.55 
Ȗ: 90.00 

90.00 
106.7 
90.00 

90.00 
109.2 
90.00 

90.00 
78.04 
90.00 

90.00 
78.98 
90.00 
 

Heptanoic  
acid 

---- 95.29 115.49 110.72 110.00 a:16.01 
b: 5.08 
c:10.16 
v:824.6 

14.81 
4.87 
10.28 
741.5 

14.42 
4.89 
10.29 
725.3 

15.61 
5.17 
10.24 
827.3 

15.22 
5.14 
10.23 
801.0 

Į: 90.00 
ȕ: 92.86 
Ȗ: 90.00 

90.00 
92.14 
90.00 

90.00 
91.70 
90.00 

90.00 
89.66 
90.00 

90.00 
89.99 
90.00 

Octanoic 
acid 

118.26  101.12 125.66 118.05 118.55 a:18.66 
b: 4.98 
c: 9.57 
v:884.6 

18.35 
4.93 
9.24 
835.3 

18.17 
4.85 
9.21 
810.8 

19.11 
5.04 
9.47 
909.1 

19.02 
4.90 
9.52 
881.2 

Į: 90.00  
ȕ: 95.77 
Ȗ: 90.00 

90.00 
93.33 
90.00 

90.00 
93.07 
90.00 

90.00 
94.46 
90.00 

90.00 
96.34 
90.00 

Nonanoic 
acid 

----- 110.51 137.20 134.19 129.00 a:21.11 
b: 4.92 
c:10.12 
v: 1048 

18.99 
4.71 
10.41 
919.9 

18.45 
4.78 
10.33 
897.7 

21.15 
4.93 
9.76 
1012 

21.63 
4.82 
9.53 
991 

Į: 90.00 
ȕ: 93.78 
Ȗ: 90.00 

90.00 
99.05 
90.00 

90.00 
99.60 
90.00 

90.00 
95.54 
90.00 

90.00 
94.61 
90.00 

Decanoic 
acid 

129.16  
 

117.51 144.99 145.80 138.36 a:22.84 
b: 4.96 
c: 9.40 

23.18 
4.86 
8.88 

22.48 
4.81 
9.05 

23.44 
4.98 
9.24 

23.45 
4.92 
9.12 

Į: 90.00 
ȕ: 93.56 
Ȗ: 90.00 

90.00 
94.97 
90.00 

90.00 
96.07 
90.00 

90.00 
92.70 
90.00 

90.00 
92.52 
90.00 
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Table 1 Lattice energies and structures of the carboxylic acids series. a, b, and c are lattice lengths, (per row); v is the unit cell volume, (per row) and Į, 
ȕ, Ȗ are the lattice angles (per row). The experimental lattice energy values are calculated from enthalpies of sublimation using the approximation: 

 where R is the gas constant and T is the experimental temperature. Experimental values for hexanoic, heptanoic 
and nonanoic acids could not be found in the literature. MAE: mean absolute error of lattice energies, volumes and ȕ-angles. 

 

 

by butyric acid, whose D3 and D4 lattice energies are smaller (in magnitude) than that calculated using MBD*, and for valeric acid the 

reverse is true. For butyric acid the MBD*, D3 and D4 lattice energies are 16%, 10% and 12% larger than the experimental value and 

for valeric acid they are 11%, 25% and 26% respectively. The lattice energy MAE follows the trend D3 > MBD* > Forcite > D4 

within the range 8.52 to 10.57 kJ/mol, although within each method the variation in values is largest in D3 where the lattice energy 

differs by approximately 25 kJ/mol from the experimental value. The MAE were calculated using the experimental values available 

and hence do not reflect the off-trend values seen in D3 and D4 for hexanoic acid.   To check the sensitivity of the optimisation 

parameters on the lattice energy, two additional lattice energy values were calculated for hexanoic acid by using a different k-point set, 

(see the brown ‘pluses' on the top graph of Figure 3 and Table S1 for details) and these are lower by about 9 kJ/mol than those already 

discussed. Although the lattice energy decreased further, the structure of hexanoic acid did not distort further, and so future reference 

to hexanoic’s lattice energy concerns its highest lattice energy value and corresponding structure.

