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Indecomposable tilting modules for the blob algebra

A. Hazi∗, P. P. Martin, A. E. Parker

Department of Mathematics, University of Leeds, Leeds, LS2 9JT, UK

Abstract

The blob algebra is a finite-dimensional quotient of the Hecke algebra of type
B which is almost always quasi-hereditary. We construct the indecomposable
tilting modules for the blob algebra over a field of characteristic 0 in the doubly
critical case. Every indecomposable tilting module of maximal highest weight
is either a projective module or an extension of a simple module by a projective
module. Moreover, every indecomposable tilting module is a submodule of an
indecomposable tilting module of maximal highest weight. We conclude that
the graded Weyl filtration multiplicities of the indecomposable tilting modules
in this case are given by inverse Kazhdan–Lusztig polynomials of type Ã1.

Keywords:
2010 MSC: 20C08

Introduction

The blob algebra is an extension of the ordinary Temperley–Lieb algebra
introduced by the second author and Saleur in [15]. It can be thought of as
the Temperley–Lieb algebra of type B, as it is a quotient of the type B Hecke
algebra in much the same way as the ordinary Temperley–Lieb algebra is a
quotient of the Hecke algebra of type A. Originally motivated by the need to
control lattice boundary conditions in lattice models in statistical mechanics,
the blob algebra and its generalizations remain an active topic of research in
both physics (e.g. [9, 8, 7]) and representation theory (e.g. [19, 20, 1]).

Like the ordinary Temperley–Lieb algebra, the representation theory of the
blob algebra is controlled by the values of its parameters. Generically the blob
algebra is semisimple, with certain integral representations ∆(λ) called Weyl
modules giving a complete set of simple modules. Yet for some critical parameter
values, the blob algebra is only quasi-hereditary, and the Weyl modules are
no longer simple. In this paper we focus on the doubly critical case, when
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the representation theory is the most interesting (e.g. with blocks of arbitrary
size, no known quiver-and-relations presentation, etc.). In this case, the block
structure is controlled by a linkage principle in terms of an affine Weyl group
W of type Ã1.

Recall that a tilting module for a quasi-hereditary algebra is a representation
with a filtration by Weyl modules as well as a filtration by dual Weyl modules.
For each weight λ, there is an indecomposable tilting module T (λ) of highest
weight λ, and all indecomposable tilting modules are of this form. Our main
result in this paper is a construction of T (λ) for the doubly critical blob algebra
Bκ

n over a field of characteristic 0. The construction closely depends on the quasi-
hereditary Bruhat partial order ≤ on weights, defined in 2.3. The W -orbit of
λ has one maximal weight λmax and at most two minimal weights with respect
to ≤. We write L(λ) for the simple head of ∆(λ), P (λ) for the projective
indecomposable cover of L(λ), and O≤λ(M) for the maximal submodule of
a module M whose composition factors lie in {L(µ) : µ ≤ λ}. Using this
notation, our construction is as follows (see Theorems 5.4 and 5.5).

Theorem. Suppose λ is a weight for Bκ
n. Let λmin be a minimal weight in the

W -orbit of λ. Then T (λ) = O≤λ(T (λmax)). The maximal highest weight tilting
module T (λmax) is constructed from P (λmin) as follows.

(i) If λmin is the only minimal weight in the W -orbit of λ, then T (λmax) =
P (λmin).

(ii) If there is another minimal weight λ′
min in the W -orbit of λ, then T (λmax)

is the unique extension of the form

0 → P (λmin) → T (λ) → ∆(λ′
min) → 0.

For x, y ∈W , write

hx,y(v) =

{

vℓ(x)−ℓ(y) if y ≤ x,

0 otherwise,

which is the inverse Kazhdan–Lusztig polynomial of type Ã1. Using the de-
composition numbers for Bκ

n (first calculated in [17]), our construction implies
the following Weyl filtration multiplicities for the regular indecomposable tilting
modules (see also Corollary 5.7). Here for each regular weight λ, let wλ ∈ W
such that wλ(λmax) = λ.

Theorem. Let λ,µ be regular weights for Bκ
n. Then

(T (µ) : ∆(λ)) = hwλ,wµ(1).

See Figure 1 for an example depicting the weight and alcove labels used in
these theorems.

2



Figure 1: The (classical) weights λmax, λmin, and λ
′

min
, with alcoves labelled by wλ.

Our proofs depends in a crucial way not only on the decomposition numbers
and structure of the Weyl modules from [17], but also on the graded representa-
tion theory of the blob algebra. The existence of a non-trivial ‘hidden’ grading
on the blob algebra is a consequence of the Brundan–Kleshchev isomorphism [2]
between cyclotomic Hecke algebras and KLR algebras, which are graded. (This
explains why previous work such as [16, 21] on full tilting modules did not get
very close to determining the indecomposable tilting modules.) As a bonus we
obtain the graded Weyl filtration multiplicities of the graded indecomposable
tilting modules with no extra work. Our result is perhaps the first example of
how the hidden grading on the blob algebra can be used to solve problems which
a priori are not graded at all.

We also make extensive use of KLR diagrammatics for the KLR presentation
of the blob algebra, as described in [12]. The classical diagrammatic calculus
for the blob algebra in terms of ‘Temperley–Lieb diagrams with blobs’ gives
a cellular basis which is integral and multiplicative. However, it is difficult in
general to describe the simple modules in terms of this basis. By contrast, KLR
algebras have a complicated diagram calculus reflecting the KLR presentation,
in which certain fixed parameter values are ‘built-in’ and cannot be changed.
On the other hand, KLR diagrams give more information about the structure
of projective modules, in particular whether certain composition factors (or
extensions between composition factors) are present. Fortunately for us, we
will only need a simplified (but still complicated) version of the KLR diagram
calculus.

Much of this machinery applies, at least in principle, to the generalised
blob algebras (cf. e.g. [1], [18], [12]). For example, the level l generalised blob
algebras are controlled by an affine Weyl group Wl of type Ãl−1, and there
is a corresponding KLR presentation. For λ a regular weight for the level l
generalised blob algebra and λmax maximal in the Wl-orbit of λ, let wλ ∈ Wl

to be the unique element in the affine Weyl group such that wλ(λmax) = λ.
For x, y ∈ Wl, write h

x,y for the inverse Kazhdan–Lusztig polynomial of type
Ãl−1.The following conjecture is the natural extension of our Weyl filtration
multiplicities result.

Conjecture. Let λ,µ be weights for the level l generalised blob algebra over a
field of characteristic 0. Then

(T (µ) : ∆(λ)) = hwλ,wµ(1).

The biggest obstacle to proving this conjecture is the lack of knowledge
about the (graded) structure of the Weyl modules and the projective modules
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in higher levels. In the modular setting, it is not immediately obvious what
should replace the inverse Kazhdan–Lusztig polynomials hx,y above, although
we have some ideas (see Remark 5.9) based on the ‘Blob vs Soergel’ conjecture
of Libedinsky–Plaza [12].

The layout of the paper is as follows. In ➜1 we define the doubly critical
blob algebra Bκ

n using the KLR presentation and describe the corresponding
weight combinatorics. In ➜2 we summarise the quasi-hereditary representation
theory of Bκ

n. In ➜3 we exploit the KLR presentation to obtain bases for the
indecomposable projective modules and their composition factors. In ➜4 we get
to work with KLR diagrammatic calculations which give the main result in the
case of singular weights. Finally in ➜5 we use the singular version to prove the
main result for all weights.

1. Preliminaries: the blob algebra Bκ
n

Suppose e > 1 is an integer and let I = Z/eZ. An adjacency-free bicharge
is an ordered pair κ = (κ1, κ2) ∈ I2 such that κ1 6= κ2, κ2 ± 1 (this implicitly
requires e ≥ 4). For i ∈ I define

〈i|κ〉 =

{

1 if i = κ1 or i = κ2,

0 otherwise.

For any n ∈ N, the symmetric group Sn acts on the set of tuples In by permu-
tation. We write sr for the simple transposition (r r+1) in the symmetric group
Sn.

Definition 1.1. Let k be a field, n, e ∈ N, and κ be an adjacency-free bicharge.
The (doubly critical) blob algebra Bκ

n over k is the Z-graded k-algebra generated
by

ψr for 1 ≤ r ≤ n− 1, (1)

yr for 1 ≤ r ≤ n, (2)

e(i) for i ∈ In, (3)

subject to relations

e(i)e(j) = δi,je(i) for all i, j ∈ In (4)
∑

i∈In

e(i) = 1 (5)

yre(i) = e(i)yr (6)

ψre(i) = e(sri)ψr (7)

yrys = ysyr (8)

ψrys = ysψr when s 6= r, r + 1 (9)

ψrψs = ψsψr when |r − s| > 1 (10)
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ψryr+1e(i) = (yrψr − δir,ir+1)e(i) (11)

yr+1ψre(i) = (ψryr − δir,ir+1)e(i) (12)

ψ2
re(i) =



















e(i) if ir+1 6= ir, ir ± 1

0 if ir+1 = ir

(yr+1 − yr)e(i) if ir+1 = ir + 1

(yr − yr+1)e(i) if ir+1 = ir − 1

(13)

ψrψr+1ψre(i) =











(ψr+1ψrψr+1 − 1)e(i) if ir+2 = ir = ir+1 − 1

(ψr+1ψrψr+1 + 1)e(i) if ir+2 = ir = ir+1 + 1

ψr+1ψrψr+1e(i) otherwise

(14)

y
〈i1|κ〉
1 e(i) = 0 (15)

e(i) = 0 when i2 = i1 + 1 (16)

and a grading defined by

deg e(i) = 0, deg yre(i) = 2, degψre(i) =











1 if ir+1 = ir ± 1,

−2 if ir+1 = ir,

0 otherwise.

In the presentation in Definition 1.1, each e(i) is a (non-central) idempotent,
each ψr is analogous to the simple transposition sr in the symmetric group Sn,
and each yr is akin to the nilpotent part of the corresponding Jucys–Murphy
element in the symmetric group algebra kSn.

