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Liquid-liguid phase separation morphologies in
ultra-white beetle scales and a synthetic equivalent

Stephanie L. Burg® !, Adam Washington"2, David M. Coles', Antonino Bianco3#, Daragh McLoughlin®,
Oleksandr O. Mykhaylyk 4 Julie Villanova®, Andrew J.C. Dennison', Christopher J. Hill/, Pete Vukusic®,
Scott Doak?, Simon J. Martin®, Mark Hutchingsg, Steven R. Parnell'9, Cvetelin Vasilev", Nigel Clarke],
Anthony J. Ryan?®, Will Furnass'?, Mike Croucher'3, Robert M. Dalgliesh@® 2, Sylvain Prevost'*1>,

Rajeev Dattani'®, Andrew Parker'®, Richard A.L. Jones!, J. Patrick A. Fairclough 3 & Andrew J. Parnell!

Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly
opacifying whilst extremely thin. However, the formation mechanism for the voided intra-
scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided
chitin networks of intact white scales of Cyphochilus and Lepidiota stigma. Chitin-filling frac-
tions are found to be 31+2% for Cyphochilus and 34 £1% for Lepidiota stigma, indicating
previous measurements overestimated their density. Optical simulations using finite-
difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal
structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95%
for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make
a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly
reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed
through spinodal decomposition phase separation. We conclude that the ultra-white beetle
scale nanostructure is made via liquid-liquid phase separation.
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hite surfaces are ubiquitous. Conventional white paint

comprises a film-forming polymer latex dispersion

loaded with high refractive index (n~2.6) nano-
particles of Titanium dioxide (TiO,). In biology, however,
whiteness is usually conferred by voided structures made of a
continuous biopolymer phase and air. These biological “structural
whites”!2 have been studied with a view to characterising their
nanostructure and explaining their optical properties on the basis
of their structure. The important question of how these structures
arise in vivo, and the pathways by which they have evolved
towards optimum optical properties, remains largely open>*.

For the case of highly ordered crystalline photonic structures in
beetle and butterfly scales, the structure formation has been
postulated to be via pre-patterning and partitioning into intra-
and extra-cellular space, followed by chitin deposition®-8. Alter-
natively the patterning and deposition stages could possibly occur
simultaneously?, although this process has not yet been seen
in situ to fully understand the stages of photonic nanostructure
development. The 3D photonic structures observed to date are
ordered crystal grain structures that are highly faceted and
strongly break up and segment the internal scale volume. These
structures are proposed to be patterned using the physics of
hydrophobic-hydrophilic interactions® to control morphology
(gyroid, cubic, hexagonal, sphere, lamellar etc.) akin to the
structural diversity seen in photonic block copolymers!0-12,
These highly ordered 3D biological photonic structures exhibit
multiple higher order X-ray scattering peaks due to their struc-
tural uniformity and order®. However, previously published
scattering data show that these higher order X-ray scattering
peaks are not observed for the white beetlesS.

Isotropic structural colour, that is independent of viewing
angle, is widely found for pseudo-photonic crystals, which exhibit
a degree of disorder. Here the optical properties are due to
coherent light scattering from a two-phase (air and biopolymer)

nanostructure. These are frequently observed in bird feathers!3,
and was first documented by Prum et al.l4, The size of the well-
defined length scale in these pseudo-photonic crystals directly
affects the observed colour. This is clearly illustrated in Parnell
et al.1, where Eurasian Jay feathers have a periodic gradient in
colour from white to blue to black. Pseudo-photonic materials,
which have a degree of disorder can be optically modelled using
Bragg type reflecting structures, with a distribution of length
scales in the layers and their spacings'®. However, while such
models may capture the optical properties well, they do not
inform us as to the process by which these optically active
nanomaterials form. It has been reported previously that blue
structural colour in bird feathers and beetles is probably a result
of biopolymer!>17:18 phase separation!® via spinodal decom-
position with drying® and chitin crystallisation?%2! being poten-
tial arrest mechanisms of phase separation!® within arthropod
scales.