v: 1063 997.2 972.4 1077 1050  
MAE - 9.59 10.17 10.57 8.52 v: - 50.81 60.75 18.77 25.24 ȕ:-  1.33 1.76 4.50 3.80 
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Considering the lattice volumes, there is a monotonic increase in lattice volumes with an 

increasing number of carbon atoms, except for D3 and D4 from five to six carbon atoms. In 

every case except formic acid the MBD* volume decreased from the experimental value, 

whereas the D3 and D4 volumes increased except for butyric, hexanoic and nonanoic acids. 

Nonetheless, the D3 and D4 calculated volumes are always larger than the MBD* calculated 

volumes. Throughout Series 1 the experimental volumes are consistently the largest, which is not 

surprising given that the X-ray crystallography experiments are carried out at temperatures 

higher than the 0K, DFT calculation temperature, and therefore will include a crystal expansion. 

Even so, the experimental volumes are closely matched by the D3 and D4 volumes where these 

have increased. The Forcite and MBD* volumes are also close to one another and are 

consistently smaller than D3, D4 and experimental volumes. The difference between the two 

groups (Forcite and MBD* vs. D3 and D4) increases with the number of carbon atoms.  

In keeping with the observation regarding the change in optimized volumes, the lattice lengths of 

the D3 and D4 structures are generally larger than the experimental, Forcite and MBD* 

calculated lattice lengths, and the latter two methods produce similar lattice lengths. The MAE of 

the lattice volumes decreases in the order MBD* > Forcite > D4 > D3 with the range being from 

60.75 to 18.77 Å3.
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Figure 3 Analysis of carboxylic acid series, exploring lattice energies, volumes, beta angles, length of hydrogen bonds and 
torsion angles of the carbonyl (C=O) bond relative to the hydrocarbon backbone, and of the hydroxyl (OH) bond relative 
to the C-C=O group. The lattice energies graph shows two extra data points (D3* and D4*) for hexanoic acid (C = 6) that 
were calculated using a different set of k-points (see ‘Results and Discussion’ Section for Series 1). The lattice parameters 
of hexanoic acid’s Dγ, D3*, D4, and D4* relaxed structures were not significantly different; the analysis presented in the 
text is for the D3 and D4 hexanoic acid structures unless otherwise stated. 
 
 

The beta angles of the molecular crystals that most closely match those of the pre-optimized 

CIFs are calculated by Forcite, and in general, there is close agreement among all methods, 

except for the hexanoic acid structures relaxed using D3 and D4. Although they closely match 

one another they deviate significantly (~30°) from the experimental, Forcite and MBD* beta 

angles. This difference clearly indicates the crystal structures of the two sets are different. An 

examination of Fig 4 shows that, in the D3 and D4 optimized structures, the molecules appear to 

have ‘stretched’, although in reality they have rotated along the x-axis and relaxed to become 

more parallel to the x-axis. The crystal structure of hexanoic acid is unique among the carboxylic 

acids insofar as the dimer-bonded molecules are aligned directly along the x-z axis (see Fig S1 

for comparison). The MAE of the beta-angles decreases in the order D3 > D4 > MBD* > Forcite 

within the range 4.50 to 1.33  
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Experimental Forcite MBD* D3 D4 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

Figure 4 The original .cif structure (far left hand side) and relaxed structures of hexanoic acid (C = 6) 

 

The intermolecular hydrogen bonds (see Fig. 3) were measured within Materials Studio, and 

were indicated by a distance between a hydrogen donor and oxygen acceptor less than or equal to 