There is also a presentation of this algebra in terms of KLR diagrams [12,
➜3.2]. A KLR diagram with n strings consists of n paths of the form p : [0, 1] →
R× [0, 1] satisfying the following properties:

❼ for each path p we have p(0) = (x, 0) and pr(1) = (x′, 1) for some x, x′ ∈ R;

❼ all intersections are transversal;

❼ there are no triple intersections;

❼ each path may be decorated with a finite number of dots at non-intersection
points.

Each path p is also labelled with a residue i ∈ I.
We consider KLR diagrams up to isotopy; in other words, we are allowed to

move these paths continuously as long as the properties above still hold and no
intersections are added or removed. The bottom (resp. top) of a KLR diagram is
the sequence of residues labelling the paths, read from left to right. The product
of two diagrams D and D′ is defined to be their vertical concatenation (with D
on top of D′) whenever the bottom of D equals the top of D′. Otherwise the
product is defined to be 0. The diagrammatic blob algebra Bκ

n is then the set of
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all k-linear combinations of KLR diagrams with n strings, with a diagrammatic
product defined by k-linear extension, subject to the following relations:

= − δij

= − δij

=































































































if |i− j| > 1,

− if j = i+ 1,

− if j = i− 1,

0 if i = j.

= + α

in all regions of a KLR diagram, where α = 1 when i = k = j−1, α = −1 when
i = k = j + 1, and α = 0 otherwise, as well as the relations

= 0, if i1 = κj for some j,

= 0, if i1 6= κj for all j,

= 0, if i2 = i1 + 1.
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If w = sr1sr2 · · · srk is a reduced expression in Sn, we write ψw = ψr1ψr2 · · ·ψrk

for the product of the corresponding ψ-generators. Diagrammatically ψw (or
more precisely, ψwe(i) for some i ∈ In) looks like the wiring diagram for w. We

also write ( ) for the unique anti-involution which fixes each of the generators
ψr, yr, and e(i).

1.1. Locality

We call a relation in the generators of Bκ
n local if the relation still holds when

the indices of the generators are shifted by some amount. All the relations in
Definition 1.1 above are local except for (15) and (16). The relation (15) is also
the only one in which κ appears. Incidentally it is immediately clear that all
other relations do not depend on precise values of sequences i ∈ In indexing
the idempotents, but only on relative differences ir+1 − ir for some integer
1 ≤ r ≤ n. In fact for any i ∈ I, if κ′ = (κ1 + i, κ2 + i) then we have Bκ

n
∼= Bκ′

n ,
and this isomorphism maps e(i) 7→ e(i + (i, . . . , i)). Thus Bκ

n only depends on
the difference κ1 − κ2 ∈ I up to isomorphism.

When simplifying KLR diagrams we adopt the convention of circling regions
in some colour wherever we apply a local relation only involving ψ-generators.
These circles are only a helpful annotation and should not be considered an
intrinsic part of the diagram. Similarly whenever we apply relations (11) or (12)
in the distinct residue case, we will draw a coloured arrow parallel to the string
to indicate how the y-generator ‘slides’ along the string. The most important
non-local relation which we will use takes the following form.

Lemma 1.2. Let i ∈ In and 1 ≤ r ≤ n−1 be an integer such that |ir−ir+1| = 1
but e(sri) = 0 in Bκ

n. Then yr+1e(i) = yre(i).

Proof. Apply (13) to obtain

yr+1e(i) = yre(i)± ψ2
re(i) = yre(i)± ψre(sri)ψr = yre(i).

When applying Lemma 1.2 to a KLR diagram, we will draw a dashed
coloured line transverse to the strings to indicate which idempotent e(i) we
are using, and a coloured arrow to show where the y-generator ‘jumps’ to a
different string.

1.2. The classical blob algebra

Definition 1.1 presents the blob algebra as a quotient of a cyclotomic KLR
algebra as in [20], with the same generators and all the same relations plus the
extra relation (16). This does not correspond to the original definition of the
blob algebra in [15] as an extension of the Temperley–Lieb algebra. However,
our definition is equivalent in many cases due to the Brundan–Kleshchev iso-
morphism [2, Theorem 1.1] between cyclotomic KLR algebras and cyclotomic
Hecke algebras.
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Theorem 1.3 ([20, Corollary 3.6]). Suppose e > 1 is an integer which is not
a multiple of the characteristic of k. Let m be an integer with 1 < m < e − 1.
Set κ = (0,m), an adjacency-free bicharge. Then Bκ

n has a presentation as an
ungraded algebra over k, with generators Ur for 0 ≤ r ≤ n − 1 subject to the
following relations:

U2
r = −[2]Ur if 1 ≤ r ≤ n− 1,

UrUsUr = Ur if |r − s| = 1 and 1 ≤ r, s ≤ n− 1,

UrUs = UsUr if |r − s| > 1 and 0 ≤ r, s ≤ n− 1,

U1U0U1 = [m+ 1]U1,

U2
0 = −[m]U0,

where [k] = [k]q = q−k+1 + q−k+3 + · · · + qk−1, q is an e′th primitive root of
unity in k, and

e′ =

{

2e if e is even,

e otherwise.

Remark 1.4.

(1) The statement of [20, Corollary 3.6] uses the bicharge κ = (k,−k) (where
k ∈ I such that 2k ≡ m (mod n)) and a ‘negative variant’ form of (16).
To transform this into Theorem 1.3 it is necessary to shift the residues by
−k (as mentioned in ➜1.1) and apply the isomorphism

R(0,−m)
n −→ R(0,m)

n

ψr 7−→ −ψr

yr 7−→ −yr

e(i) 7−→ e(−i)

of cyclotomic KLR algebras with bicharges (0,−m) and (0,m).

(2) Theorem 1.3 is the most general version of what is commonly stated in
the literature, but it can probably be extended to other cases as well.
For example, when e equals the characteristic of k, Bκ

n behaves like the
classical blob algebra over k with q = 1. In addition, adjacency-freeness
of κ and the condition that 1 < m < e − 1 can potentially be relaxed, at
the cost of modifying relation (16) (this is similar to what happens for the
Temperley–Lieb algebra [20, Remark 3.7]).

1.3. Weights and multipartitions

In general the representation theory of KLR algebras is governed by the
combinatorics of multipartitions, while that of the blob algebra is naturally
governed by the geometry of a suitable weight lattice [18]. To understand the
blob algebra in KLR terms it is enough to focus on one-column bipartitions.
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A one-column bipartition of n is an ordered pair λ = (1λ1 , 1λ2) with λ1, λ2 ∈
Z≥0 and λ1 + λ2 = n. We write Λ(n) for the set of all one-column bipartitions
of n. The mapping

Λ(n) −→ {−n,−n+ 2, . . . , n− 2, n}

λ 7−→ λ1 − λ2

is a bijection between one-column bipartitions and the classical weight set for
the blob algebra. For this reason we will usually call one-column bipartitions
weights when working in a representation-theoretic context. For two weights
λ,µ ∈ Λ(n) we write λ ⊳ µ (and say µ dominates λ) if |λ1 − λ2| > |µ1 − µ2|
(following [17]).

The Young diagram for λ ∈ Λ(n) is defined to be the set

[λ] = {(r, 1) : 1 ≤ r ≤ λ1} ∪ {(r, 2) : 1 ≤ r ≤ λ2}

Elements of this set are usually called boxes, because the traditional way to
depict Young diagrams is as a collection of boxes, e.g.

[(14, 15)] =



 ,





A tableau of shape λ is a bijection [λ] → {1, 2, . . . , n}, which is usually depicted
by writing each assignment inside the corresponding box, e.g.





9

4

3

1

,

2

5

6

7

8





A tableau is called standard if the entries in the boxes increase going down
each column. A standard tableau t corresponds in a natural way to a sequence
t|k ∈ Λ(k) of Young diagrams obtained by adding exactly one box at each stage.
Such sequences are in bijection with paths of length n on the global lattice of
weights Z, where a path is just a function p : {0, 1, 2, . . . , n} → Z with p(0) = 0
and p(k + 1) − p(k) = ±1 for all integers 0 ≤ k ≤ n − 1. Adding a box in the
first column corresponds to a rightward (+1) step and vice versa.

We write t
λ for the standard tableau of shape λ obtained by labelling the

boxes of [λ] with increasing entries ordered from left to right and from top to
bottom like a book, e.g.

t
(14,15) =





7

5

3

1

,

2

4

6

8

9





The (κ-)residue of a box with coordinates (r,m) is defined to be κm+1−r ∈
I. The residue sequence res(t) of a tableau t is the sequence of residues of the
boxes (t−1(1), t−1(2), . . . , t−1(n)). We write iλ instead of res(tλ) for the residue
sequence of the dominant tableau t

λ.
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2. Cellularity of Bκ
n

Suppose t is a standard tableau of shape λ. Let dt ∈ Sn be the permutation
such that dtt

λ = t.

Theorem 2.1 ([20, Theorem 6.8]). Fix a reduced expression dt for each dt over
all λ ∈ Λ(n) and t ∈ Std(λ). The elements

ψst = ψd
s
e(iλ)ψd

−1
t

∈ Bκ
n

over all λ ∈ Λ(n) and all s, t ∈ Std(λ) form a graded cellular basis for Bκ
n with

respect to the partial order E on weights and the anti-involution ψ 7→ ψ.

For the precise definition of a graded cellular basis see [10, Definition 2.1]. An
important corollary, especially in conjunction with Lemma 1.2, is the following.

Corollary 2.2. Let i ∈ In. If there is no standard tableau t with (κ-)residue i,
then e(i) = 0 in Bκ

n.

Remark 2.3.

(1) It can be shown that the basis element ψst does not depend on the choices
of ds or dt. In particular the degree of this element has a combinatorial
definition based on s and t (see Theorem 2.7 below).

(2) The graded cellular structure on Bκ
n is in fact graded quasi-hereditary,

which we will use frequently from now on. The idempotent-truncated al-
gebras e(iλ)Bκ

ne(i
λ), studied extensively in [19, 12] are also graded cellular

but are not quasi-hereditary.