In this work, we show a complete ultra-structural char-
acterisation of two intensely opaque biological systems—the
white scales of the beetles?2?3 Lepidiota stigma (L. stigma) and
Cyphochilus. We compare these structures?* with those found
in the late stage?® of the generic process of spinodal decom-
position?6, and show by numerical solution of Maxwell’s
equation for these nanostructures that such spinodal structures
can quantitatively reproduce the optical properties of the bio-
logical systems. This allows us to confirm that the beetle scales
have close to the optimum combination of volume fraction and
characteristic length scale to maximise their whiteness and
fabricate a synthetic mimic using phase separation by spinodal
decomposition.

Results
Non-destructive X-ray nanotomography of ultra-white scales.
The beetles, L. stigma and Cyphochilus, are covered with highly

Fig. 1 Microscopy images of the ultra-white beetle scales. a An L. stigma beetle; the scales are ~350 um long and 120 um wide. b An image of a Cyphochilus
beetle; the Cyphochilus scales are ~220 um long and 60 um wide. The underlying black cuticle can be observed where there are no scales. ¢, d Cross-
sectional scanning electron microscopy (SEM) images of individual scales for L. stigma and Cyphochilus, respectively
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Fig. 2 X-ray nanotomography of intact ultra-white beetle scales. a Image showing a single intact Cyphochilus scale mounted to allow a full
nanotomography scan. b Representative longitudinal slice (y-z plane) through the optical structure of an entire Cyphochilus scale. ¢ Representative optical
structure inside an L. stigma scale, based on the correlation analysis of 275 individual 5 pm cubes. d A larger volume of L. stigma showing the extent and
filling of the scale interior, and the surface features on the cuticle. e, f A typical cube and larger cross section, respectively, for the scale of a

Cyphochilus beetle

opaque, white scales (Fig. 1a, b). Their opacity arises from strong
scattering throughout the internal structure of the scales. This
inner scale space comprises an interconnected network of a-
chitin (Supplementary Fig. 1) with a complementary inter-
connected network of air voids?2. The internal structure of these
white beetle scales was studied by scanning and transmission
electron microscopy (SEM and TEM) revealing a “foam-like”
structure of chitin fibrils (Fig. 1c, d), similar to that previously
reported?2. We found that the sectioning of whole intact scales,
even using focused ion beam (FIB) sectioning, resulted in severe
scale distortion (Supplementary Figs. 2-4). The substantial
warping and curving of the scales when they are cut open could
be the result of the voided inner scale nanostructure having an
inherent mechanical tension, which is relieved when the outer
scale membrane becomes compromised. Therefore, in order to
accurately model the optical properties of the scales, structural
characterisation of intact scales is needed.

Imaging directly through the outer scale cuticle using X-ray
nanotomography?/ for individual Cyphochilus and L. stigma

scales (Fig. 2) enabled the measurement of the full 3D internal
morphology of complete intact scales (Fig. 2a). A cross section
through the entire scale (Fig. 2b) shows that the internal structure
is continuous, with no evidence of grain boundaries. This
indicates that the process used to pattern the white beetles
occurs at the same time point in time throughout the entire scale
volume.

Representative 5um cubes of the internal structure of the
Cyphochilus and L. stigma are shown in Fig. 2¢, e, respectively.
These cubes were chosen from the 275 cubes cut from each full
3D dataset and had the minimum mean squared error compared
with the average correlation functions shown later in Fig. 3a, b.
Figure 2d, f shows scale cross sections; with thicknesses of
~12 pm for both species (Supplementary Figs. 5 and 6). The intra-
scale nanostructure is a highly continuous and interconnected
air-voided network with a characteristic length scale, reminiscent
of morphologies observed for phase separating polymer
blends?8, which have undergone phase separation via spinodal
decomposition29-31,
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Fig. 3 Comparison of beetle scales and simulated spinodal whites. a, b Projections of the correlation function in three orientations for the Cyphochilus and L.
stigma intra-scale structures, respectively. Error bars represent the standard deviation at each point across the 275 averaged cubes. ¢ A simulated late-
stage spinodal phase separated volume with a 30% volume-filling fraction, comparable to the Cyphochilus beetle scale-filling fraction. d Comparison of the
correlation function projections for the measured beetle intra-scale morphologies and the (self-similar) spinodal simulations scaled to the same

