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Abstract 

Food material properties play an important role in the sensory perception and consumer 

acceptance of foods. However, the actual oral processing behaviour may depend on both the 

material properties of the food that is being consumed as well as individuals’ oral 

capabilities. This study aimed to examine the relationships between intrinsic (oral capabilities 

of healthy participants), as well as extrinsic (food material properties of a set of hydrogels) 

variables to the real oral processing behaviour. Three ț-carrageenan hydrogels (țC), differing 

in fracture mechanics and oral tribology properties, were prepared: native țC, țC with added 

Na-alginate and a țC matrix with added Ca-alginate beads of 300 ȝm. A composite score of 

eating capability (EC) was measured with non-invasive techniques (maximum bite force and 

tongue pressure) using a panel of 28 untrained consumers. The oral processing behaviour 

(number of chews, oral residence time and chewing rate) was analysed with the same 

participants using frame-by-frame video analysis. It was found that the EC scores did not 

correlate with any of the oral processing behaviours. The number of chews and oral residence 

time showed a strong correlation to the fracture force and friction force at orally relevant 

speeds (10-100 mm/s), whereas chewing rate did not vary with these properties. The results 

from this study indicate that oral processing in healthy adults seems mainly motivated by 

food material properties, and the chewing rate seems to relate more to individual differences 

and EC than to food properties. 

Practical applications 

Understanding the interplay between food material properties, consumers’ eating capability 

and oral processing behaviour is important to advance knowledge and to translate this to 

applications for the food industry, such as designing foods with improved textural properties. 

We employed a combination of eating capability measurements, texture analysis, oral 
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tribology as well oral processing video analysis as a feasible approach to understand the 

importance of intrinsic eating capability versus extrinsic food material properties on oral 

processing behaviour. Insights from this study, using model hydrogels, have helped to 

promote knowledge on oral processing behaviour in healthy individuals, could bridge the gap 

between consumer science, psychology and food science, and may be of interest to product 

developers in designing foods with pleasant texture properties.  

Keywords 

Oral processing; eating capability; hydrogels; texture analysis; tribology; video analysis 
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Introduction 

As global obesity rates increase, there have been intensified efforts to design satiety-

enhancing foods that can decrease appetite and thus reduce food intake in the longer term. 

Previous studies have demonstrated the role of oral processing on satiety (Miquel-Kergoat et 

al., 2015), and in a recent systematic review and meta-analysis it was found that ―oral 

processing‖ leads to a significant reduction in food intake (-0.28 effect size, 95% CI: -0.36, -

0.19) (Krop et al., 2018). Here, the term ―oral processing‖ incorporated a variety of 

strategies, such as increased number of chews, eating rate or bite size, extended oro-sensory 

exposure time and/or introducing harder textures as compared to a softer/liquid variant. 

However, the effects of salivation and food/saliva interactions were not considered in the 

retrieved studies (Krop et al., 2018). 

Previous evidence revealed that the actual oral processing strategy is adapted to the 

extrinsic material properties of the food that is being consumed (Koç et al., 2014; Le 

Révérend et al., 2016), but also varies between individuals according to their intrinsic oral 

capabilities (Wilkinson et al., 2000; Peyron et al., 2011). During oral processing, the food’s 

physical properties are continuously manipulated with the food structure being broken down 

and mixed with saliva and fluid released from the food matrix to form a cohesive bolus 

(Chen, 2009). Therefore, both texture properties and the degree of moisture of the initial food 

structure contribute significantly to oral processing (Hutchings and Lillford, 1988). The 

central nervous system uses sensory feedback from the changing physical properties during 

oral processing to update the oral processing strategy, from visual cues before ingestion, to 

first bite until swallowing (van der Bilt et al., 1995; de Wijk et al., 2003; Koç et al., 2014).  

Research on chewing has primarily focussed on solid foods, using various techniques 

to quantify chewing behaviour. In a study by Hiiemae et al. (1996), it was found that the 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d
 A

rt
ic

le



number of chews and oral residence time increased for foods with a more complex initial 

structure, with banana requiring less chewing than biscuits. In another study by Forde et al. 