2.1. Graded cellular and quasi-hereditary algebras

We fix some notation for graded modules. If M =
⊕

j M
j is a graded

vector space, we define the grade shift M〈k〉 for k ∈ Z by M〈k〉j = M j−k. For
M,N graded Bκ

n-modules, we call a degree-preserving homomorphism M → N
homogeneous of degree 0. When we write HomBκ

n
(M,N) we always mean the

space of ungraded homomorphisms. By convention any homomorphism we write
with a grade shifted object is homogeneous of degree 0, but homomorphisms
without grade shifts may be ungraded.

We recall some facts about graded cellular and quasi-hereditary algebras [10].
Let λ ∈ Λ(n), and write Bκ,⊲λ

n for the subspace spanned by all basis elements
indexed by standard tableaux for weights µ ⊲ λ. Cellularity essentially means
that for any standard tableaux s, t ∈ Std(λ), we can write the action of Bκ

n on
the basis vector ψst modulo the subspace Bκ,⊲λ

n as

aψst =
∑

v∈Std(λ)

rsv(a)ψvt (mod Bκ,⊲λ
n )

10



where the scalars rsv(a) don’t depend on t. We can use these scalars to define
a module ∆(λ) with basis ψs indexed by Std(λ), namely

aψs =
∑

v∈Std(λ)

rsv(a)ψv

We call such modules cell modules or Weyl modules. Graded cellularity means
that there is a degree function on tableaux (see Theorem 2.7) which makes the
basis {ψs} a homogeneous basis.

For any fixed standard tableaux a, b ∈ Std(λ), we can define a contravariant
bilinear form on ∆(λ) by

ψasψtb = 〈ψs, ψt〉ψab (mod Bκ,⊲λ
n )

In fact this bilinear form does not depend on a or b. For a general cellular
algebra the quotient ∆(λ)/ rad〈−,−〉 is either a simple module, which we call
L(λ), or 0. The non-zero quotients give a complete list of non-isomorphic simple
modules up to grade shift. In our case, none of the quotients are zero because Bκ

n

is quasi-hereditary. We write P (λ) for the graded projective cover of L(λ). For
M a graded Bκ

n-module, we define the graded composition factor multiplicities

[M : L(λ)]v =
∑

k

[M : L(λ)〈k〉]vk ∈ Z≥0[v
±1],

where [M : L(λ)〈k〉] denotes the number of composition factors in a graded
composition series isomorphic to L(λ)〈k〉. Similarly if M has a graded Weyl
filtration, we define

(M : ∆(λ))v =
∑

k

(M : ∆(λ)〈k〉)vk ∈ Z≥0[v
±1],

where (M : ∆(λ)〈k〉) denotes the number of subquotients in a graded Weyl
filtration isomorphic to ∆(λ)〈k〉. For the ungraded counterparts of these mul-
tiplicities we use the same notation but without the subscript v.

As Bκ
n is quasi-hereditary, we also have the notion of a tilting module. A

tilting module for Bκ
n is a module with a filtration by Weyl modules as well as a

filtration by dual Weyl modules. For each weight λ, there is an indecomposable
tilting module T (λ) of highest weight λ, and all indecomposable tilting modules
are of this form [22]. In the graded setting this classification only gives a grading
on T (λ) up to grade shift. We will fix the grading so that (T (λ) : ∆(λ))v = 1.

The anti-involution gives rise to a duality functor on Bκ
n-modules which

reverses grade shift. The unshifted simple module L(λ) is self-dual, so the
dual Weyl module ∇(λ) has socle isomorphic to L(λ). Similarly the unshifted
injective envelope I(λ) is isomorphic to the dual of P (λ). By highest weight
considerations T (λ) is self-dual. For h ∈ Z≥0[v

±1], we write h = h(v−1).

2.2. Tower of recollement

For fixed m, e and varying n, the family of classical blob algebras (with
presentation as in Theorem 1.3) has the structure of a tower of recollement [4,
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Example 1.2(ii)]. A tower of recollement consists of a collection of algebras
and idempotents in these algebras which satisfy certain axioms, giving rise to
several functors between module categories which pass representation-theoretic
information between the algebras. Constructing the functors and verifying the
axioms are both more easily accomplished in the classical presentation of the
blob algebra. For this reason we will assume that Theorem 1.3 holds so that the
tower of recollement structure transfers to {Bκ

n}n∈N. For the basic definitions
and some examples see [4, ➜1], and [16, ➜3] for applications.

For each n ∈ N we have a pair of adjoint functors

ind : Bκ
n−mod −→ Bκ

n+1−mod, res : Bκ
n+1−mod −→ Bκ

n−mod

called induction and restriction respectively. As a right adjoint functor, restric-
tion is left exact, and similarly induction is right exact. However, restriction
also happens to be right exact as well. For λ ∈ Λ(n + 1) write λ = (1λ1 , 1λ2).
If λ1 ≥ λ2 > 0 we have a short exact sequence

0 // ∆(1λ1−1, 1λ2) // res∆(1λ1 , 1λ2) // ∆(1λ1 , 1λ2−1) // 0

while res∆(1n+1, ∅) = ∆(1n, ∅). When 0 < λ1 ≤ λ2 there are similar exact
sequences with the two outer terms switched. Induction on Weyl modules also
produces exact sequences in this way, but without a boundary exception.

We also have another pair of adjoint functors

G : Bκ
n−mod −→ Bκ

n+2−mod, F : Bκ
n+2−mod −→ Bκ

n−mod

called globalisation and localisation respectively. Again localisation is right ex-
act as well as being left exact. For λ = (1λ1 , 1λ2) ∈ Λ(n+ 2) we have

F∆(1λ1 , 1λ2) =

{

∆(1λ1−1, 1λ2−1) if λ1, λ2 ≥ 1,

0 otherwise.

There are similar formulae for the localisation of ∇(λ), L(λ), P (λ), I(λ), and
T (λ) by [5, A1(4)], [5, Proposition A3.11], and [5, Lemma A4.5]. This implies
the stability of decomposition numbers and Weyl filtration multiplicities of tilt-
ing modules across all n. In other words, for all n ∈ N and λ,µ ∈ Λ(n) with
λ = (1λ1 , 1λ2) and µ = (1µ1 , 1µ2), both the decomposition number [∆(µ) : L(λ)]
and the Weyl filtration multiplicity (T (µ) : ∆(λ)) only depend on λ1 − λ2 and
µ1 − µ2 but not on n.

For λ = (1λ1 , 1λ2) ∈ Λ(n) globalisation behaves similarly for Weyl modules
and projective modules, with

G∆(1λ1 , 1λ2) = ∆(1λ1+1, 1λ2+1), GP (1λ1 , 1λ2) = P (1λ1+1, 1λ2+1)

but not for simple modules, dual Weyl modules, injective modules, or tilting
modules. Globalisation is exact on the full subcategory of ∆-filtered modules
[16, Proposition 4]. It also acts as a right inverse for localisation, i.e. F ◦ G is
naturally isomorphic to the identity.

12



Finally we have the key relationship between induction/restriction and lo-
calisation/globalisation, which is the natural isomorphism

ind ∼= res ◦G.

In the case of Bκ
n, the tower of recollement structure behaves well with the

anti-involution so the dual statement

res ∼= F ◦ ind

also holds.

2.3. Linkage principle

There is a linkage principle for the blob algebra, in terms of the following
alcove geometry. Let W be the infinite dihedral group acting on Z generated
by reflections sk about the integers (κ1 − κ2) + ke for any k ∈ Z. Each alcove
consists of the integers (κ1 − κ2) + ke < j < (κ1 − κ2) + (k+ 1)e lying between
two adjacent reflection points. Weights lying inside an alcove are called regular,
while those on a reflection point are singular. The fundamental alcove is the
unique alcove containing the integer 0. Two integers are called linked if they
are in the same W -orbit. For λ,µ ∈ Λ(n) and w ∈ W , we write µ = w(λ) and
say that λ and µ are linked if their corresponding classical weights are linked,
i.e. µ1 − µ2 = w(λ1 − λ2) where λ = (1λ1 , 1λ2) and µ = (1µ1 , 1µ2). We also
write Wλ = {µ ∈ Λ(n) : w ∈W, µ = w(λ)} for the linkage class of λ in Λ(n).

The group W also acts partially on paths in Z. For a path p, if p(k) is the
reflection point (κ1 − κ2) + je, then we write

skj p(r) =

{

p(r) if r ≤ k,

sjp(r) if r > k.

In other words, skj p is the path obtained by reflecting p after the kth point. We
say that two paths are linked if one can be obtained by a sequence of reflections
of the other.

Write Stdλ(µ) for the set of standard tableaux of shape µ with residue
sequence iλ. It turns out that this set can be described entirely in terms of the
alcove geometry above, using the fact that weights and tableaux correspond to
points in Z and paths in Z respectively.

Proposition 2.4 ([19, Lemma 4.7]). Let λ,µ ∈ Λ(n). Under the tableau-path
bijection, the set Stdλ(µ) corresponds to paths which end at µ in the same
linkage class as t

λ.

Example 2.5. Suppose e = 4, κ = (0, 2), and n = 9. Let λ = (18, 1). The
tableau t

λ corresponds to the path in red. This path crosses 2 alcove walls, so
there are 22 = 4 different paths in the linkage class of tλ. The other 3 paths
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in this linkage class are illustrated in black from the point where they diverge
from t

λ.

−6 −2 0 2 6

These paths correspond to the tableaux
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Corollary 2.6. If [∆(µ) : L(λ)] 6= 0 then µ and λ are in the same linkage
class.

A consequence of the above result is that if λ,µ ∈ Λ(n) are in different
linkage classes, then they are also in different blocks. We will often restrict to
the block(s) of simple modules parametrised by weights in a single linkage class.

The degrees of tableaux in Stdλ(µ) can also be calculated from their corre-
sponding path. We call a subsequence of e consecutive steps in a path a wall-
to-wall step if the steps start from a wall (i.e. a reflection point) and continue
in a single direction until they reach another wall. For t ∈ Stdλ(µ) a standard
tableau write w(t) for the number of wall-to-wall steps across the fundamental
alcove.