2.5 Å, with an angle of at least 90. The hydrogen bond lengths remain fairly consistent within 

each of the five methods with the largest variation in length seen in the experimental structures, 

where the hydrogen bond lengths found in butyric acid are approximately 0.2 Å shorter than 

those found in all other experimental structures. The average lengths of the hydrogen bonds are 

approximately, experimental: 1.78 Å, Forcite: 1.68 Å, D3 and D4: 1.57 Å and MBD*: 1.53 Å. In 

formic and acetic acids the two hydrogen bonds (H-bonds) per molecule are between two other 

molecules forming strongly hydrogen-bonded sheets of molecules in the y-z plane that are 

weakly bound in the x-direction.  Generally, the H-bonds in the experimental crystal structures 

are longer by an approximate average of 14% than those of the relaxed Forcite, MBD*, D3 and 

D4 structures, which is to be expected given that their positions are difficult to obtain 

experimentally. Also, the experimental structures reflect the effects of thermal expansion at non-

zero kelvin as well as zero-point motion. For each of the remaining crystals of Series 1, the 

hydrogen bonds form dimer-pairs. The average H-bond lengths increase in the order MBD* < 

D4/D3 < Forcite.   
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The torsion angles are measured with respect to the carbonyl (C=O) angle to the hydrocarbon 

backbone and the subsequent deviation of the hydroxyl group (HO) from that (O=C-C-C) plane. 

The experimental and Forcite structures show the least variation in the C=O torsion throughout 

the series, and the Forcite structures show the least variation in the OH torsion, meaning that the 

carboxylic group of the Forcite structures is close to planar throughout the series. D3, D4 and 

MBD* show very similar variations in the range of C=O torsions across the series with a notable 

exception at C = 5 where D3 and D4 show a less planar carboxylic group than that found by 

MBD*. These D3 and D4 results correspond with a non-planar carboxylic group in the 

experimental CIF, although in the latter the non-planarity is much larger. In general, where the 

pre-optimized CIF (i.e. experimental) carboxylic group is non-planar, all modelling methods 

produce some degree of non-planarity although this is least pronounced in the Forcite models 

especially for C = 3, 4, 5. Given that the crystals of butyric acid (C = 4) and valeric acid (C = 5) 

from the CSD contained no hydrogen atoms, and that these were added via the Materials Studio 

interface, the variation across all model results in the torsions of the carboxylic group 

components implies that no bias was introduced by the manually applied, and orientation of, the 

hydrogen atoms that represent those within the physical crystal structures. 

In formic acid the hydroxyl torsions and H-bonds decrease on relaxation causing a slight 

change in the orientation of the formic acid molecules in MBD* D3 and D4, mostly causing a 

slight expansion of the lattice parameters. In acetic acid the hydroxyl torsions and H-bonds also 

decrease on relaxation with all modelling methods, with an increase in lattice lengths for the D3, 

and a mixed increase and decrease for Forcite, MBD* and D4. The main difference between 

formic and acetic acid molecules is one methyl group, which suggests the presence of van der 

Waals interactions in acetic acid crystals counterbalances the strength of the H-bonding, which is 
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the sole interaction in formic acid crystals, hence the reduced expansion of crystals of acetic acid 

compared to formic acid. 

Fig 5 shows the dispersion energy contributions to the total energy for the DFT, semi-empirical 

dispersion contribution (SEDC) methods MBD*, D3 and D4, as well as for the classical method 

using synthon analysis. For MBD*, the SEDC contribution increases monotonically with an 

increasing number of carbon atoms both in the bulk crystal and for the gas-phase molecules 

where the dispersion is purely intra-molecular.  Similarly, D3 and D4 show non-monotonic 

increases in SEDC for the bulk state, except for valeric (C = 5) and hexanoic (C = 6) acids, 

where there are larger-than-would-be-interpolated increases in the SEDC energies. This contrasts 

with the gas-phase, where the D3 and D4 SEDC values mirror MBD* in that they show a 

monotonic increase in intramolecular SEDC energy, with the trend in gradients, of the trendline 

between SEDC and number of carbons, being D4 > MBD* > D3. The percentage SEDC 

contributions to the total energy reveal that, for both the gas-phase molecules and the bulk 

crystals, the dispersion energies are levelling-off for all three methods with the proportion of D3 

contributions to the total energy decreasing the fastest. The overall rates of decrease are faster for 

the gas-phase molecules than for the bulk crystals, which is somewhat reassuring because a gas-

phase molecule should only have intra-molecular interactions, and, given the ‘linear’ chain-like 

nature of carboxylic acids such self-interactions are minimal. 
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Figure 5 Top row, semi-empirical dispersion correction energies of the three DFT-DISP methods applied to the carboxylic 
acid series. Middle row left, the percentage of the SEDC energy contributions to the overall total energy; middle row right 
the absolute and percentage contributions of the SEDC energy to the total lattice energy. Bottom row, average change in 
distances after optimization between centres of the molecules (i.e. van der Waals distances) relative to the pre-optimized 
structures. 