(2013), the number of chews related to the number of bites for 50 g food sample, and the 

eating rate was inversely related to the number of chews. Previous studies have also made the 

link between commercial food products like cheese, peanuts and carrots, where harder and 

drier foods required more chewing (Fontijn-Tekamp et al., 2004; Engelen et al., 2005). In 

addition, Engelen et al. (2005) found that quantity of saliva and maximum bite force were 

only weakly correlated with chewing characteristics, accounting for less than 10% of the 

variance in the number of chews. However, these products are highly familiar with learned 

expectancies for processing and satiety. 

Hydrocolloids have been used in research to make model foods to study texture and 

oral processing behaviour without invoking an emotional response and expectancies built up 

from prior experience with real life products (Nishinari, 2004; Funami, 2011; Funami et al., 

2012; Hayakawa et al., 2014; Funami et al., 2016; Laguna and Sarkar, 2016; Larsen et al., 

2016). Previous studies observed a relationship between food hardness and chewing 

behaviour, where fracture stress from instrumental texture analyses was correlated to higher 

number of chews and increased oral residence time (Devezeaux de Lavergne et al., 2016; 

Funami et al., 2016; Laguna and Sarkar, 2016). Moreover, from bolus particle analysis it was 

found that harder and more complex model gels break down into significantly higher number 

of particles that are smaller in size (Devezeaux de Lavergne et al., 2016; Larsen et al., 2016). 

Aside from fracture properties, the effects of food structure on oral lubrication (both 

internal and external) have gained increased research attention. Human saliva binds 

particulated food into a cohesive bolus that can be easily swallowed (Pedersen et al., 2002; 

Carpenter, 2012). In addition, the moisture content in foods (providing external oral 

lubrication) has been linked to the used oral processing strategy (Hutchings and Lillford, 
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1988). A dry solid food (e.g. biscuits) will generally require a large quantity of saliva in order 

to form a swallowable bolus, whereas more moist solid foods, such as fruits and vegetables, 

already contain a large quantity of moisture that is released during oral processing (Chen and 

Rosenthal, 2015). However, due to the continuously changing nature of the food structure 

during oral processing, the effects of external lubrication by food on oral processing 

behaviour remains a challenging research topic (Chen, 2009). 

Besides the extrinsic food properties, oral processing also depends on intrinsic 

individual differences in oral physiology, from the size of the oral cavity to the strength of the 

oro-facial muscles (Engelen et al., 2005; Alsanei and Chen, 2014). Several studies have 

mentioned that chewing patterns vary not only between individuals but also within the same 

person. In a study by Lassauzay et al. (2000) the number of chews for gelatine based model 

foods in male individuals varied from 19 to 57, with a similar variability found for the 

different test foods. Another study by Brown et al. (1994) using healthy subjects also 

reported large variations between subjects for the tested foods, such as apple, salami and 

toast, with raw carrot showing particularly big differences in number of chews and oral 

residence time, ranging from 20 to 190 chews and 15 to 125 s, respectively. Furthermore, the 

effects of gender and age on masticatory ability have been reported in literature. Males have a 

bigger bite size, faster eating rate and a higher EMG muscle activity than females (Peyron et 

al., 2004; Park and Shin, 2015), whereas females chewed more and for a longer time than 

males (p < 0.05) (Park and Shin, 2015). Also, due to the decrease of masticatory muscle mass 

and maximum bite force with age (Bakke et al., 1990), the number of chews and EMG 

activity increased in older participants who still had complete healthy dentition compared to 

younger adults (Kohyama et al., 2002; Peyron et al., 2004). At the same time, salivary 

secretion, saliva viscosity, and its protein content varies widely between individuals, as well 
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as within the same individual at different times of the day (Carpenter, 2012), and would 

therefore be expected to influence oral processing. 

Thus, understanding the relationship between oral processing behaviour, food 

material properties (determined both instrumentally and sensorially) and individuals’ eating 

capabilities is important in determining what drives the consumer experience of eating a food 

and what leads to consumer acceptance and preference. To date, no studies have looked at the 

oral processing behaviour of hydrogels in young individuals, examining both the food 

material properties as well as the participants’ individual eating capability. Therefore, the aim 

of this study was to investigate the oral processing response and their potential relationships 

with 1) the extrinsic food material properties of different hydrogels (i.e. fracture behaviour 

and oral lubrication) and 2) the intrinsic eating capability of a group of young healthy 

consumers. 