Theorem 2.7 ([19, Theorem 4.9]). Let t ∈ Stdλ(µ). Let δ(t) be 1 if the first
step after all wall-to-wall steps points toward the origin, and 0 otherwise. Then
deg t = w(t) + δ(t).

Finally we describe the decomposition numbers in characteristic 0 in terms
of the alcove geometry. For any regular weight λ, there exists a unique weight
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λfund in the fundamental alcove and wλ ∈ W such that wλ(λfund) = λ. For
x, y ∈W , define hy,x by

hy,x(v) =

{

vℓ(x)−ℓ(y) if y ≤ x,

0 otherwise,

where ℓ : W → Z≥0 and ≤ denote the length function and Bruhat ordering
associated to the Coxeter group W . This is the Kazhdan–Lusztig polynomial
associated to W (in the notation of [23]).

Theorem 2.8 ([19, Theorem 5.11]). Suppose k is a field of characteristic 0.
Let λ,µ be two regular weights lying in the same linkage class. Then we have

[∆(µ) : L(λ)]v = hwµ,wλ
(v).

There is also a singular version of this result. If λ is a singular weight, we
label the weights in the linkage class of λ following [19, Example 5.5]. First set
λ0 = λ. Suppose that λ corresponds to a positive classical weight (i.e. a weight
on the right side of the origin in our pictures). Working inductively, for k even
(resp. odd) we define λk+1 to be the leftmost (resp. rightmost) weight in the
linkage class distinct from λ0,λ1, . . . ,λk. Similarly, when λ corresponds to a
negative classical weight, for k even (resp. odd) we define λk+1 to be the right-
most (resp. leftmost) weight in the linkage class distinct from λ0,λ1, . . . ,λk.

Theorem 2.9 ([19, Theorem 5.14]). Suppose k is a field of characteristic 0.
Let λ be a singular weight. Then if λk is defined we have

[∆(λk) : L(λ)]v = vk.

For the rest of this paper we will replace the dominance order E on weights
with the following coarser partial order:

λ ≤ µ ⇐⇒ µ ∈Wλ and

{

wλ ≥ wµ when λ,µ are regular,

µ = λk for some k ≥ 0 when λ,µ are singular.

This partial order (which we will call the Bruhat order) is more closely related to
the linkage principle and as a result, to the representation theory of Bκ

n. All of
the graded cellularity statements in this section involving the dominance order
still hold under the Bruhat order, but many of the statements of later results
rely on the Bruhat order.

For example, in characteristic 0 the Bruhat order determines the composition
factor multiplicities in the layers of the radical or socle series of Weyl modules
[17, ➜9]. This is quite a strong statement; in what follows we will only need to
know the socles of Weyl modules, which are determined by minimal weights in
the Bruhat order.
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Theorem 2.10 ([17, ➜9]). Suppose k is a field of characteristic 0. Let µ ∈ Λ(n).
Then we have

soc∆(µ) =
⊕

λ∈Λ(n)
λ∈Wµ

λ minimal

L(λ).

In particular, soc∆(µ) only depends on n and the linkage class of µ.

Remark 2.11. In general, it is easier to use tableaux when working with per-
mutations of the form dt for some tableau t of shape λ, as one can read off dt
directly from the two tableaux t and t

λ. By contrast, it is easier to use paths in
order to apply Proposition 2.4. We will mostly use tableaux in the arguments
below, but the careful reader may use the tableau-path bijection in order to
translate our arguments into the language of paths if necessary.

3. Bases for projective indecomposable modules

For the rest of this paper, we will assume that k is a field of characteristic 0.
Most of the previous results are known to hold in some form for the classical blob
algebra. To proceed further we must make use of the KLR-style presentation of
Bκ

n, and in particular the grading.

3.1. A Temperley–Lieb subalgebra

As Bκ
n is graded, it has a subalgebra of degree 0 elements. An idempotent

truncation of this subalgebra was classified in [12, ➜5.4–5.5]. We summarise
their results below.

Definition 3.1. Let λ = (1λ1 , 1λ2) ∈ Λ(n). Suppose the weight λ does not
lie in the interior of the fundamental alcove. We define fλ to be the minimal
positive integer such that the fλth point of the path corresponding to t

λ lies on
a wall of the fundamental alcove. In other words,

fλ =

{

min({2λ2 + (κ1 − κ2) + je : j ∈ Z} ∩ N) if λ1 ≥ λ2,

min({2λ1 − (κ1 − κ2) + je : j ∈ Z} ∩ N) if λ1 < λ2.
(17)

For j ∈ N write f(j) = fλ + je. For all j ∈ N such that f(j) ≤ n − e we
define the diamond of λ at position f(j) to be

Uλ
j = (ψf(j))(ψf(j)−1ψf(j)+1)(ψf(j)−2ψf(j)ψf(j)+2) · · ·

· · · (ψf(j)−e+1ψf(j)−e+3 · · ·ψf(j)+e−3ψf(j)+e−1) · · ·

· · · (ψf(j)−2ψf(j)ψf(j)+2)(ψf(j)−1ψf(j)+1)(ψf(j))e(i
λ). (18)
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The name ‘diamond’ comes from the corresponding KLR diagram for this
element, e.g.

for e = 6. The cyclotomic KLR algebra versions of these elements previously
appeared in [11, (4.2)], while the effect of similar permutations on paths was
seen even earlier, e.g. [13, Figure 4].

Theorem 3.2 ([12, Theorem 5.24]). Let λ ∈ Λ(n). The diamonds of weight λ
generate the degree 0 subalgebra of e(iλ)Bκ

ne(i
λ). This subalgebra is isomorphic

to a Temperley–Lieb algebra with loop parameter 2(−1)e−1, with the diamond
at position fλ+ je corresponding to the standard Temperley–Lieb diagrammatic
generator at index j. In other words, the diamonds of weight λ satisfy the
relations

Uλ
i U

λ
j = Uλ

j U
λ
i when |i− j| > 1,

Uλ
i U

λ
j U

λ
i = Uλ

i when |i− j| = 1,

(Uλ
i )

2 = 2(−1)e−1Uλ
i for all i,

and this gives a complete presentation of the subalgebra generated by them.

Recall that in quantum characteristic 0 the Temperley–Lieb algebra is semisim-
ple. The central idempotent corresponding to the trivial module is sometimes
called the Jones–Wenzl projector. We write JWλ for the corresponding idem-
potent in e(iλ)Bκ

ne(i
λ). In our notation, JWλ is the unique element of the

form
JWλ = e(iλ) +

∑

monomials U 6= e(iλ)

cUU

(where the sum is over monomials in the generators {Uλ
j }) such that Uλ

j JW
λ =

0 for all j.

Lemma 3.3. Let λ ∈ Λ(n). Then P (λ) ∼= Bκ
nJW

λ.

Proof. Let B′ = e(iλ)Bκ
ne(i

λ). The algebra B′ is graded in non-negative de-
gree by Theorem 2.7 and thus all its idempotents have degree 0 and lie in
the Temperley–Lieb subalgebra. The idempotent JWλ is a primitive idempo-
tent for the Temperley–Lieb subalgebra, so JWλ is also a primitive idempotent
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for B′. As B′ is an idempotent truncation of Bκ
n, it follows that JWλ is a

primitive idempotent for Bκ
n, and thus Bκ

nJW
λ is an indecomposable projective

Bκ
n-module.
Now let P = Bκ

nJW
λ, and consider the indecomposable projective B′-

module P ′ = e(iλ)P . We claim that P ′ = e(iλ)P (λ) and thus P = P (λ).
We first observe that Uλ

1 ∈ Bκ,>λ
n by [12, Lemma 5.20], so

Uj = UjUj−1Uj = · · · = UjUj−1 · · ·U2U1U2 · · ·Uj−1 ∈ Bκ,>λ
n

for all j. Since Bκ,>λ
n annihilates L(λ) we have

Uλ
j e(i

λ)L(λ) = Uλ
j L(λ) = 0.

This shows that JWλe(iλ)L(λ) = e(iλ)L(λ). As

HomB′(P ′, e(iλ)L(λ)) = HomB′(B′JWλ, e(iλ)L(λ))

= JWλe(iλ)L(λ)

= e(iλ)L(λ)

6= 0

this completes the proof.

3.2. Maximal degree tableaux

The following key combinatorial lemma constructs maximal degree tableaux,
which are of fundamental importance in the characteristic 0 representation the-
ory of Bκ

n.

Lemma 3.4. Let λ ∈ Λ(n) be a weight. For each µ ∈ Wλ with λ ≤ µ, there
is a unique tableau t

µ
λ ∈ Stdλ(µ) of maximal degree

deg tµλ =

{

ℓ(wλ)− ℓ(wµ) if λ is regular,

k if λ is singular and µ = λk.

Proof. Let t ∈ Stdλ(µ), and write d for ℓ(wλ) − ℓ(wµ). From Theorem 2.7
recall that deg t is either w(t) or w(t) + 1, where w(t) is the number of wall-to-
wall steps inside the fundamental alcove for the path corresponding to t. By
Proposition 2.4 t lies in the linkage class of tλ. The path corresponding to t

λ

contains ℓ(wλ) − 1 wall-to-wall steps, whereas any path with endpoint µ must
have at least ℓ(wµ)− 1 wall-to-wall steps outside the fundamental alcove to get
there. Thus w(t) is bounded above by d.

There are four cases, according to the parity of d and whether λ and µ

lie on the same side of the origin or not. We will focus on one of these cases;
the other three are similar. Suppose d is even and that λ and µ both lie on
the same side of the origin. First we note that since paths to λ and µ must
eventually pass through the same wall of the fundamental alcove, w(t) is even for
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all t ∈ Stdλ(µ). There exists a tableau t
µ
λ ∈ Stdλ(µ) with w(t

µ
λ) = d maximal,

e.g.
−6 −2 0 2 6

Moreover, this tableau is unique: for any such path, the wall-to-wall steps inside
the fundamental alcove must occur as early as possible. If not, the path would
have to leave and then return to the fundamental alcove, wasting wall-to-wall
steps in the process. Finally, t

µ
λ has maximal degree too. From the picture

above deg tµλ = w(tµλ), and for all other tableaux t we have

deg t ≤ w(t) + 1 ≤ (w(tµλ)− 2) + 1 < deg tµλ

Remark 3.5. An alternative proof of this result uses [12, Theorem 4.9] to
reduce the problem of determining graded dimensions of Weyl modules to a
calculation in the Iwahori–Hecke algebra corresponding toW . The result follows
from the observation that the ‘Bott–Samelson’ elements (i.e. products of simple
Kazhdan–Lusztig generators) in this algebra have monic polynomial coefficients
when written in terms of the standard basis.