The absolute and percentage SEDC contributions to the total lattice energy (Fig. 5 middle row, 

right) show linear, monotonic trends for MBD*, and similar trends for D3 and D4 with lower 
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absolute and percentage SEDC contributions above C = 6. All trendlines show that the dispersion 

energy contributions increase with an increasing number of carbon atoms, from 30% (formic 

acid) to between 65-80% (decanoic acid). The synthon analysis (Fig. 5 bottom row) of the 

percentage change in the van der Waals distance between two molecules (i.e. carbon-to-carbon) 

in the relaxed crystal compared to the pre-optimized structure, shows that up to C = 7 the relaxed 

molecules mostly moved closer together and less often, further apart than they were prior to 

relaxation under all methods. Beyond C = 7 the molecules move closer together on relaxation 

under all methods. Furthermore, following relaxation, molecules with more than seven carbon 

atoms will be found 10 to 15% closer together than their pre-optimized parent structures. This 

implies that the attractive part of the dispersion energy dominates as the molecules increase in 

length, and indeed, this is supported by the increasing contribution of the dispersion energy to 

the overall lattice energy. 

As previously noted, the D3 and D4 calculated lattice energies for valeric and hexanoic acids 

lie outside the general trends identified for these methods. These larger-than-would-be 

interpolated lattice energies both have larger-than-would-be-interpolated SEDC energies in the 

bulk crystal. In the relaxed D3 and D4 crystal structures of valeric acid the outstanding feature 

compared to the Forcite and MBD* crystals is the larger torsion of the carboxylic group. This 

larger torsion enables adjacent molecules to lie slightly staggered parallel to the y-axis, whereas 

in the Forcite and MBD* structures adjacent molecules lie in a plane parallel to the y-axis (see 

Fig. 6). This would affect the dispersion energy between adjacent molecules in the bulk crystal 

without an accompanying dramatic change in the crystal structure.  

Contrasting with the subtle change in the valeric acid crystal are the D3 and D4 hexanoic acid 

crystal structures where, as previously described, their beta-angles are approximately 30° smaller 
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than those seen in the pre-optimized, Forcite and MBD* crystals. Like valeric acid, the D3 and 

D4 SEDC energy contributions in the bulk crystal are larger-than-would-be-interpolated, and the 

corresponding carboxylic torsions are this time, only slighter larger than those found in the 

Forcite and MBD* crystals.  

 

Exp 

 

Forcite MBD* D3 D4 

     

Figure 6 Supercells of relaxed valeric acid (C = 5) structures showing difference in orientation parallel to the y-axis. The 
dotted line of the z-axis is to indicate that it is pointing out-of-the-page 

 A closer examination of the overlap between adjacent molecules along the c-length reveals that 

in the Forcite and MBD* crystals, the carboxyl groups of adjacent (non-bonded) dimer pairs are 

well-aligned with, and slightly non-parallel to the c-length (see Fig. 7), whereas those of D3 and 

D4 lie at a more acute angle to the c-length. In the D3 and D4 structures adjacent molecules are 

rotated by about 120°  whereas  in Forcite they are rotated by 75°, and in MBD* about 90°. The 

rotations and alignments in the D3 and D4 structures have decreased the ß-angle and elongated 

the a-length, with a consequent increase in the magnitude of the SEDC energy. Hexanoic acid 

was also sensitive to the k-point spacing during relaxation under D3 and D4 (see D3* and D4* 

lattice energies in Figure 3), whereas MBD* was not. Increasing the fineness of the k-point grid 