Materials and methods 

Materials 

Food grade-quality ț-carrageenan (țC) and sodium alginate (NaA) were purchased from 

Special Ingredients Ltd (Chesterfield, UK). Green food colouring was obtained from 

AmeriColor (Placentia, USA) and American peppermint extract was purchased at a local 

supermarket (Leeds, UK). Potassium chloride (KCl) was purchased from Minerals Water Ltd 

(Purfleet, UK) and calcium chloride (CaCl) from VWR International (Leuven, Belgium). All 

materials were used without further purification. Demineralised water was used in 

preparation for all hydrogels. 

Hydrogels 

Based on a previous study by Krop et al. (2019), three model hydrogels (that did not contain 

any fat) were selected that had different chewing and oral lubrication properties as 
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determined by instrumental and sensory texture analysis. The hydrogels consisted of varying 

concentrations of țC alone or with the addition of NaA or calcium alginate (CaA) beads of 

300 ȝm diameter. The selected model gels were 3țC (3 wt% țC), 1.5țC0.5NaA (1.5 wt% țC 

and 0.5 wt% NaA) and 2.4țC0.2CaA300 (2.4 wt% țC and 0.2 wt% CaA beads of 300 ȝm). 

The hydrogels were unsweetened, but flavoured with peppermint aroma and coloured with 

green food colouring to increase acceptability. Further details on the preparation method, as 

well as instrumental and sensory characterisation of the hydrogels have been published 

elsewhere (Krop et al., 2019). The samples were presented in bite-size round pieces (diameter 

25 mm, height 10 mm) in small, shot-glass type plastic cups. 

Puncture test (texture analysis) 

The mechanical properties of the hydrogels were determined using uniaxial puncture test with 

a Texture Analyzer (TA-TX2, Stable Micro Systems Ltd., Surrey, UK) , with a 30 kg load 

cell. The fracture mechanics were measured using a 10 mm Volodkevitch bite jaw probe to 

simulate a first bite with human incisor teeth. Tests were carried out at 22 °C, at a constant 

speed of 2 mm/s and the deformation level was set at 80 % strain. Six replicates were 

measured for each hydrogel on at least four different preparation days. The software 

Exponent (TEE32, v6.1.9.0, Stable Micro Systems Ltd., Surrey, UK) was used to plot the 

force-distance curve and the Young’s modulus was determined from the slope of the curve. 

Tribological measurements 

The oral lubrication properties of the hydrogels after simulated oral processing were 

determined with a Mini Traction Machine (MTM2, PCS Instruments, London, UK), based on 

a method developed by Krop et al. (2019). Briefly, the hydrogels were broken down in 

presence of artificial saliva containing mucin at pH 6.8 (Sarkar et al., 2009) with a 

mechanical blender (final sample to saliva ration 4:3 w/w). The larger gel particles (> 500 
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ȝm) were filtered out, and the friction behaviour of the bolus filtrate was determined. 

Commercially available polydimethylsiloxane (PDMS) ball (diameter of 19 mm) and disc 

(diameter of 46 mm, thickness of 4 mm) were obtained from PCS Instruments (MTM ball 

and disc, Sylgard 184, 50 Duro, London, UK), with the surface roughness of the PDMS 

tribopairs, Ra < 50 nm. The friction force in the mixed lubrication regime was determined as 

a function of the applied entrainment speed, ranging from 10 to 100 mm/s, with an applied 

load of 2N, slide-to-roll ratio (SRR) of 50 % at 37 °C. Measurements were performed in 

triplicate and then averaged to obtain the Stribeck curves. 

Participants 

Twenty-eight healthy participants with natural, intact dentition were recruited to participate in 

this study and gave written informed consent before the start of the study. The study was 

reviewed and approved by the Faculty Research Ethics Committee at the University of Leeds 

(reference number MEEC 16-006). Participants were aged between 22 and 52 years old 

(mean 28.5 ± SD 6.2, 9 male and 19 female). Participants with any allergies/intolerances to 

the gel ingredients were excluded, as well as those who suffered from any condition 

hampering normal chewing or swallowing. All participants received a financial 

compensation. 

Study procedure 

Test sessions were conducted in sensory booths at the School of Food Science and Nutrition, 

University of Leeds. Prior to the start of the study, participants were instructed that they 

would be video recorded while eating the three model foods and that afterwards eating 

capability measures (bite force and tongue pressure) would be taken. Participants were given 

the opportunity to ask questions in case anything was unclear, after which they provided 

written, informed consent form. Samples were provided to the panellists in randomised order, 
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and a practice sample was provided to familiarise the panellists with the type of test samples 

and the eating instructions. 