length scale. e Cyphochilus FDTD x-reflectance simulation for a slab of measured Cyphochilus intra-scale nanostructure and a simulated 30% filling-fraction
spinodal with a Gr(s) scaled to 325 nm and f FDTD modelling showing theoretical x-reflectance comparison for a 35% filling-fraction spinodal scaled to
500 nm and the structure measured using X-ray nanotomography for L. stigma scales. g Average reflectance across the visible spectrum as a function of
chitin-filling fraction from FDTD optical modelling. The confidence levels show the standard deviation of the reflectance across the sampled wavelengths

(400-800 nm) for each filling fraction
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From the whole-scale nanotomography data we were able to
determine the mean scale-filling fraction, based on entire scales,
measured to be 31 +2% for the Cyphochilus and 34 + 1% for the
L. stigma. These values are lower than previously reported*2332,
and lower than the values we measured using the FIB electron
microscopy (Supplementary Tables 1 and 2). We attribute these
differences to distortions arising from the use of sectioned scales
in electron microscopy studies. Interestingly, our tomography
results show only a very small difference of 3% in filling fraction
between the two species, suggesting that there may be something
special or limiting about a scale-filling fraction of 30%, since the
intra-scale structure of both species have converged towards
this value.

Analysis of the X-ray nanotomography measured intra-scale
structure provides insight into two important issues; the
dominant length scale of the intra-scale structures, and the
degree to which the structures are isotropic (Supplementary
Note 1 and Supplementary Egs. (1)-(9)). In the case of
Cyphochilus, a degree of anisotropy is perceptible in Fig. 2e
(and Supplementary Movie 1), where the x-y plane contains
significantly more small round fibril cross sections than the other
two planes, indicating that fibrils preferentially lie in the y-z plane
(the plane parallel to the scale’s largest surface). This is
quantitatively shown in the average projections of the correlation
function (Fig. 3a) along each axis for the 275 individual 5um
cubes for the Cyphochilus data. In the x-direction, shown by
Gy(x), the correlations are reduced when compared with the other
two orientations. This is consistent with the literature3? and
shows that the intra-scale structure for Cyphochilus is anisotropic,
resulting in differences in the magnitude of the reflected
wavelengths for the different axes (Supplementary Fig. 7), with
light reflected strongest for the x-axis, but at the expense of the y-
and z-axes. In the x-direction the correlation function has a much
deeper minimum, indicating a prominent length scale in that
direction. In addition, the location of the correlation minimum at
325nm is somewhat smaller compared with the other two
orientations, both of which occur at 500 nm. In contrast to
Cyphochilus, the correlation projections for L. stigma in Fig. 3b
have similar correlation functions for each orientation, indicating
that L. stigma scales have an isotropic internal structure
(Supplementary Movie 2). This appears to be in contrast to
previous studies?3. Within error, the correlation minimum
corresponds to a length scale of 500 nm.

3D Cahn-Hilliard liquid-liquid phase separation simulations.
To test if the optical properties of the ultra-white beetle scales
could be replicated with a spinodal structure, we simulated a
number of structures using numerical solutions in 3D, of the
Cahn-Hilliard equations for polymer systems in the long-time
limit?>. We simulated effective chitin-filling fraction in the range
between 5 and 95%. These simulated structures capture the
mechanism of length-scale selection present in spinodal decom-
position, which leads to a structure that is random and isotropic,
but with a characteristic length scale, together with the coarsening
of that structure at late stages to a pattern obeying dynamic self-
similarity®>* (Fig. 3c). In this regime, for a given filling fraction,
the statistical characteristics of the patterns (pair correlation
functions) are identical when scaled by a single characteristic
length scale, which physically is determined by the length of time
the system has had for domains to grow in size, known as
coarsening®°.

It was possible to set the characteristic length scale of the
simulated late-stage spinodal structures to match the correlation
functions of the measured beetle intra-scale structures (Fig. 3d).
This was accomplished by adjusting the pixel to real-space

conversion up and down in order to virtually zoom in and out of
the structure. To match the Cyphochilus structure, a 30% filling-
fraction spinodal simulation was matched to the length scale in
the x-axis Cyphochilus correlations. For the isotropic L. stigma
structure, a 35% filling-fraction spinodal simulation was matched
to the radially averaged L. stigma correlations.