The following lemma shows that we can use maximal degree tableaux to
parametrise a basis for P (λ) = Bκ

nJW
λ.

Lemma 3.6. Let λ ∈ Λ(n). The set

{ψtt
µ

λ
JWλ : µ ∈Wλ, t ∈ Std(µ)}

form a basis for P (λ) = Bκ
nJW

λ.

Proof. It is immediately clear that the elements

{ψtsJW
λ : µ ∈Wλ, s ∈ Stdλ(µ), t ∈ Std(µ)}

span P (λ) = Bκ
nJW

λ. Fixing µ ∈ Wλ and s ∈ Stdλ(µ), recall that the image
of the cellular basis elements

{ψts : t ∈ Std(µ)}
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in Bκ
n/B

κ,>µ
n form a basis of a submodule isomorphic to ∆(µ)〈deg s〉. Every

such Weyl module is indecomposable, so the image of

{ψtsJW
λ : t ∈ Std(µ)}

in Bκ
nJW

λ/Bκ,>µ
n JWλ is either a basis of ∆(µ)〈deg s〉 or 0. By Theorems 2.8

and 2.9 and Brauer–Humphreys reciprocity, we must get the zero module if
deg s 6= deg tµλ. When this occurs, for all t ∈ Std(µ) we have

ψtsJW
λ ∈ Bκ,>µ

n JWλ ≤ Bκ,>µ
n

so
ψtsJW

λ =
∑

µ′>µ

t
′,s′∈Std(µ′)

ct′s′ψt′s′

for some coefficients ct′s′ ∈ k. Multiplying by JWλ, we obtain

ψtsJW
λ = ψts(JW

λ)2 =
∑

µ′>µ

t
′,s′∈Std(µ′)

ctsψt′s′JW
λ,

and we can repeat the argument for each µ′ > µ and s
′ ∈ Std(µ′) with s

′ 6= t
µ′

λ .

Continuing in this fashion, we conclude that ψtsJW
λ can be expressed as a

linear combination of elements in the given set, i.e. the given set spans Bκ
nJW

λ.
Linear independence follows by a dimension count.

4. Singular projective modules

The aim of this section is to determine the socles of the indecomposable
projective modules associated to minimal singular weights — Theorem 4.12
and Corollary 4.13. This turns out to be enough to completely determine the
structure of these modules. The result will then be used in ➜5.1 to address the
corresponding (harder) non-singular cases.

Our general strategy is to identify possible generators for the socle in Lemma
4.1 and then to rule out all but one of them via direct computation. The
computation involves the Jones–Wenzl projector, which is difficult to work with
directly because in the standard basis it is a sum with many terms. Luckily
nearly all of these terms combine or vanish in the computation when multiplied
by certain cellular basis elements.

In this section we will assume that n ≡ κ1 − κ2 (mod e), or in other words
that there is a wall at n. Fix η = (1n, ∅) ∈ Λ(n) and let m ∈ N such that
n = fη +me (see (17) for a definition of fη). Recall how the linkage class of η
consists of the weights ηj for some non-negative integers j. The maximal weight
in this linkage class is ηm, which is on a wall of the fundamental alcove. Note
that fηj

= fη + je, because the distance from ηj to the nearest fundamental
alcove wall is (m− j)e steps.
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4.1. Cellular basis factorization

We begin by identifying possible candidates for the socle of P (η).

Lemma 4.1. If socP (η) contains a copy of L(η)〈2k〉 for some k ≥ 0, then it
must be the subspace

kJWηψ
t
ηk
η t

ηk
η
JWη ≤ Bκ

nJW
η = P (η).

Proof. By Lemma 3.6 the module P (η) = Bκ
nJW

η has a basis

{ψ
tt

ηk
η
JWη : 0 ≤ k ≤ m, t ∈ Std(ηk)},

so JWηBκ
nJW

η is spanned by

{JWηψ
tt

ηk
η
JWη : 0 ≤ k ≤ m, t ∈ Stdη(ηk)}.

Now factor ψ
tt

ηk
η

as ψttηkψtηk t
ηk
η
. Applying Lemma 3.6 again, JWηψttηk lies in

the span of

{JWηψ
t
ηl
η s

: k ≤ l ≤ m, s ∈ Stdηk
(ηl), deg t = l + deg s},

where we have further restricted the tableau s by residue and degree consider-
ations. But

k ≤ l + deg s = deg t ≤ k

with equality if and only if l = k and s = t
ηk . Thus JWηBκ

nJW
η is spanned by

{JWηψ
t
ηk
η t

ηk
η
JWη : 0 ≤ k ≤ m}

and the result follows immediately.

The product in Lemma 4.1 involves cellular basis elements parametrised by
maximal degree tableaux, and the Jones–Wenzl projector. We first focus on
factorizing these cellular basis elements in a helpful way.

Proposition 4.2. For all integers 0 ≤ j ≤ k ≤ m we have

ψ
tηk t

ηk
ηj

= xjxj+1 · · ·xk−1ψfη+jeψfη+(j+1)e · · ·ψfη+(k−1)ee(i
ηj )

for some elements xr ∈ Bκ
n (with j ≤ r < k) which satisfy the following proper-

ties:

(i) for fixed r the element xr does not depend on j or k;

(ii) for r 6= s, xrxs = xsxr and xrψfη+se = ψfη+sexr;

(iii) for each j ≤ r < k we have

xrxre(i
ηk) = e(iηk),

xrxre(sfη+rei
ηj ) = e(sfη+rei

ηj ).
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Proof. Let d = d
t
ηk
ηj

. Recall that d is the permutation which maps tηk to t
ηk
ηj
.

For 0 ≤ l ≤ m, write ηl = (1ηl,1 , 1ηl,2) and set rl = 2min(ηl,1, ηl,2). From
(17) it is clear that

fηl
= fη + le =

{

rl + fη if l is even,

rl + (e− fη) if l is odd.

This means that

rl =

{

le if l is even,

(l − 1)e+ 2fη if l is odd.

Thus the integers 1 ≤ r ≤ rj lie in the same boxes in the tableaux t
ηj , t

ηk
ηj
, and

t
ηk so we have d(r) = r. Similarly when rk < r ≤ n, r is in the same box in
both t

ηk and t
ηk
ηj

so d(r) = r here as well.

For j ≤ l < k, the boxes in t
ηk
ηj

with labels rl < r ≤ rl+1 form the skew
tableau

if l is even,

if l is odd,

while the same boxes in t
ηk form the skew tableau

if l is even,
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if l is odd.

This of course means that d restricted to rl < r ≤ rl+1 is still a permutation dl.
In fact dl corresponds to a triangular portion of the lower half of a ‘diamond
permutation’:

The easiest way to see this is to apply the ‘layers’ (each a product of several
commuting transpositions) in turn to the skew tableaux above. For example,
the first (fη − 1) layers permute the skew tableau with fη rows as follows:

7−→ 7−→ 7−→
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7−→ 7−→ · · · 7−→

The number of layers in the triangle is either fη − 1 or e − fη depending on
parity. But 2 ≤ fη ≤ e − 2, so in both cases the corresponding diagram in the
blob algebra factors as xlψfη+lee(i

ηj ) with e(iηk)xl generated by transpositions
of degree 0. Properties (i)–(iii) follow immediately.

Example 4.3. Let n = 21, e = 6 and κ = (0, 3). The weight η = (121, ∅)
is singular because 21 ≡ 3 − 0 (mod 6). Observe that η1 = (13, 118) and that
η3 = (19, 112). Then

ψ
tη3 t

η3
η1

= .

We also have

e(iη3)x1x2 = .

Some immediate consequences of Proposition 4.2 include the following corol-
laries.

Corollary 4.4. For all integers 0 ≤ j ≤ k ≤ l ≤ m we have ψ
tηl t

ηl
ηk

ψ
tηk t

ηk
ηj

=

ψ
tηl t

ηl
ηj

.

Corollary 4.5. For all integers 0 ≤ j ≤ k ≤ m we have

ψ
t
ηk
ηj

t
ηk
ηj

= ψ2
fη+jeψ

2
fη+(j+1)e · · ·ψ

2
fη+(k−1)ee(i

ηj ).

It will also be important to know later that certain products vanish in Bκ
n.

Somewhat surprisingly this can happen even when the total degree is small.

Lemma 4.6. We have

ψ
tη1 t

η1
η
ψ
t
η1
η tη1 = ψ2

fη
e(sfηi

η) = 0.
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Proof. From Proposition 4.2 it is clear that the first product above vanishes
if and only if the second product vanishes. We expand the first product by
pulling apart the double transposition of degree 2 and rewriting as a difference
of dotted strings. In the first term, the left string with its dot can be pulled all
the way to the left, because the residues of all the strings that it passes through
are distinct. In the second term, the dot on the right string can jump almost
all the way to the left, slide down a string, and then make one final jump to the
leftmost string. Dots on the left vanish in Bκ

n, so we are done. The diagrams
below depict this process when fη = 4.

= −

= −

= −

= 0− 0.

4.2. Diamond simplification

By Lemma 4.1, determining the socle of P (η) will necessitate calculations
involving JWη. The next few lemmas give some methods for reducing the
workload by eliminating diamonds.

Lemma 4.7. For all k we have

ψfη+(k−1)eU
η
k ψfη+(k−1)e = ±ψ2

fη+kee(sfη+(k−1)ei
η).

Proof. Apply [12, Lemma 5.16] several times across the diamond. The remaining
transpositions are all of degree 0 except for the degree 1 transpositions at the
top and bottom. The degree 0 transpositions cancel out and the result follows.
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The diagrams below depict what happens when e = 6.