(from 0.07 to a maximum of 0.04 led to an increase in the magnitude of the D3* and D4* 

Exp Forcite MBD* D3 D4 
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7.90Å 

 

7.93Å 

 

7.41Å 

 

7.12Å 

 

6.95Å 

Figure 7 Hexanoic acid (C = 6) showing differences in orientation of the carboxyl groups with respect to the z-axis. The 
dotted line of the y-axis is to indicate that it is pointing into-the-page. The green dotted line is drawn between like-rotated 
molecules connecting their hydroxyl groups through the intermediate dimer pair. These distances are given in Angstroms. 

 

lattice energies by about 9 kJ/mol, whereas for MBD* the corresponding increase in lattice 

energy was less than 0.02 kJ/mol. 

Amino acid series - Series 2 

Table 2 gives the details of the lattice energies, lattice lengths and angles for the pre-optimized 

CIF (labelled ‘Exp’) and all structures (except PW91) following relaxation using Forcite, MBD*, 

D3 and D4. These and further details of hydrogen bond lengths (as defined for Series 1) are 

shown in the graphs of Fig 8. Images of the crystal structures obtained following relaxation 

under each method (except PW91) can be found in the Supplementary material in Fig S18. In the 

bulk crystal the amino acid molecules are zwitterions, whereas in the gas-phase they become 

neutral in the DFT geometry optimisations and are built as neutral molecules in the Forcite 

calculations (see the ‘Zwitterion Workflow’ section in the Supplementary material for further 

details). In the following, the number of carbon atoms represents those along the linear chain of 

the amino acids and does not include the carbon atoms that form branches. 

The experimental lattice energies increase monotonically from Į-glycine (C = 1) to L-alanine (C 

= 2) and then decrease in magnitude for both L-valine (C = 3) and further again for  L-isoleucine 
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(C = 4). The Forcite lattice energies are the largest in magnitude with the most negative value 

calculated for Į-glycine. The calculated lattice energies for MBD*, D3, and D4 are very similar 

and show an increase in magnitude with an increasing number of carbon atoms. The general 

trend for the non-dispersion corrected calculations of PW91 is similar to the experimental trend, 

although with much smaller (in magnitude) lattice energies. Consequently, we do not include any 

further analysis of the PW91-relaxed structures. Of this group, the trend in magnitude of the 

lattice energies is D3 > MBD* > D4, the D3-MBD*-D4 variation is from between 4 to 

approximately 7 kJ/mol, and they are larger than the experimental values by between 2 to 30%. 

The MAE of the lattice energies decreases from Forcite > D3 > MBD* > D4 within the range 

14.66 to 18.76 kJ/mol  for D3, MBD* and D4. 
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 Structure Lattice Energy Magnitude (kJ/mol) Lattice lengths (Å) Lattice angles (º) 
Exp Forc MBD* D3 D4 Exp Forc MBD* D3 D4 Exp Forc MBD* D3 D4 

Į-Glycine 143.16 511.16 151.20 154.24 150.89 a: 5.09 
b:11.77 
c: 5.46 
v:303.2 

4.50 
12.93 
5.37 
283.8 

5.08 
11.86 
5.44 
305.2 

5.15 
11.98 
5.46 
314.3 

5.14 
11.90 
5.45 
311.8 

Į: 90.00 
ȕ:111.99 
Ȗ: 90.00 

90.00 
114.59 
90.00 

90.00 
111.42 
90.00 

90.00 
110.99 
90.00 

90.00 
110.77 
90.00 

L-Alanine 149.76 454.22 153.97 155.89 152.74 a: 5.93 
b:12.26 
c: 5.79 
v:421.1 

6.01 
12.58 
5.15 
389.7 

5.89 
12.18 
5.82 
416.8 

6.67 
11.46 
5.83 
445.2 

6.10 
12.02 
5.83 
427.4 

Į: 90.00 
ȕ: 90.00 
Ȗ: 90.00 

90.00 
90.00 
90.00 

90.00 
90.00 
90.00 

90.00 
90.00 
90.00 

90.00 
90.00 
90.00 

L-Valine 143.868 
 
 