Finite-difference time-domain optical modelling. To explore
the optical properties of the reconstructed beetle intra-scale
nanostructures, and the corresponding simulated spinodal
structures, we needed to calculate reflection coefficients as a
function of wavelength. This is a difficult regime in which to carry
out such calculations—the presence of many strongly scattering
interfaces separated by length scales comparable with optical
wavelengths mean that many optical approximations are invalid,
such as ray tracing>® or matrix methods>®. Hence we used the full
numerical solution of Maxwell’s equations for the 3D structures
using finite-difference time-domain methods (FDTD), this
allowed us to calculate the broadband reflectance for any arbitrary
structure.

To simulate the geometry of a scale lying on a beetle elytrum,
5 um x 20 pm x 25 um (x, ¥, z) slabs of each beetle structure were
cut from the tomography data, and FDTD was used to calculate
the reflectance of the top of the slab in the x-direction. The same
was done for slabs of the spinodal simulations with equivalent
length scales and filling fractions to the intra-scale X-ray
tomography data. The results for the 35% filling-fraction spinodal
slab show excellent agreement with the reflectance results from
the actual L. stigma structure (Fig. 3d). The Cyphochilus results
were complicated by anisotropy in the intra-scale structure;
however, the isotropic equivalent spinodal simulation was still
able to capture the general trend of the Cyphochilus reflectance,
by virtue of it exhibiting a higher reflectance for smaller incident
wavelengths. It is important to stress that these results are not fits
to the experimental data, but rather are FDTD simulations in
which only the characteristic length scale and the filling fraction
of the structure have been matched to the appropriate values for
each beetle’s measured intra-scale nanostructure, i.e. the reflec-
tance of the beetles scales is predicted by a spinodal phase
separation structure.

To investigate the effect of filling fraction for a fixed length
scale, FDTD reflectance was calculated for slabs of Cahn-Hilliard
spinodal structures with filling fractions covering the range of
5-95%. The first minimum in correlations for all the slabs was set
to 500 nm, this being the length scale for the intra-scale structure
of L. stigma measured via X-ray nanotomography. The results
plotted as average scattering intensity over wavelengths
400-800nm are presented in Fig. 3g. The reflectance from the
measured beetle scale structures L. stigma (green point) and
Cyphochilus (blue point) is also plotted to enable comparison,
these both lie very close to their spinodal equivalents, the spinodal
simulations reach maximum reflectance at ~25% chitin-filling
fraction. This important result, that filling fractions well below
previously reported chitin scale-filling fractions result in superior
reflectance, has very recently been reported for a naive simple
branching random walk model3® despite being highly anisotropic.
However, as the isotropic 30% filling-fraction spinodal simulation
had a higher reflectance than the Cyphochilus structure
(Supplementary Fig. 8). This shows that anisotropy is not crucial
to achieving highly reflective materials, since the simulated
isotropic spinodal structure is capable of superior reflectance.
There has been an on-going debate3? in the field of opacifying
layers as to whether “a flat” compressed nanofoam of air bubbles
can outperform TiO,-based opacifying coatings. On the basis of
these FDTD simulations we can see that this is not necessary and
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indeed the isotropic spinodal scale structure for both beetle length
scales gives a higher level of reflectance, than the anisotropic
equivalent.

The effect of length scale on the simulated reflectance for a
fixed filling fraction is shown in Fig. 4. This was accomplished by
altering the characteristic length scale of a 30% spinodal slab to
four different values (Fig. 4a-d). The values were chosen such
that two of the slabs matched the length scale of the Cyphochilus
and L. stigma structures, one slab was smaller and one was larger
(Fig. 4e). The FDTD reflectance results in Fig. 4f show a clear
trend of increasing reflectance at low wavelengths with decreasing
feature size at the cost of decreased reflectance at higher
wavelengths. With its flat spectrum, the largest length scale
(690 nm) would be the most white in colour, while the smallest
length scale (222 nm) would be the most blue. If the aim of these
structures is to maximise reflectance across all wavelengths (i.e.
make the brightest white), and then a 500-nm length scale
provides a suitable compromise between maximising reflectance,
without losing reflected intensity at higher wavelengths and
producing a more “blue-white” as observed for smaller length
scales.