Video analysis of oral processing characteristics 

To analyse the oral processing behaviour, participants were video recorded while eating the 

model foods. A digital camera (Panasonic SDR-H90) was positioned in front of the 

participant on a tripod, and participants were instructed to look straight into the camera while 

eating the hydrogels. Participants were aware that their oral processing behaviour would be 

analysed, such as number of chews and eating rate, and were given the option to swallow the 

samples or indicate the moment they felt the urge to swallow by raising their hand and 

expectorate the sample in provided containers. Videos were analysed frame-by-frame using 

Observer XT 12 software (v 12.5, Noldus Information Technology, The Netherlands). A 

coding scheme was created to identify the first bite, number of chews and point of 

swallowing, as adapted from previous studies (Forde et al., 2013; Lasschuijt et al., 2017). A 

chew was defined as the point in time when the jaw was at the lowest position during a 

masticatory cycle (closing action). From these behaviours, the eating duration was 

determined as the time between first bite and swallowing, identified as the first main swallow 

at the end of the rhythmic rotary chewing movements. The chewing frequency was calculated 

by dividing the number of chews for each sample by the total eating duration of this hydrogel 

(Chen and Lolivret, 2011; Forde et al., 2013; Laguna et al., 2016b; Laguna and Sarkar, 

2016). 

All videos were coded by a trained researcher, with a second observer analysing at least 15 % 

of the videos in parallel to assess the accuracy of the coding scheme and the performance of 

the coders. The performance of the researchers assessing the videos was validated using a 

reliability analysis, showing at least 85 % agreement. 
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Eating capability measurements 

Tongue pressure was measured using the Iowa Oral Performance Instrument (IOPI®, Medical 

LLC, Redmond, Washington, USA (Ono et al., 2009; Laguna et al., 2015). Participants were 

instructed to place the plastic bulb sensor in the centre of the oral cavity between their tongue 

and the hard upper palate, and press these surfaces together with their maximum strength. 

The maximum tongue-palate pressure was recorded in kPa. 

The maximum biting force was measured using force sensors and a multimeter 

connected through a bread board, a device previously used by Flanagan et al. (2012). The 

force sensor was sandwiched between two adhesive silicone disks (diameter 1.5 cm, 

thickness 0.3 cm), which in turn were wrapped in wrapping foil for hygienic reasons. 

Participants were instructed to bite down separately on the sensor for a couple of seconds 

using their front incisors, left molars and then their right molars. The minimum resistance 

was independently recorded by the multimeter for the front incisors, left molars and right 

molars and subsequently converted into N (Flanagan et al., 2012; Laguna et al., 2015). Both 

measures of tongue pressure and bite force were measured in triplicate for each participant. 

Eating capability (EC) has been defined as ―the physical, physiological and cognitive 

capabilities of an individual consuming food‖ (Laguna et al., 2016b). In previous studies, a 

composite EC score was used that consisted of grip strength, manual dexterity, and oro-facial 

muscular capability (tongue pressure and bite force) (Laguna et al., 2015; Laguna et al., 

2016b). It was determined that the most important factors in determining the EC score were 

related to the oro-facial muscular capabilities, therefore for this study only tongue pressure 

and bite force were included. The EC composite score was calculated using the following 

equation: 

ܥܧ ൌ ቀ ்௉்௉೘ೌೣቁ ൅ ൭ ಳಷಽಳಷಽǡ೘ೌೣା ಳಷಷಳಷಷǡ೘ೌೣା ಳಷೃಳಷೃǡ೘ೌೣଷ ൱    (1) 
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where, TP represents the tongue pressure and BF the biting force measured for each 

participant. The subscript max indicates the highest value measured in the strongest 

participant for that particular variable, L is the bite force from the left side molars, F from the 

front incisors and R from the right side molars. Thus, the maximum EC score that could be 

obtained was 2-points. 

Statistical analysis 

All statistical analyses were performed using SPSS (IBM® SPSS® Statistics, v24, SPSS Inc, 

Chicago, USA). Results are presented as mean ± standard deviation (SD) and alpha was set at 

p < 0.05, unless stated otherwise. Analysis of variance (ANOVA) was applied to determine 

statistically significant differences between samples for the fracture mechanics and eating 

behaviour, and between participants for the bite force parameters. Least significant 

differences were calculated by Bonferroni’s post-hoc test. Pearson’s correlations were 

calculated to study the relationships between food material properties, oral processing 

behaviour and participants’ eating capabilities. 