489.63 160.67 163.58 157.66 a: 9.67 
b: 5.27 
c:12.06 
v:615.2 

9.56 
4.86 
11.83 
544.3 

9.66 
5.17 
11.54 
576.6 

9.67 
5.27 
11.88 
605.2 

9.67 
5.24 
11.74 
594.7 

Į: 90.00 
ȕ: 90.80 
Ȗ: 90.00 

90.00 
99.16 
90.00 

90.00 
90.47 
90.00 

90.00 
91.30 
90.00 

90.00 
91.16 
90.00 

L-Isoleucine 127.67 
 

484.83 163.51 165.78 161.80 a:9.68 
b: 5.30 
c:13.96 
v:712.1 

9.55 
4.93 
13.98 
658.0 

9.58 
5.23 
13.45 
673.1 

9.68 
5.30 
14.02 
716.04 

9.67 
5.27 
13.88 
703.44 

Į: 90.00 
ȕ: 96.16 
Ȗ: 90.00 

90.00 
87.88 
90.00 

90.00 
93.02 
90.00 

90.00 
95.59 
90.00 

90.00 
95.74 
90.00 

MAE - 343.85 16.23 18.76 14.66 v: - 43.95 20.98 12.29 11.02 ȕ: - 4.81 1.01 0.52 0.50 
Table 2 Lattice energies and structures of the amino acids. a, b, and c are lattice lengths, (per row); v is the unit cell volume, (per row) and Į, ȕ, Ȗ are the 
lattice angles (per row). The experimental lattice energy values are calculated from enthalpies of sublimation using the approximation: 

 where R is the gas constant and T is the experimental temperature. All experimental and calculated lattice energies 
were negative. MAE: mean absolute error of lattice energies, volumes and ȕ-angles. 

 

 The lattice volumes of the D3, D4, MBD* and experimental structures agree to within approximately 1 to 6%, whereas the Forcite 

volumes are consistently smaller than the pre-optimized volumes by between approximately 7 to 12%. All volumes increase 

monotonically with an increasing number of carbon atoms, and the MAE of the lattice volumes decreases from Forcite > MBD* > D3 

> D4 within the range 43.95 to 11.02 Å3.
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Figure 8 Analysis of amino acid series, exploring lattice energies, volumes, beta angles, and maximum and minimum 
lengths of hydrogen bonds (bottom right). 

 

The beta angles of D3, D4 and MBD* agree with the experimental beta angles to within 

approximately 3%, as do those of Forcite for Į-glycine and L-alanine. For L-valine and L-

isoleucine the Forcite beta angles are larger and smaller respectively than the experimental 

values by approximately 10%. The MAE of the beta-angles decreases from Forcite > MBD* > 

D3 > D4 within the range 4.81º to 0.50º.  
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Method Experiment Forcite MBD* D3 D4 

Minimum (Å) 1.81 1.58 1.65 1.69 1.68 

Maximum (Å) 2.27 2.10 2.22 2.10 2.12 

Table 3 Average maximum and average minimum lengths of hydrogen bonds found across the whole of the amino acid 
series  (each structure contains a different number of various lengths of hydrogen bonds) 

The hydrogen bond lengths are longest in the pre-optimized structures (as expected and 

discussed previously with reference to Series 1) and shortest in the Forcite structures. D3 and D4 

produce very similar hydrogen bond lengths as exemplified by the trends seen in Figure 8 and 

the average values in Table 3. In the MBD* structures, the average minimum H-bond is shorter 

than D3/D4, and the average maximum H-bond longer, with the consequence that the range of 

H-bond lengths seen in the MBD* structures is wider than those seen in D3 and D4. The average 

H-bond length increases Forcite < D3/D4 < MBD*. 