Based on the FDTD optical modelling we suggest that any
synthetic route to create opacifying structures?’ via spinodal
phase separation should aim for a filling fraction of 25% and a

length scale of 500 nm. While this optimal filling fraction is much
lower than measured and reported for the beetle scales®23-32 over
the last 10 years, we propose that the high filling fraction values
are an artefact of the assay, as the sample preparation causes
densification as demonstrated by our comparative FIB SEM and
X-ray nanotomography results.

Nanostructured ultra-white cellulose acetate polymer film. Our
deep structural understanding of the L. stigma and Cyphochilus
intra-scale structures and their optical equivalence to structures
formed by spinodal decomposition led us to develop a synthetic
analogue. This was achieved using a commercially available bio-
derived polymer, cellulose acetate (CA). CA was dissolved in
acetone, which underwent a solvent quench in the presence of a
salt, calcium chloride (CaCl,). The CA was molecularly dissolved
in acetone to make a solution with a concentration of 0.1 g/mL
and mixed together with a methanol/salt solution such that the
solvent ratio of acetone to methanol was 5:3 by volume. The
solution was then drawn into a film and allowed to phase separate
and vitrify, this process was fast ~40s. The mass ratio of CA to
salt was optimised to produce a film with the target filling fraction
by control of the solvent quality. The optimum ratio was found to
be 2:1 CA to salt by mass.
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The resulting CA films were white, highly voided (Fig. 5a), and
exceedingly reflective as verified by reflectance measurements
(Fig. 5b). Comparing the reflectivity of the CA film to scales from
L. stigma and Cyphochilus for which reflectance is 90% and 88%,
respectively, the synthetic film had consistently higher reflectance,
at ~94% for a 12.8 um film (Supplementary Fig. 9), compared
with both beetle species’ scale thicknesses of 12 um at their
thickest point.

To understand the structure formation mechanism we used
time resolved, in situ, ultra small-angle X-ray scattering (USAXS).
The fast data acquisition and unique USAXS length scale range at
ID02 (European Synchrotron Radiation Facility (ESRF)) made it
possible to follow the structural evolution and phase separation
dynamics as a function of momentum transfer g, where g = 4, d
being length scale. The early time information allowed us to
measure the length-scale-dependent amplification factor R(q) at
early times2%30 for our CA films. For longer length scales, a linear
relationship between R(q)/q®> and q? was found (Fig. 5c),
confirming spinodal decomposition as the phase separation
structuring mechanism.

Using spin-echo small-angle neutron scattering*/4> (SESANS)
we were able to measure the correlation function directly for a
large area of the synthetic structural white. This was performed in
three orientations to confirm the isotropic nature of the CA films
(Supplementary Fig. 10). The data showed a discontinuity

(Fig. 5d) at ~470 nm, close to the dominant length scale found
for the ultra-white beetle internal scale structure. The density of
the films could be determined from the slope of the correlation
function and was found to be 21.5 + 4% (Fig. 5d, Supplementary
Note 2 and Supplementary Eq. (10)).

Therefore, the improvement in the film’s reflectance over the
beetle scales is most likely the result of its filling fraction being
close to the filling fraction required to achieve optimal reflectance,
25%, determined using the filling fraction phase diagram (Fig. 3g).
However, some of the increase in reflectance could be due to the
specular component from the surface of the films and the slightly
thicker voided layer, as the beetle scales possess a dense cuticle
layer ~1 pm thick.