Results and discussion 

Fracture properties 

The force-distance curves of the three hydrogels upon puncturing with a Volodkevitch bite 

jaw probe can be seen in Figure 1. It shows the typical penetration curves, with the 

increasing deformation of the sample upon increased applied load up to the point of fracture 

as the probe penetrates and ruptures the sample. The hydrogel 3țC required an applied force 

of 8.29 ± 0.96 N, whereas the sample containing alginate beads, 2.4țC0.2CaA300, required 

only half that to rupture (3.67 ± 0.88 N). Interestingly, the sample containing alginate, 

1.5țC0.5NaA, was structurally weaker and required a force of an order of magnitude lower 
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than the native țC hydrogel to puncture the gel (0.57 ± 0.14 N). The fracture forces for the 

three hydrogels were determined to be significantly different (p < 0.05).  

This indicates that țC formed a strong continuous network, whereas the CaA beads 

disrupted this network indicating they were not inherently connected to the țC matrix. The 

presence of NaA weakened the țC network even further, causing disruption of the strong țC 

matrix. This weakening of țC gels in presence of alginates as measured with puncture tests 

was in agreement with results from the same gels during compression tests (previously 

studied by Krop et al. (2019) and Laguna and Sarkar (2016)). 

Lubrication properties 

Figure 2 shows the friction force as a function of entrainment speed for the bolus filtrate of 

the three hydrogels. From previous studies it was determined that the relevant oral processing 

speeds, such as the speed of the tongue, ranged from 20-50 mm/s (Steele and Van Lieshout, 

2009; Krop et al., 2019). Therefore, we have focussed here on the mixed lubrication regime. 

The hydrogel bolus samples were prepared using artificial saliva, and therefore the friction 

force of the artificial saliva was used as a control. It can be seen that the friction force curve 

of the simulated bolus filtrate of the 3țC hydrogel is similar to that of artificial saliva (p >  

0.05, except at ȝ = 70, 90, 100 mm/s), whereas the 1.5țC0.5NaA and 2.4țC0.2CaA300 

samples had a significantly lower friction force as compared to artificial saliva (p < 0.001). It 

is worth pointing out here that the larger gel particles were removed by filtration before the 

oral tribology measurements. The 3țC hydrogel broke down into significantly larger particles 

than the other two after simulated oral processing (> 500 ȝm), and thus were most likely 

removed during the filtration process resulting in friction forces more similar to those of 

artificial saliva. Interestingly, the 1.5țC0.5NaA and 2.4țC0.2CaA300 hydrogel boli did not 

have a significant difference in friction force over the measured entrainments speeds in the 

mixed regime (p < 0.001). The reduced friction force of 1.5țC0.5NaA and 2.4țC0.2CaA300, 
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compared to 3țC, could be explained by the entrainment of a viscous layer of the alginate-

based systems (hydrogel bolus filtrates with artificial saliva) between the PDMS contact 

surfaces due to the smaller broken down hydrogel particles (Gong and Osada, 2001; Krop et 

al., 2019). For 2.4țC0.2CaA300, as theoretically predicted by Hertz theory in our previous 

study (Krop et al., 2019), the alginate beads will most likely be deformed during entrainment 

due to the high pressures generated in the PDMS-PDMS contact zone. Therefore, the 

lubrication was attributed to the entrainment of the alginate polymer in continuum rather than 

the intact beads, as well as leaching out of a layer of water from these beads that might act as 

a surface separator, reducing the friction values. 

Eating capability 

The EC values of tongue pressure and the different measurement locations of bite force for 

all participants is shown in Table 1. The measured tongue pressure values were in line with 

the results from previous studies on young healthy participants (Alsanei and Chen, 2014; 

Alsanei et al., 2015; Laguna et al., 2016a). The bite force values were comparable to studies 

on healthy participants by Fernandes et al. (2003) and Laguna et al. (2016a) who used a 

similar measurement device. However, on average the values were slightly higher in the 

current study, possibly due to the positioning of the test sensors or the interpretation of the 

instructions by the participants. Interestingly, there was no correlation between tongue 

pressure and any of the bite force measurements, with p > 0.1 (see Table 2a). This is in line 

with the study by Laguna et al. (2016a) on participants from a similar age group, highlighting 

that such correlations between oro-facial muscle forces only exist in older adults with limited 

overall oral capabilities (Laguna et al., 2015). 