= − =

= − = · · ·

· · · = (−1)e = (−1)e

Lemma 4.8. For all k we have

Uη
k U

η
k−1ψ

2
fη+ke

= ±Uη
k ψ

2
fη+(k−1)e

.

Proof. This follows immediately from a variant of Lemma 4.7, which is proved
in the same way.

= (−1)e
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Lemma 4.9. For all 1 < k < m we have

Uη
k−1ψt

ηk
η t

ηk
η

= 0.

Proof. Use Proposition 4.2 to rewrite ψ
t
ηk
η t

ηk
η

as a product of double transpo-

sitions. Expand the rightmost double transposition as a difference of dotted
strings. First we show that these dots can ‘migrate’ leftwards until they lie on
top of the next pair of transpositions. In the first term, the dot on the left string
can jump until it is on the right string above this double transposition. In the
second term, the dot on the right string can slide along the southwest border of
the diamond, jump left one string and slide until it is in place on the left string
above the double transposition.

= −

= −

Next, we show we can continue this migration process leftwards without the
diamond. As before, the dot on the left string above the double transposition
can jump several strings leftwards until it is on the right string above the next
double transposition. For the dot on the right string, we replace the both pairs
of transpositions with pairs of maximally sized triangles, as seen in the proof
of Proposition 4.2. This dot then slides southwest along its string, jumps one
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string, and slides northwest until it is in the correct position.

− = −

= −

= −

Note that in both of the figures above we are only drawing a portion of the
complete diagram.

Finally we end up with a difference of dotted strings for the leftmost double
transposition. But we can replace this difference with another double transpo-
sition. Applying Lemma 4.6 gives the result.

4.3. Socle calculation

We pool together our previous results into one grand calculation to identify
the socle of P (η). The heart of the argument is to show that certain products
of JWη with cellular basis elements do not vanish in Bκ

n. This is potentially
extremely difficult, as the number of summands when JWη is written in the
standard monomial basis grows very quickly. Thankfully many of these mono-
mials end up vanishing in the product. For r ≤ s write Uη

r,s = Uη
r U

η
r+1 · · ·U

η
s .

First, we identify a non-vanishing monomial in the product.

Theorem 4.10. Let r ≤ s. If

ψ
tη1 t

η1
η
Uη
r,sψt

ηk
η t

ηk
η
JWη 6= 0

then (r, s) = (1, k). In this case, we have

ψ
tη1 t

η1
η
Uη
1,kψt

ηk
η t

ηk
η
JWη = ±ψ

t
ηk+1
η1

t
ηk+1
η

JWη.

Proof. When r > 1, we have

ψ
tη1 t

η1
η
Uη
r = U

η1
r−1ψtη1 t

η1
η

(19)

by Proposition 4.2. Similarly when r > k, we have

Uη
r ψt

ηk
η t

ηk
η

= ψ
t
ηk
η t

ηk
η
Uη
r . (20)
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When 1 < r ≤ s we have

ψ
tη1 t

η1
η
Uη
r,sψt

ηk
η t

ηk
η

= U
η1
r−1,s−1ψtη1 t

η1
η
ψ
t
ηk
η t

ηk
η

= U
η1
r−1,s−1ψtη1 t

η1
η
ψ2
fη
ψ2
fη+eψ

2
fη+2e · · ·ψ

2
fη+(k−1)e

= U
η1
r−1,s−1ψtη1 t

η1
η
ψ
t
η1
η t

η1
η
ψ2
fη+eψ

2
fη+2e · · ·ψ

2
fη+(k−1)e

= 0

using (19), Corollary 4.5, and Lemma 4.6. Similarly when r ≤ s ≤ k − 1 this
expression vanishes by Corollary 4.5 and Lemma 4.9. Finally

Uη
r,sψt

ηk
η t

ηk
η
JWη = Uη

r,s−1ψt
ηk
η t

ηk
η
Uη
s JW

η = 0

if s > k by (20) and the defining property of JWη. Putting this all together, if

ψ
tη1 t

η1
η
Uη
r,sψt

ηk
η t

ηk
η
JWη 6= 0

then r = 1 and s = k.
Using Corollary 4.5 and Lemma 4.8, we observe that

ψ
tη1 t

η1
η
Uη
1,kψt

ηk
η t

ηk
η
JWη =

= ψ
tη1 t

η1
η
Uη
1,k−2U

η
k−1U

η
k ψ

2
fη+(k−1)eψ

2
fη+(k−2)e · · ·ψ

2
fη
JWη

= ±ψ
tη1 t

η1
η
Uη
1,k−2U

η
k−1U

η
k U

η
k−1ψ

2
fη+keψ

2
fη+(k−2)eψ

2
fη+(k−3)e · · ·ψ

2
fη
JWη

= ±ψ
tη1 t

η1
η
Uη
1,k−1ψ

2
fη+(k−2)eψ

2
fη+(k−3)e · · ·ψ

2
fη
ψ2
fη+keJW

η.

Apply this several times to obtain

ψ
tη1 t

η1
η
Uη
1,kψt

ηk
η t

ηk
η
JWη = ±ψ

tη1 t
η1
η
Uη
1 ψ

2
fη
ψ2
fη+2eψ

2
fη+3e · · ·ψ

2
fη+keJW

η.

Then by Lemma 4.7 and Corollaries 4.4 and 4.5 this is equal to

± ψ
tη1 t

η1
η
ψ2
fη+eψ

2
fη+2eψ

2
fη+3e · · ·ψ

2
fη+keJW

η =

= ±ψ2
fη+eψ

2
fη+2eψ

2
fη+3e · · ·ψ

2
fη+keψtη1 t

η1
η
JWη

= ±ψ
t
ηk+1
η1

tη1
ψ
tη1 t

ηk+1
η1

ψ
tη1 t

η1
η
JWη

= ±ψ
t
ηk+1
η1

t
ηk+1
η

JWη.

Next, we show that other monomials wind up in an ideal of Bκ
n.

Theorem 4.11. Let U be a monomial in the generators of the Temperley–Lieb
subalgebra. If U 6= Uη

1,k then

ψ
tη1 t

η1
η
Uψ

t
ηk
η t

ηk
η
JWη ∈ B

κ,>ηk+1
n JWη.
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Proof. Every monomial in the generators of the Temperley–Lieb subalgebra is a
scalar multiple of a monomial of the form Uη

r1,s1
Uη
r2,s2

· · ·Uη
rp,sp

for some strictly
decreasing sequences r1 > r2 > · · · > rp and s1 > s2 > · · · > sp of some length
p ≥ 0 with rj ≤ sj for all j [14, 6.5.2]. Suppose U 6= U1,k is a monomial of this
form such that

ψ
tη1 t

η1
η
Uψ

t
ηk
η t

ηk
η
JWη 6= 0.

First of all we must have p ≥ 1 by Lemma 4.6. Since rj > rp ≥ 1 and sj > sp ≥
rp ≥ 1 for all 1 ≤ j < p, we can apply (19) to the expression above:

ψ
tη1 t

η1
η
Uη
r1,s1

Uη
r2,s2

· · ·Uη
rp−1,sp−1

Uη
rp,sp

ψ
t
ηk
η t

ηk
η
JWη =

= U
η1
r1−1,s1−1U

η1
r2−1,s2−1 · · ·U

η1
rp−1−1,sp−1−1ψtη1 t

η1
η
Uη
rp,sp

ψ
t
ηk
η t

ηk
η
JWη.

Theorem 4.10 then implies that rp = 1 and sp = k. Assuming U 6= U1,k, we
must have p > 1.

Now suppose sp−1 > k + 1. Applying Theorem 4.10 again as well as (19)
and (20), we observe that

U
η1
sp−1−1ψtη1 t

η1
η
Uη
1,kψt

ηk
η t

ηk
η
JWη = ±U

η1
sp−1−1ψt

ηk+1
η1

t
ηk+1
η

JWη

= ±ψ
t
ηk+1
η1

t
ηk+1
η

Uη
sp−1

JWη

= 0.

This is a factor of the previous expression, so it follows that sp−1 = k+1. Thus
it is enough to show that

ψ
tη1 t

η1
η
Uη
k+1U

η
1,kψt

ηk
η t

ηk
η
JWη = ±U

η1

k ψ
t
ηk+1
η1

t
ηk+1
η

JWη ∈ B
κ,>ηk+1
n JWη.

Using Corollaries 4.4 and 4.5 this is equal to

±U
η1

k ψ2
fη+keψ

2
fη+(k−1)e · · ·ψ

2
fη+eψtη1 t

η1
η
JWη

In the proof of Proposition 4.2 we showed that U
η1

k = zk+1xk+1ψfη+(k+1)e for
some zk+1 ∈ Bκ

n. Thus we obtain

±U
η1

k ψ2
fη+keψ

2
fη+(k−1)e · · ·ψ

2
fη+eψtη1 t

η1
η
JWη ∈ Bκ

nψt
ηk+2 t

ηk+2
η

JWη

≤ B
κ,>ηk+1
n JWη.

Finally we are in a position to calculate the socle of P (η).

Theorem 4.12. We have socP (η) = L(η)〈2m〉

Proof. By Theorem 2.10 the socle of every Weyl module in the linkage class is
L(η). Since P (η) has a Weyl filtration, it is clear that its socle is the direct sum
of copies of L(η). The graded decomposition numbers for singular weights (from
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Theorem 2.9) indicate that the socle can contain at most one copy of L(η)〈2k〉
for each integer 0 ≤ k ≤ j and no copies of L(η) in odd degree. The submodule
L(η) ≤ ∆(ηm) ≤ P (η) gives one copy of L(η) of degree 2m in the socle. By
Lemma 4.1, if the socle does contain a copy of L(η)〈2k〉 for some k < m, then
it must be spanned by

JWηψ
t
ηk
η t

ηk
η
JWη.

We will prove that this vector does not generate a copy of L(η) in the socle by
showing that

ψ
tη1 t

η1
η
JWηψ

t
ηk
η t

ηk
η
JWη 6≡ 0 (mod B

κ,>ηj
n JWη).