Discussion

In the case of the anisotropic network within the Cyphochilus, the
internal a-chitin optical structure is highly interconnected and
prone to distortion on sectioning, meaning that anisotropy must
be imparted to the optical structure before it fully solidifies. We
envision that the anisotropy is imparted in the late stage of
liquid-liquid phase separation when the chitin precursors are
transitioning to become mechanically stable crystalline a-chitin,
vitrifying the internal scale nanostructure. The anisotropy is
probably caused by the liquid flow that removes the aqueous fluid
from the narrow stalk opening back to the socket cell, leaving a
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dry desiccated a-chitin air network. The effect of flow on phase
separation is well known in spin-coated thin polymer blend films,
where a radial flow provides a strong position dependent radial
shear which alters the phase separation length scales and breaks
the symmetry, due to advective flow*3*4. There are several rea-
sons this effect could be observed in the Cyphochilus and not the
L. stigma such as differences in the liquid removal dynamics
(shear flow) due to geometrical considerations (scale size) or the
crystallisation of a-chitin (reaction rate). In addition, the
Cyphochilus nanostructure network has a small difference in
filling fraction making it different mechanically and therefore
possibly more susceptible to advective flow.

In summary, using FDTD optical modelling of the intact 3D
intra-scale structures for L. stigma and Cyphochilus and simulated
spinodal phase separated structures, we were able to establish
design rules for producing highly reflective synthetic structural
whites based on biological optical design. We then optimised the
optical and structural properties of our cellulose acetate polymer
films (controlling length-scale, filling fraction) and fabricated a
synthetic mimic capable of producing a higher reflectance than
the beetle scales for a comparable thickness. Given that we are
able to replicate the morphology and optical reflectance of the
beetle scales using structures that form via spinodal decomposi-
tion, using both optical simulations and the formation of a
simulacrum, it seems nature uses the same liquid-liquid phase
separation mechanism®° to create ultra-white structural colour.

The large existing body of work on structural colour has found
a range of interesting and diverse structural colour architectures
in biological systems. What has proved elusive has been the
understanding of how these structures are made in vivo. Our
insight into the optical structure of white beetle scales and our
synthetic equivalent implicates liquid-liquid phase separation.
This is increasingly seen as an important way to understand the
process by which cell biology*>4¢ provides order, organisation
and segregation in cells across many different length scales. Our
work confirms that some biological cells exhibiting structural
colour use liquid-liquid phase separation to drive the formation
of a highly interconnected bicontinuous nanonetwork in a single
scale cell.

Methods

Fourier transform infrared attenuated total reflection. The beetle scales infrared
(FTIR ATR) data were collected using a Thermo Scientific Nicolet iS10 Fourier
transform infrared (FTIR) instrument equipped with a diamond attenuated total
reflection (ATR). A background was collected; the sample was then placed in
contact with the diamond ATR surface. A resolution of 2 cm~! was used and a
total of 128 acquisitions.

Scanning electron microscopy. SEM Beetle scales and the synthetic cellulose
acetate samples were mounted using conductive carbon discs AGG3357N (Agar
Ltd) on conductive metal stubs (Agar Ltd). These were sputtered with ~10 nm of
gold (Agar Ltd) and imaged on a JEOL JSM-6010LA using the InTouchScope data
acquisition software.

Transmission electron microscopy. Scales from both the L. stigma and the
Cyphochilus beetles were mounted in a 1:1 mixture of 1,2epoxypropane: Araldite
resin and left overnight in a rotating mixer. The solvents were then replaced with
fresh Araldite CY212 resin (Agar Scientific Ltd) and the samples were imbedded in
‘coffin moulds’. The samples were allowed to cure at 60 °C for 48-72 h before
500 nm sections were cut using an ultramicrotome (Reichert-Jung Ultracut E). The
sections were subsequently stained with 1% toluidine blue in 1% borax. The sec-
tions were then washed with deionized water, dried and mounted using DPX (Agar
Scientific). Finally, again using the ultramicrotome, sections were cut on 200 mesh
copper grids and imaged using a TEM (FEI Tecnai). The thickness of the TEM
sections was estimated at about 85-90 nm. In order to determine the filling fraction
of chitin within the scales the images needed were thresholded into binary images
so the number of pixels corresponding to chitin in the images could be quantified.