To group the panellists according to their overall eating capability (tongue pressure and bite 

force), the EC composite scores were calculated using eq. (1). Figure 3 shows the histogram 

of the distribution of the EC scores of all participants. Based on the plot, two groups of 
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panellists can be identified on the extreme ends of the plot, with eighteen observations in 

each group: a low EC group (< 1.0) and a high EC group (> 1.3). The age distribution was 

similar in both groups, and both groups consisted of male and female participants. The 

remaining 48 values in the middle had an EC score between 1.0 and 1.3 (1.0 ≤ EC score ≤ 

1.3). From an eating capability perspective, the participants in this study were however rather 

homogeneous. 

Oral processing behaviours 

Figure 4 shows the oral processing characteristics, such as number of chews, oral residence 

time and chewing rate, that were derived from frame-by-frame video analysis of participants 

eating the hydrogels. The sample 3țC had a significantly higher number of chews and oral 

residence time compared to the 1.5țC0.5NaA and 2.4țC0.2CaA300 hydrogels (p < 0.05). The 

chewing rate did not show a significant difference between the presented samples, suggesting 

that chewing rate was subject to individual differences rather than the food material 

properties (Hiiemae et al., 1996). 

The correlations between the chewing behaviours were analysed for the combined data set 

(see Table 2b). The number of chews and the oral residence time were strongly correlated 

(p < 0.01), meaning that food that is kept in the mouth for a longer amount of time is also 

chewed more. This was in line with findings from previous studies (Engelen et al., 2005; 

Laguna et al., 2016a). The number of chews also correlated with chewing rate (p < 0.01), but 

the chewing rate was not related to oral residence time (p > 0.1). 

Correlations between food material properties, EC parameters and oral 

processing behaviours 

The food material properties and EC parameters were examined for relationships (if any) 

with the oral processing behaviours to check whether it was the intrinsic capability or 
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extrinsic food design factors that could best explain the oral processing strategy used for the 

hydrogels (Table 3a and b, respectively). As can be seen in Table 3a, the puncture force 

showed a strong correlation with the oral processing characteristics, i.e. number of chews and 

oral residence time (p < 0.001). This confirms the data from previous researchers using real 

food systems, where they made similar conclusions for banana, apple, biscuits (Hiiemae et 

al., 1996) and products like cheese, peanuts and carrots (Engelen et al., 2005). The friction 

force measurements showed a good correlation to the number of chews (p < 0.01 to p <  

0.05), and the oral residence time (p <  0.05 to p < 0.1), depending on the entrainment speed. 

At the orally relevant speeds, 20-50 mm/s, the correlations seemed to be weaker (p < 0.01) 

however than at higher speeds (p < 0.05), suggesting that slightly higher entrainments speeds 

might relate better to the number of chews and oral residence time. Therefore, we propose 

that for the hydrogel bolus filtrates, number of chews and oral residence time are better 

explained by frictional properties in the mixed lubrication regime at speeds ≥ 80 mm/s, where 

the boli form a film separating the two PDMS surfaces (i.e. separating tongue and palate 

during in vivo oral processing). Additionally, we do not expect to see any correlations of the 

friction force in the boundary regime (speeds < 10 mm/s) to the oral residence time due to the 

absence of any adsorption of the  hydrophilic hydrogel bolus particles to the hydrophobic 

tribo-surfaces (de Vicente et al., 2006; Krop et al., 2019; Sarkar et al., 2019). The chewing 

rate did not correlate with any of the food material properties (p > 0.1), suggesting that it is a 

more inherent property linked to each individual. In addition, it is worth pointing out that 

while the number of chews and oral residence time showed a strong correlation (see Table 

2b), and are more product specific (Figure 4), the more inherent chewing rate still increased 

with the number of chews as indicated by the correlation between the two. This effect was 

not found for the oral residence time (no correlation to chewing rate), suggesting that where 
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chewing rate and number of chews have a link to the individual, the oral residence time does 

not and is mostly linked to the type of food structure being consumed. 