The dispersion energy contributions (Fig. 9) for D3, D4 and MBD* show similar trends in both 

the bulk crystal and gas-phase, and there is near-perfect agreement between the SEDC energies 

of D4 and MBD* in the bulk crystal, and agreement to within approximately 10kJ/mol in the 

gas-phase. D3 calculates the smallest SEDC energies in both bulk and gas-phase and as the 

amino acids increase in size, the D3 SEDC energy increasingly diverges from that of D4 and 

MBD*. The percentage SEDC contributions to the overall total energy (Fig. 9, middle row, left)  

show a widening gap between the D3 contributions and those of MBD* and D4 for both the gas-

phase molecules and the crystal. Interestingly, the percentage D3 contribution decreases slightly 

rather than increases for the crystal of L-alanine, which could be due to the slightly larger 

distances (than those of the D4 structures) between the methyl groups of the amino acids in the 

D3 L-alanine structure. 
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Figure 9 Top row, semi-empirical dispersion correction energies (SEDC) of the three DFT-DISP methods for the amino 
acid series. Middle row left, the percentage of the SEDC energy contributions to the overall total energy; middle row right 
the absolute and percentage contributions of the SEDC energy to the total lattice energy. Bottom row, average change in 
distances after optimization between centres of the molecules (i.e. van der Waals distances) relative to the pre-optimized 
structures. 
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The absolute and percentage SEDC contributions to the total lattice energies (Fig. 9, middle row 

right) show near-identical trends between the three DFT methods, with contributions to the 

lattice energy increasing with the number of carbon atoms, and the percentage contribution 

increases from about 35 to 50% across Series 2. The synthon analysis (Fig. 9, bottom row) shows 

that under MBD* and D4 the molecules (beyond C = 1) move closer together, under D3 they 

move slightly apart (including C = 1), and under Forcite the molecules move closer together and 

closer than is seen under the DFT methods, except for C = 2 where under both Forcite and D3  

the molecules move further apart by approximately 2%. Forcite shows the largest variation in 

van der Waals distances (-15% to +2%) and MBD*, D3 and D4 produce changes in distances 

between -2 to +2%.  

The preceding analysis shows that Forcite has not performed as well as the DFT methods in the 

energetics and (for two of the crystals) the structure. Examining the output files of the Forcite 

calculations carried out within Materials Studio (not shown here), reveals relative positive, non-

bonded (i.e. van der Waals and electrostatic) intramolecular energies of the gas-phase (neutral) 

molecules. In the crystal, the non-bonded energies (the sum of intra- and intermolecular) are 

positive for Į-glycine and L-alanine and negative for L-valine and L-isoleucine, although except 

for Į-glycine they are proportionately smaller in magnitude than the non-bonded energies found 

in the gas-phase. In Į-glycine the crystal contains pairs of hydrogen-bonded amino acids that are 

‘stacked’ along the b-length and weakly bound by van der Waals forces, which would explain 

the positive, non-bonded energy found in this crystal. In L-valine and L-isoleucine the molecules 

are hydrogen-bonded in bi-molecular layers, leaving the main, non-bonded interactions to be 

weak van der Waals between opposing hydrocarbon backbones (within the bi-layers) and methyl 

groups (between opposing bi-layers). In the smaller L-alanine crystal the molecules are 
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hydrogen-bonded throughout the crystal with the non-bonded interactions confined to staggered 

methyl-methyl interactions. The changes in the torsion angles between the gas-phase NH2...COH 

and the bulk, crystal phase NH3
+…COO- groups is larger in all of the Forcite models (see Table 

S2) than in any of the DFT models, which means there is greater molecular distortion in the 

Forcite crystals. This appears to be due to over-shortening of the hydrogen bonds and is 

particularly visible in L-valine and L-isoleucine to the extent that the foreshortening has drawn 

the molecules within the crystal closer together, thereby affecting the beta angles of the two 

crystals. This effect might be ameliorated by using a hybrid exchange-correlation functional 

(plus MBD*) such as PBE093, where in similar studies it out-performed PBE (plus MBD*)45,56. 

Unfortunately, PBE0 is computationally more expensive than PBE and therefore unsuitable for 

inclusion in our exploration of trends across increasingly large systems.  