Focused ion beam scanning electron microscopy. An FEI Nova 600 DualBeam
FIB field emission gun scanning electron microscope from the Loughborough

Materials Characterisation Centre, was used for imaging. The gallium ion source
ion in this instrument allowed regions to be milled away from the scale to reveal
the internal network of chitin filaments. The probe current was kept between 3-7
pA. The Dual-Beam FIB was used to extensively study the internal structures and
mill away and open the scales, slice layers from the samples (Supplementary
Figs. 2-4).

X-ray nanotomography. The X-ray nanotomography on individual scales was
performed at the ID16B beamline ESRF using holotomographic scheme with a high
flux (10!2 ph/s) monochromatic beam (AE/E = 10~2) with an energy of 17.5 keV.
The use of a 25 nm pixel size limits the field of view available to 54 x 64 x 64 um3.
According to the sample geometry and dimensions, we mounted the samples in the
vertical direction (Supplementary Figs. 11 and 12) in order to have the cross section
fully in the horizontal field of view, and then performed multiple overlapping scans
in the vertical direction. The Cyphochilus and the L. stigma scales were ~250 and
350 pm, respectively, in length, which corresponded to six scans and eight scans in
the vertical with 10 um overlap between the scans. For each acquisition, 2998
projections were acquired over 360° with a counting time of 150 ms per projection.
To avoid artefacts on the reconstructed images and keep the highest 3D resolution,
the sample was mounted to give an unobstructed 360° field of view. Beam damage
was not observed. The reconstructed scans were then assembled and thresholded to
separate the chitin and air pixels and produce the final 3D data sets (Supple-
mentary Movies 3 and 4).

Finite-difference time-domain optical modelling. The FDTD simulations were
performed using the commercial software, Lumerical (Lumerical Inc. Canada),
which is a 2D- and 3D-solver for Maxwell’s equations. For each simulation a 3D
matrix containing a structure of interest represented as a binary matrix, where 1
was material and 0 was air. The material in every instance was taken to be chitin,
which has a refractive index of 1.54. Each matrix contained a slab of material that
had a real-space size of 5pum x 20 um x 25 um. To study how light propagated
along each principle axis, the slabs were divided into 20 cubes, each 5 um x 5 pm x
5 um, and a polarised Gaussian source of width 1 um was directed into different
faces of the cubes individually. Monitors collected the light, which exited the cubes,
and the results were averaged across all of the cubes for a given slab. To study just
the reflectance from a slab of material, an unpolarised Gaussian beam of width 6
um was directed parallel to the shortest axis of the matrix and monitors collected
the light, which was reflected back to the source. In all instances perfectly matched
layers surrounded the region of interest, outside of the light monitors, to prevent
light that had been scattered outside the region of interest from re-entering the
simulation.

Synthetic films. To prepare the polymer solutions, cellulose acetate sheets (Clar-
ifoil®) were cut and weighted into a glass vial. Acetone (Sigma-Aldrich UK) was
then added to the vial to achieve a target concentration of 0.1 g/mL. A stirrer flea
was added and the vial was left to stir overnight at room temperature, to ensure the
cellulose acetate was completely dissolved. In a separate vial, CaCl, (Sigma-
Aldrich) was dissolved in methanol (Sigma-Aldrich). The mass of CaCl, was varied
to the desired ratio by mass to cellulose acetate, the volume of methanol was set
such that ratio between the acetone and methanol was 5:3 by volume. Finally, the
CaCly/methanol solution was added to the cellulose acetate/acetone solution and
left to stir at room temperature until homogeneous.

Once the solutions were prepared they were drawn into films of varying
thicknesses. In order to accomplish this, an automated system was developed
capable of achieving consistent and repeatable drawdowns. The system consisted of
three main components, a drawdown cube, a drawdown guide to hold the cubes
and substrate and a linear actuator to move the cubes across the substrate at
constant speed.

Ultra small-angle X-ray scattering. The USAXS measurements were performed
at the ESRF, beamline ID0247:43, X-rays with a wavelength of 1 A (12.4keV) were
used. The beam size was 20 pm X 20 pm, and sample-to-detector distance of 30.68
m (q range 0.002-0.2 nm™!). A set of rails was made to accommodate the draw-
down cubes. The rails were on a moving platform that could rotate. The drawdown
cube was positioned over the sample on the moving platform, maintaining the
platform horizontal. As the cube finished a drawdown, the platform rotates into a
vertical position, necessary for transmission USAXS (Supplementary Fig. 13).