The individual EC measures did not correlate with the oral processing behaviours, nor 

did the EC composite scores (p > 0.1), see Table 3b. Together, these results suggest that the 

food material properties dictated the oral processing behaviour of hydrogels with different 

textural properties in young individuals rather than their individual EC. However, it should be 

noted that EC was not a limiting factor in the oral processing of the model gels used in these 

participants. The strength of these model gels was considerably lower than the maximum bite 

force and tongue pressure measured in current individuals, 8.29 ± 0.96 N or 10.83 ± 1.18 kPa 

for the hardest hydrogel (3țC) compared to the mean 50.6 ± 15.5 kPa for tongue pressure and 

154.8 ± 68.8 N for bite force. 

Additionally, the effect of EC level was checked by analysing the correlations 

between ECs and oral processing behaviours for the selected low EC and high EC groups 

separately. For the participants with an EC score < 1.0, the bite force for the front incisors 

and left side molars correlated with the number of chews and oral residence time (p < 0.05). 

On the other hand, the high EC group (score > 1.3) only showed correlations of the chewing 

rate with the bite force of the front incisors and EC (p < 0.05). This would suggest that 

participants with a low EC score compensated for this by increasing the number of chews and 

oral residence time, while for people with a higher EC score, and thus a combination of 

higher maximum bite force and higher maximum tongue pressure, the chewing rate 

increased. 

Conclusions 

Both the extrinsic food material properties and the intrinsic eating capability of the consumer 

are hypothesized to have an influence on oral processing behaviour. Food material properties 
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can be quantified by the use of instrumental as well as sensory techniques. Characteristics of 

an individual including age, gender and their oro-facial muscular capabilities may also affect 

oral processing behaviour. In this study, a panel of relatively young, healthy participants, 

consisting of both males and females, was recruited to investigate the importance of their 

eating capabilities, such as maximum bite force and tongue pressure, versus the food material 

properties on the oral processing strategy of three hydrogels with different textural properties 

and bolus tribology. It was found that the oral processing behaviour was dominated by both 

the instrumental fracture properties of the hydrogels and lubrication properties of the 

hydrogel boli. Whilst the fracture properties of the gels and the friction force of the boli in the 

mixed lubrication regime correlated well with number of chews and oral residence time, they 

did not relate to the chewing rate. Therefore, we suggest that chewing rate for hydrogels is 

more subject to individual differences than their physical properties. Interestingly, the 

number of chews and oral residence time were greater in participants with a low EC 

compared to high EC score, whereas individuals with a higher EC score had a higher chewing 

rate. In the future, this study should be replicated with different hydrogels, as well as other 

types of food to confirm the current findings. Also, it might be interesting to investigate 

relationships between oral physiological parameters specific to each individual, such as the 

effects of consumers’ habitual salivary flow on oral processing strategy, as well as their 

preferred oral processing style/chewing type and their favoured type of food materials to eat 

(Wilson et al., 2018). 
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Tables 

Table 1. Eating capability measures of the 28 included participants. 

Gender Age 
Tongue 
Pressure (kPa) 