Write JWη as a sum of monomials. It is known that the coefficient of Uη
1,k

in JWη is non-zero (see e.g. [6, Proposition 3.10]), so we may write

JWη = cUη
1,k +

∑

monomials U 6= U
η

1,k

cUU

where c, cU ∈ k and c 6= 0. Then using Theorems 4.10 and 4.11 we obtain

ψ
tη1 t

η1
η
JWηψ

t
ηk
η t

ηk
η
JWη = ψ

tη1 t
η1
η



cUη
1,k +

∑

monomials U 6= U
η

1,k

cUU



ψ
t
ηk
η t

ηk
η
JWη

≡ ψ
t
ηk+1
η1

t
ηk+1
η

JWη (mod B
κ,>ηk+1
n JWη).

By the proof of Lemma 3.6, we have ψ
t
ηk+1
η1

t
ηk+1
η

JWη /∈ B
κ,>ηk+1
n JWη, which

completes the proof.

Applying the globalisation functor, we see thatGL(η) = G∆(η) = ∆(1n+1, 1)
and GP (η) = P (1n+1, 1). By Theorem 2.10, the socle of all Weyl modules in
the linkage class of (1n+1, 1) is L(1n+1, 1). As P (1n+1, 1) has a Weyl filtration
this means that its socle is a direct sum of copies of L(1n+1, 1). Using the
localisation-globalisation adjunction we obtain

HomBκ
n+2

(GL(η), GP (η)) ∼= HomBκ
n
(L(η), FGP (η)) = HomBκ

n
(L(η), P (η)),

so these Hom-spaces are all 1-dimensional by Theorem 4.12. This immediately
implies that the ungraded socle of P (1n+1, 1) is L(1n+1, 1). Repeated globali-
sation in this manner allows us to drop our assumption on n and extend (the
ungraded form of) our result to all minimal singular weights to the right of the
origin. A similar argument using the analogous “left-sided” version of Theo-
rem 4.12 for (∅, 1n) with −n ≡ κ1 − κ2 (mod e) gives the same result for all
minimal singular weights to the left of the origin.

To calculate the correct grade shift, we note that the simple socle of any sin-
gular projective indecomposable module coincides with the socle of the maximal
weight Weyl module in a Weyl filtration. For a singular weight λ ∈ Λ(n), write
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λmin,λmax ∈ Λ(n) for the unique minimal and maximal weights respectively in
the same linkage class. The total grade shift is simply the sum of the grade shift
of ∆(λmax) in the Weyl filtration of P (λ) and the grade shift of L(λmin) in the
composition series of ∆(λmax). Both of these grade shifts are determined by the
graded decomposition numbers in Theorem 2.9, or equivalently by the degrees
of certain maximal degree tableaux using Lemma 3.4. Thus we have proved the
following.

Corollary 4.13. Let n be arbitrary, and let λ ∈ Λ(n) be a singular weight.
Then we have

socP (λ) = L(λmin)〈deg t
λmax

λ + deg tλmax

λmin
〉.

Remark 4.14. In fact, one can prove a stronger result; namely, that the sin-
gular projective indecomposable modules embed inside one another. More pre-
cisely, for a singular weight λ ∈ Λ(n) and µ ≤ λ we have

O<λ(P (µ)) ∼= P (λ)〈deg tλµ〉.

(See the discussion before Theorem 5.5 for a description of the notation O<λ.)

5. Main results

5.1. Regular projective modules

We introduce some useful weight terminology. Let λ ∈ Λ(n). If the linkage
class of λ has a unique λ′ ∈ Λ(n) which is incomparable to λ in the Bruhat
order then we say that λ is paired. Otherwise we call λ unpaired.

Example 5.1. Let e = 5 and κ = (0, 3).

❼ Suppose n = 14. The weight λ14 = (19, 15) in Λ(14) is paired, because
there is another weight λ′

14 = (14, 110) in its linkage class to which it is
incomparable. On the other hand, the weight µ14 = (114, ∅) is unpaired
because it is comparable to every weight in its linkage class (more precisely,
it is a global minimum for Wµ14).

❼ Now suppose n = 16. The weight λ16 = (110, 16) in Λ(16) is still paired
as above. Moreover, the weight µ16 = (115, 1) is also paired because it is
incomparable to the weight (∅, 116) ∈ Λ(16) in the same linkage class.

From the example we observe that being paired or unpaired is a property of
bipartitions and not of classical weights. A regular weight λ ∈ Λ(n) is unpaired
if and only if it is a global maximum (i.e. is contained in the fundamental alcove)
or a global minimum in Wλ. On the other hand, every singular weight in Λ(n)
is unpaired because singular linkage classes are totally ordered.

Lemma 5.2. Let λ = (1λ1 , 1λ2) ∈ Λ(n) be a regular weight. Then λ is unpaired
if and only if ℓ(wλ) = 0 or |λ1 − λ2| < 2ℓ(wλ)e− n.
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Proof. Suppose that λ is not contained in the fundamental alcove and that
λ1 > λ2. Let w′

λ be the unique element of W such that ℓ(w′
λ) = ℓ(wλ) but

w′
λ 6= wλ. Since ℓ(w

′
λw

−1
λ ) = 2ℓ(wλ), the unique incomparable classical weight

in the global linkage class of (λ1 − λ2) is (λ1 − λ2) − 2ℓ(wλ)e, which does not
correspond to a weight in Λ(n) if it is less than −n. The case where λ1 < λ2 is
similar.

Generalising our singular terminology, for a weight λ ∈ Λ(n) write λmin ∈
Λ(n) for some minimal weight in the linkage class of λ and λmax ∈ Λ(n) for
the unique maximal weight in the same linkage class. For λ regular it is evident
that λmax = λfund. We now can extend Corollary 4.13 to all weights.

Theorem 5.3. Let λ,µ ∈ Λ(n) with λ ≤ µ. We have

socP (λ) =

{

(L(λmin)⊕ L(λ′
min))〈deg t

λmax

λ + deg tλmax

λmin
〉 if λmin is paired,

L(λmin)〈deg t
λmax

λ + deg tλmax

λmin
〉 if λmin is unpaired.

Proof. We will prove the ungraded result first, and then calculate the correct
degree shift using knowledge of the graded decomposition numbers (Theorem
2.8). We will also assume that λ is regular, as the singular case is just Corollary
4.13.

Note that for any µ ≥ λ, the ungraded socle of ∆(µ) is
{

L(λmin)⊕ L(λ′
min) if λmin is paired,

L(λmin) if λmin is unpaired.

As P (λ) is filtered by Weyl modules its socle may only contain copies of these
simple modules.

Write λ = (1λ1 , 1λ2) and without loss of generality suppose λ1 > λ2. If λ
lies in the fundamental alcove, then P (λ) = ∆(λ) and the result follows by
Theorem 2.10, so we will assume that λ does not lie in the fundamental alcove.
Take k ∈ N minimal such that λ(0) = (1λ1 , 1λ2+k) ∈ Λ(n + k) is singular, and

let λ(1) = (1λ1 , 1λ2+k−1) ∈ Λ(n+ k− 1). It is evident that λ and λ(1) lie in the

same alcove, and that λ(0) lies on a wall of this alcove. There is also a unique

minimal weight λ
(1)
min ∈ Λ(n+ k − 1) in the linkage class of λ(1) whose classical

weight is only 1 away from λ
(0)
min. Write prλ(0) for the functor which projects

modules and homomorphisms onto the block(s) of simple modules parametrised

by weights in the linkage class of λ(0). We observe that

prλ(0)(ind∆(λ
(1)
min)) = ∆(λ

(0)
min),

and if λ
(1)
min is paired, then

prλ(0)(ind∆((λ
(1)
min)

′)) = ∆((λ
(0)
min)1).

Moreover, we have

resP (λ(0)) ∼= F (indP (λ(0))) = FP (1λ1+1, 1λ2+k) = P (λ(1))
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using the tower of recollement structure on Bκ
n. Thus

HomBκ
n+k−1

(∆(λ
(1)
min), P (λ

(1))) ∼= HomBκ
n+k(∆(λ

(0)
min), P (λ

(0))),

and if λ
(1)
min is paired we similarly have

HomBκ
n+k−1

(∆((λ
(1)
min)

′), P (λ(1))) ∼= HomBκ
n+k

(∆((λ
(0)
min)1), P (λ

(0))).

Both of these spaces have dimension at most 1 by Corollary 4.13, which estab-
lishes the result for λ(1).

If k = 1, then we are done as λ = λ(1). Otherwise let λ(2) = (1λ1 , 1λ2+k−2) ∈

Λ(n + k − 2). Again, there is at least one minimal weight λ
(2)
min in the linkage

class of λ(2) whose classical weight is 1 away from λ
(1)
min or (λ

(1)
min)

′ (if it exists).

It is clear that prλ(1)(ind∆(λ
(2)
min)) (and prλ(1)(ind∆((λ

(2)
min)

′)) if it exists) is a
minimal weight Weyl module. We also have

prλ(2)(resP (λ(1))) ∼= prλ(2)(F (indP (λ(1))))

∼= F (prλ(2)(indP (λ(1))))

= F (P (1λ1+1, 1λ1+k−1))

= P (λ(2)).

Thus dimHomBκ
n+k−2

(∆(λ
(2)
min), P (λ

(2))) = 1 (and similarly for (λ
(2)
min)

′ if it ex-

ists) and the result holds for λ(2). Continuing in this fashion, we obtain the

ungraded result for λ(k) = λ. The degree of the grade shift follows from the
graded decomposition numbers of Bκ

n (Theorem 2.8) and Brauer–Humphreys
reciprocity.

5.2. Tilting modules

We are finally in a position to present the main results of this paper.

Theorem 5.4. Let λ ∈ Λ(n) be a maximal weight.

(i) If λmin is unpaired, then T (λ) = P (λmin)〈− deg tλλmin
〉.

(ii) If λmin is paired, then T (λ) is the unique non-split extension

0 → P (λmin)〈− deg tλλmin
〉 → T (λ) → ∆(λ′

min)〈− deg tλλmin
〉 → 0.