Neutron reflectivity. Neutron Reflectivity (NR) was performed on a thin film of
spin-coated cellulose acetate, spun from a 2 wt% acetonitrile (Sigma-Aldrich UK)
solution. The substrate was a large diameter (50.8 mm) circular silicon wafer
(Prolog Semicor, Ukraine). The NR data were measured at the ISIS pulsed Neutron
and Muon Source (Oxfordshire, UK) using the instrument OFFSPEC with neutron
wavelengths 2-12 A. Three incident angles were collected (0.5°, 1.5° and 2.5°) to
cover the momentum transfer range 0.008-0.238 A~1, using a resolution of 2.5%.
The data were reduced using Mantid%’ and Offspec specific routines to stitch the
three angles and subsequently rebin the data into one dataset. The data were then
modelled using routines based on the scheme of Névot and Croce>?
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(Supplementary Fig. 14). From modelling a thin film of cellulose acetate has a
measured scattering length density value of 1.64 x 10~6 A-2,

Spectroscopic ellipsometry. Spectroscopic ellipsometry (M2000V, J.A. Woollam)
was used to determine the refractive index and absorption of a cellulose acetate thin
film. A Cauchy®! model (Supplementary Eq. (11)) was used to fit \P, the ratio of the
amplitude of the incident and reflected light beams and A, the ratio of the phase lag
of the incident and reflected light beams, over the wavelength range 375-1000 nm.
The model-derived optical constants are plotted in Supplementary Fig. 15, which
shows that the absorption is negligible in the entire visible range.

Micro-spectroscopy measurements. The transmission/reflectance was measured
using a bespoke microscope setup, we measured the light transmission for regions
of individual beetle scales and the synthetic structured cellulose acetate films. The
light source was a Tungsten light source, focused onto the sample using a long
working lens (100 mm), the light was collected using a x50 objective (Mitutoyo
Plan Apo SL infinity corrected) with a numerical aperture (NA) = 0.42 and passed
to an imaging spectrograph (Andor Shamrock SR193i). The data capture was
performed using the Andor Solis software. A background without the lamp
impinging on the spectrometer was collected to account for the electrical dark
current. The optical transmission (T) through the glass substrate was collected for
each sample measurement followed by the beetle scale/synthetic cellulose acetate
region of interest. The field of view for each image entirely filled by a region of the
beetle scale; a number of measurements were collected for Cyphochilus and L.
stigma, as well as the cellulose acetate films. Reflectance was calculated as 1-T,
which can be considered appropriate due to the negligible absorption of chitin>?
and cellulose acetate (Supplementary Fig. 13) in the visible range and the excitation
NA (~0.08) being much smaller than collection NA (0.42).

Spin-echo small-angle neutron scattering. The beetle scale samples were pre-
pared using a scalpel blade to remove elytra from Cyphochilus beetles. Individual
elytra were stacked together and wrapped in Aluminium foil, which is transparent
to thermal neutrons. The SESANS data for the Cyphochilus scales on the elytra
were collected on the dedicated SESANS instrument at TU Delft in Holland. The
number of wings required was determined through trial and error by increasing the
number of wings in the beam until sufficient depolarisation of the beam was
observed. The final number of elytra used was 28. By estimating the number of
scales inside a known area of the wing, an approximate scale density was calculated
to be ~9.7 x 10~ scales/um?2, making a grand total of ~3.7 x 10° scales for 28 elytra.
The SESANS data for the CA films were taken on Larmor at the ISIS Spallation
Neutron and Muon Source. A total of 30 films were sufficient for depolarisation of
the beam. The films were measured in three different orientations with the films
mounted vertically, horizontally and at an angle of ~36°. The films were measured
with neutrons with a wavelength range of 2-10 A, a radio frequency of 1 MHz and
a beam size of about 5 mm x 5 mm. The data were collected with a count time
of 30 min for magnetic field angles of 20, 50 and 75° giving a spin echo range out
to 7 um.

Data availability

All relevant data for this manuscript are available from the authors.
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