Bite Force (N) 
Left Side 
Molars 

Bite Force (N) 
Front Incisors 

Bite Force (N) 
Right Side 
Molars 

  Mean SD Mean SD Mean SD Mean SD 
Female 24 12.3 1.2 85.1 2.2 79.4 5.7 62.8 1.4 
Female 32 10.0 1.0 164.2 17.4 142.3 11.8 124.7 27.8 
Female 34 27.7 1.5 89.9 2.2 58.2 1.6 104.0 15.1 
Female 22 42.0 3.0 73.8 5.2 62.3 0.0 63.0 19.1 
Female 27 47.0 4.4 91.7 10.9 78.9 13.4 91.3 7.6 
Male 25 54.3 7.5 106.9 15.8 61.0 4.1 98.4 7.9 
Female 26 44.3 3.8 148.9 18.3 108.7 29.5 174.1 20.7 
Male 28 61.0 1.0 121.0 4.5 85.5 8.5 105.2 12.5 
Female 36 64.0 4.6 83.7 6.4 76.4 12.2 116.0 11.3 
Female 31 37.3 7.5 198.7 15.1 151.6 5.3 230.7 7.5 
Male 31 57.0 1.7 180.0 7.3 75.9 3.2 126.7 23.9 
Female 27 47.3 8.3 196.1 3.5 127.9 10.8 186.4 10.3 
Female 25 53.7 6.7 164.9 3.4 138.9 5.1 172.2 9.6 
Male 52 63.0 1.7 147.0 5.2 103.9 8.5 143.7 8.3 
Male 36 62.7 2.1 165.8 19.8 123.3 8.0 122.1 3.3 
Female 25 51.7 7.0 247.8 3.1 110.8 24.6 191.4 44.2 
Female 31 59.3 2.3 244.8 14.6 121.4 8.6 117.6 12.6 
Female 24 53.0 10.1 198.9 3.1 144.5 7.6 210.0 14.6 
Female 29 40.0 3.6 286.4 7.8 154.9 9.3 272.8 13.3 
Male 24 56.0 8.5 106.9 1.7 160.5 4.2 256.7 5.3 
Female 23 60.7 5.5 207.7 14.4 73.0 19.7 227.5 5.8 
Female 23 65.3 2.9 148.8 19.2 132.9 2.5 172.0 12.7 
Female 32 60.0 1.0 230.3 45.7 99.9 12.2 206.4 12.0 
Male 28 52.3 5.8 237.9 11.8 151.7 27.6 236.8 16.4 
Female 26 81.3 2.9 123.4 2.7 79.5 31.8 108.7 25.7 
Female 22 52.3 1.5 273.6 4.4 147.6 25.3 268.6 12.9 
Male 23 53.7 1.5 297.2 3.3 166.7 17.8 272.6 10.7 
Male 33 46.0 2.6 336.0 9.0 284.6 5.7 280.6 16.1 
Panel Mean 50.6 15.5 177.1 72.2 117.9 48.1 169.4 68.5 
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Table 2. Correlation matrix of the eating capability measurements (a) and oral processing 
behaviours (b) for the 28 participants with 3 replicates (n= 85), and significant values 
indicated in green: p < 0.01. 

(a) 

Tongue 
pressure 

Bite force, 
left side 
molars 

Bite force, 
front 

incisors 

Bite force, 
right side 

molars 
Tongue pressure 1    
Bite force, left side molars 0.07 1   
Bite force, front incisors -0.08 0.69 1  
Bite force, right side molars 0.11 0.77 0.71 1 

(b) Number of chews Oral residence time Chewing rate 
Number of chews 1   
Oral residence time 0.94 1  
Chewing rate 0.35 0.07 1 
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Table 3. Correlation matrix of food material properties related to oral processing behaviour 
(a) and eating capabilities related to oral processing behaviour (b), with the levels of 
significance indicated in different shades of green: p ≥ 0.1, p < 0.1, p < 0.05 and p < 0.01. 
Since the number of measurements for the food material properties and the oral processing 
characteristics (a) was not the same, no exact correlation values are displayed but an overall 
impression of the data is shown based on multiple variations of correlation analyses between 
the two data sets. 

(a) Number of chews Oral residence time Chewing rate 
Puncture force    
Friction force 100 mm/s    
Friction force 90 mm/s    
Friction force 80 mm/s    
Friction force 70 mm/s    
Friction force 60 mm/s    
Friction force 50 mm/s    
Friction force 40 mm/s    
Friction force 30 mm/s    
Friction force 20 mm/s    
Friction force 10 mm/s    

(b) Number of chews Oral residence time Chewing rate 
Tongue pressure 0.09 0.04 0.02 
Bite force left molars 0.13 0.07 0.09 
Bite force front incisors 0.14 0.04 0.21 
Bite force right molars 0.08 0.00 0.11 
EC score 0.15 0.06 0.11 
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Captions for Figures

Figure 1. Mean (± SD) force over distance curve of the hydrogels obtained from puncture tests 

with a Volodkevitch bite probe (first bite), with 3κC (▲), 1.5κC0.5NaA ( ) and 

2.4κC0.2CaA300 ( ).

 

Figure 2. Mean friction force (± SD) of 3κC (▲), 1.5κC0.5NaA ( ) and 2.4κC0.2CaA300   ( ) 

gel bolus filtrates, after simulated oral processing with artificial saliva (), at 37 °C as a 

function of entrainment speed in the mixed lubrication regime.

Figure 3. Histogram of the eating capability (EC) composite scores of the 28 participants with 

three replicates each (n = 84).

Figure 4. Mean values (± SEM) of the oral processing characteristics of the hydrogels obtained 

from video analysis (n = 28). From left to right: number of chews, oral residence time and 

chewing rate. Different lower case letters indicate statistically significant differences between 

conditions (p < 0.05).
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