Proof. As in the previous theorem we prove the ungraded form of the result
first. For the first claim, if λmin is unpaired then socP (λmin) = L(λmin) by
Theorem 5.3. Thus P (λmin) embeds inside I(λmin). But both modules have
the same character, so we must in fact have P (λmin) = I(λmin) is self-dual and
therefore is an indecomposable tilting module. By weight considerations it must
be a grade shift of T (λ), which we reverse using the our knowledge of the graded
decomposition numbers.
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For the second claim, we induct on n. Assume that the indecomposable
tilting modules in Bκ

m with the same classical weights have the structure above
for all m < n. By stability of the Weyl filtration multiplicities of tilting modules
this implies that in Bκ

n we have

(T (λ) : ∆(µ)) = 1 = (P (λmin) : ∆(µ))

whenever µ ≤ λ and µ 6= λmin,λ
′
min. By [5, Lemma A4.1] and its proof P (λmin)

embeds inside T (λ) and

(T (λ) : ∆(λ′
min)) = dimExt1Bκ

n
(∆(λ′

min), P (λmin)),

(T (λ) : ∆(λmin)) = dimExt1Bκ
n
(∆(λmin), P (λmin)) + 1.

We will calculate the dimension of the first Ext-group; the second calculation is
similar.

Let Ω∆(λ′
min) be the kernel of the natural map P (λ′

min) → ∆(λ′
min). We

have a short exact sequence

0 → Ω∆(λ′
min) → P (λ′

min) → ∆(λ′
min) → 0

which induces a long exact sequence

0 HomBκ
n
(∆(λ′

min), P (λmin)) HomBκ
n
(P (λ′

min), P (λmin))

HomBκ
n
(Ω∆(λ′

min), P (λmin)) Ext1Bκ
n
(∆(λ′

min), P (λmin))

Ext1Bκ
n
(P (λ′

min), P (λmin)) = 0.

The first term has dimension 1 by Theorem 5.3, while the second term has
dimension [P (λmin) : L(λ′

min)]. For the third term, we apply [5, Proposi-
tion A3.13] several times to obtain

HomBκ
n
(Ω∆(λ′

min), P (λmin)) ∼= HomBκ
n−2r

(F r(Ω∆(λ′
min)), F

rP (λmin))

where r ∈ N is minimal such that F rL(λmin) = F rL(λ′
min) = 0.

Localising does not change the Weyl filtration multiplicities of Ω∆(λ′
min)

because it has a ∆-filtration with subquotients labelled by weights larger than
λ′
min. This means that F r(Ω∆(λ′

min)) has the same Weyl filtration multiplicities
as T (1λ1−r, 1λ2−r) by induction, where λ = (1λ1 , 1λ2). Let µ = (1µ1 , 1µ2) ∈
Λ(n) be a weight larger than λmin and λ′

min but no other weights, and define
µ′ 6= µ similarly if such a weight exists. Applying [5, Proposition A3.13] again
we get

dimHomBκ
n−2r

(∆(1µ1−r, 1µ2−r), F r(Ω∆(λ′
min))) =

= dimHomBκ
n−2r

(F r∆(µ), F r(Ω∆(λ′
min)))

= dimHomBκ
n
(∆(µ),Ω∆(λ′

min))

= 1
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and similarly for µ′, so socF r(Ω∆(λ′
min)) = socT (1λ1−r, 1λ2−r). Another ap-

plication of [5, Lemma A4.1] establishes that F r(Ω∆(λ′
min)) = T (1λ1−r, 1λ2−r).

On the other hand, from the short exact sequence

0 → Ω∆(λmin) → P (λmin) → ∆(λmin) → 0

it is clear that F rP (λmin) = F rΩ∆(λmin). As before

F rΩ∆(λmin) = T (1λ1−r, 1λ2−r).

Thus

dimHomBκ
n
(Ω∆(λ′

min), P (λmin)) = dimEndT (1λ1−r, 1λ2−r),

which by [5, Proposition A2.2(ii)] equals the number of Weyl subquotients in
T (1λ1−r, 1λ2−r). But by induction this is just 1 less than the number of Weyl
subquotients in P (λmin), which is exactly [P (λmin) : L(λ

′
min)]. Thus the rele-

vant Ext-group is 1-dimensional and the ungraded result follows. The correct
grade shift follows from the regular graded decomposition numbers.

To write the other tilting modules, it is useful to introduce some notation due
to Donkin. For λ ∈ Λ(n) and M a Bκ

n-module, write O≤λ(M) for the maximal
submodule of M whose composition factors are all of the form L(µ) for some
µ ≤ λ. Dually we write O≤λ(M) for the minimal submodule of M such that
M/O≤λ(M) has composition factors of the form L(µ) for some µ ≤ λ.

Theorem 5.5. Let λ,µ ∈ Λ(n) with λ ≤ µ. Then

T (λ) ∼= O≤λ(T (µ))〈− deg tµλ〉.

Proof. First of all, it is clear that O≤λ(T (λmax)) has a ∇-filtration. By [5,
Lemma A4.5] O≤λ(T (λmax)) is the indecomposable tilting module of highest
weight λ in the algebra Bκ

n(≤ λ) = Bκ
n/O

≤λ(Bκ
n). Using [5, Proposition A3.3]

we have

Ext1Bκ
n
(O≤λ(T (λmax)),∇(µ)) = Ext1Bκ

n(≤λ)(O≤λ(T (λmax)),∇(µ)) = 0

for any µ ≤ λ. This means that O≤λ(T (λmax)) has a ∆-filtration too, and
thus must be a tilting module for Bκ

n. But the socle of O≤λ(T (λmax)) is as
small as possible by Theorem 5.3, so it must also be indecomposable, and thus
O≤λ(T (λmax)) is a grade shift of T (λ), and we surmise the correct grade shift
from knowledge of the graded decomposition numbers.

Remark 5.6. In Bκ
n(≤ λ) the weight λ is maximal, and the projective modules

for are all of the form P (µ)/O≤λ(P (µ)) for µ ≤ λ. This suggests a generaliza-
tion of Theorem 5.4 which gives the structure of T (λ) for arbitrary λ in terms
of the analogous Bκ

n(≤ λ)-modules. Assuming a corresponding socle result like
Theorem 5.3 for these modules, the same proof passes through essentially un-
changed.

36



5.3. Tilting characters

For x, y ∈W , define the (Laurent) polynomial hx,y by

hx,y(v) =

{

vℓ(x)−ℓ(y) if y ≤ x,

0 otherwise.

Our use of a superscript is intentional. We mean to emphasise the fact that
these are the inverse Kazhdan–Lusztig polynomials associated to W (in the
notation of [23]), which happen to coincide with ordinary Kazhdan–Lusztig
polynomials in type Ã1. The graded Weyl filtration multiplicities of the regular
indecomposable tilting modules are as follows.

Corollary 5.7. Let λ,µ be regular weights lying in the same linkage class.
Then we have

(T (µ) : ∆(λ))v = hwλ,wµ .

There is also a singular version.

Corollary 5.8. Let λ be a singular weight. Then we have

(T (λk) : ∆(λ))v = v−k.

We conclude with a few remarks on possible extensions of this result.

Remark 5.9.

1. The blob algebra is the quotient of a level 2 cyclotomic Hecke algebra.
The generalised blob algebras are analogous quasi-hereditary quotients of
level l cyclotomic Hecke algebras for integers l > 2. These algebras have a
very similar KLR presentation [12]. Moreover, the representation theory
of the level l generalised blob algebra is governed by the combinatorics
of one-column l-multipartitions, with a linkage principle coming from the
affine Weyl group of type Ãl−1. As a result nearly all of the notation
generalises to the level l case easily. We conjecture that for two regular
one-column l-multipartitions λ,µ, we have

(T (µ) : ∆(λ))v = hwλ,wµ

in the level l generalised blob algebra over a field k of characteristic 0,
where hx,y is the inverse Kazhdan–Lusztig polynomial of type Ãl−1.

2. Over a field k of characteristic p > 0, the graded decomposition numbers of
the blob algebra coincide with the p-Kazhdan–Lusztig polynomials phy,x of

type Ã1 [12, Theorem 5.26] (see also [3]). We hypothesise that the graded
Weyl filtration multiplicities of the indecomposable tilting modules of the
level l generalised blob algebra should be given by a p-analogue phx,y of
inverse Kazhdan–Lusztig polynomials of type Ãl−1. As far as we are aware,
no such analogue has been constructed before. In the spherical l = 2
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case, it is reasonable to guess that the graded Weyl filtration multiplicities
of indecomposable tilting modules for TLn(1) (the n-strand Temperley–
Lieb algebra with parameter 1 over k) give a p-analogue pmx,y of the
inverse spherical Kazhdan–Lusztig polynomials, truncated after weight n.
Equivalently, using the Ringel duality of TLn(1) and (a quotient of) the
hyperalgebra of SL2, we should have

[∆SL2
(x ·p 0) : LSL2

(y ·p 0)] =
pmx,y(1),

where ·p denotes the p-dilated dot action. This can be extended to higher
levels in the spherical case by replacing SL2 with SLl.

3. In general, p-Kazhdan–Lusztig polynomials are defined via Soergel bimod-
ules over a field of characteristic p. The relationship between p-Kazhdan–
Lusztig polynomials in type Ã1 and graded decomposition numbers of the
blob algebra is the combinatorial shadow of the ‘Categorical Blob vs So-
ergel conjecture’ [12, ➜1.8]. This conjecture posits an equivalence between
a ‘blob category’ (whose Hom-spaces are certain idempotent truncations
of the level l generalised blob algebra) and the category of Soergel bi-
modules in type Ãl−1. Such an equivalence, combined with our tilting
character conjecture above, would imply that the inverse (p-)Kazhdan–
Lusztig polynomials of type Ãl−1 appear in the corresponding category
of Soergel bimodules. Yet Soergel bimodules make sense for all types,
so this would lead to a categorification (resp. construction) of inverse (p-
)Kazhdan–Lusztig polynomials in all types. The classical relationship be-
tween Kazhdan–Lusztig polynomials and inverse Kazhdan–Lusztig poly-
nomials could then be reinterpreted as saying something about a form of
‘Ringel duality’ for Soergel bimodules.
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