Summary  

By including an exchange-correlation functional without any dispersion corrections, (i.e. PW91-

GGA) the results show that across the two series – the van der Waals-dominated carboxylic acids 

and the polarized- and hydrogen bond-dominated amino acids, dispersion corrections are 

essential to reproduce experimental trends in lattice energies. Of the dispersion corrections, 

MBD@rsSCS has performed the most reliably producing consistent trend lines in lattice 

energetics and structure. Grimme D3(0) and D3(BJ) performed similarly well with D3(BJ) 

returning the smallest MAE for lattice energies (8.52 and 14.66 kJ/mol for Series 1 and 2 

respectively), although this is excluding hexanoic acid from the energetics, which is sensitive to 

the number of sampling points under D3(0) and D3(BJ). The many-body nature of the 

MBD@rsSCS dispersion interactions has kept the structure and energetics of hexanoic acid ‘on-

trend’ during optimisation.  The smallest lattice volume MAEs were produced by D3(0) (18.77 
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Å3) for Series 1 and D3(BJ) (11.02 Å3) for Series 2. The smallest MAE in the beta-angles were 

given by Forcite (1.33º) for Series 1 and D3(BJ) (0.5º) for Series 2. The average length of H-

bonds shows the shortest calculated by MBD@rsSCS   and the longest by Forcite for Series 1, 

and this order is reversed for Series 2. D3(BJ) was developed to remove the artificial repulsion 

originating from the damping function of D3(0), and herein its overall slightly better 

performance than D3(0) encourages its recommendation as the preferred DFT-D3 functional, in 

agreement with Grimme et al.’s  review94. However, within the dispersion corrected DFT 

methods MBD@rsSCS captures more of the different chemical environments than does D3(0) 

and D3(BJ), which is attributed to the inclusion of the many-body terms in MBD@rsSCS.  

The performance of MBD@rsSCS competes favourably with the COMPASS II force field 

method used in Forcite, in the calculated energetics as well as the structural features and out-

performs it for the polarized- and hydrogen bond-dominated series of amino acids. The 

MBD@rsSCS performs sufficiently consistently throughout Series 1 that the addition of a size-

independent, constant shift in the lattice energy would produce a near-perfect match with the 

experimental lattice energies for these types of organic molecular crystals.   

Conclusion 

In terms of functionality, the latest solid state DFT-DISP methods compete well with classical 

methods, although computationally they are more demanding of hardware and computational 

time. In particular, the many body dispersion term, MBD@rsSCS has almost consistently 

reproduced experimental energetic and structural trends across two homologous series separately 

dominated by (1) van der Waals and (2) polar and hydrogen bond interactions. The pairwise 

DFT-DISP methods (D3(0) and D3(BJ)) perform similarly well across both series with a couple 
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of energetic and structural exceptions that undermine their reliability, and supervision is 

recommended when performing batches of calculations. The classical method employing the 

COMPASS II forcefield reproduces the experimental and structural trends well for the van der 

Waals dominated carboxylic acids, but not for the polar and hydrogen bond dominated amino 

acids.  

The advantage of probing two series rather than a set of diverse structures, is that physically 

explicable trends can be identified, as exemplified by the predicted and simulated increasing 

contribution of the dispersion energy to the lattice energy, with increasing number of carbon 

atoms in the backbone chain. In turn, deviations from those trends allowed anomalies, such as 

those produced by the pairwise methods (for hexanoic acid) to be identified, which could then be 

explored further to determine where the sources of error lies (currently beyond the scope of this 

work).  

Depending on the output required – e.g. structure, energetics, general trends – all three ‘off-the-

shelf’ DFT methods are sufficiently ‘on-trend’ to be used as alternatives or complementary to 

classical, force field methods. We intend to test their functionality further with our next goal 

being to use the above methods to calculate the lattice energies and elastic constants of a diverse 

set of organic molecular crystals.  
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Supplementary Material includes the following: a ZIP file containing the Python scripts, an 

Excel file with experimental sublimation data, CSV files with the experimental lattice energies, 

and a document capturing the information referred to throughout this paper as ‘Supplementary 

material’. 
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