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Abstract—Current methods for non-intrusive load monitoring 
problems assume that the number of appliances in the target 
location is known, however, this may not be realistic. In real-
world situations, the initial setup of the site can be known but 
new appliances may be added by users after a period of time, 
especially in a household or non-restrictive scenarios. In this 
sense, current methods without detecting new appliances may 
not accurately monitor loads of different appliances and 
scenarios. In this work, a novel new appliance detection method 
is proposed for non-intrusive load monitoring with imbalance 
classification for appliances switching on or off. The prediction 
of an appliances being switched on or off is an important step 
in load monitoring and the switching on frequencies for coffee 
machine and air conditioning in a household are different, 
making the problem inherently imbalanced. Experimental 
results show that the proposed method yields outstanding 
performance against the well-known oversampling method, 
synthetic minority oversampling technique (SMOTE), on real 
non-intrusive load monitoring applications in scenarios with 
new appliances emerging. 
 

Index Terms—new appliance detection, imbalance 

classification, multi-label classification, non-intrusive load 

monitoring. 

 
 

I. INTRODUCTION 

here are two major ways to make energy more sustainable, 
namely, using renewable energy (such as solar, wind, 

geothermal, etc.) and improving energy utilization efficiency. 
The generation of renewable energy is still not very stable and 
scalable in comparison to traditional energy generation methods, 
e.g. coal and nuclear power plants. With the fact that 40% of 
global energy is consumed by residential and commercial 
buildings, effective management of the energy usage is 
essential to improve energy efficiency [1]. Load monitoring has 
great potential in many useful applications, for examples, 
energy awareness and energy conservation, controllable load 
quantitative evaluation, human behavior and load prediction [2]. 
Load monitoring helps to understand the energy consumption 
of specific appliances in a house and make a more energy 
efficient plan. If the electricity customers are aware of the 

 
 

average consumption of a type of appliance, more personalized 
and specific energy saving models of appliances can be 
recommended to those who are using inefficient devices [3].  

 There are two major types of load monitoring, that is, 
intrusive load monitoring (ILM) and non-intrusive load 
monitoring (NILM) [4]. The ILM refers to installing sensors on 
each individual appliance or using intelligent sockets to directly 
monitor their energy use. The key drawback of the ILM is the 
requirement of a large number of installation and maintenance 
costs for installed sensors. Therefore, to make load monitoring 
more practical, the NILM is proposed. Ideally, the NILM only 
requires data from a smart meter to disaggregate appliance-
level data. The NILM is cost-effective and friendly to the new 
installation and replacement of appliances. The disaggregation 
problem is usually solved by machine learning methods, e.g. 
sparse coding [5] and Hidden Markov Model [6]. 

The NILM problem can be transformed into a multi-label 
classification problem, such that the ON/OFF state of each 
appliance is classified simultaneously at each time step [7]. 
When the NILM problem is treated as a multi-label 
classification problem, it is inherently a class imbalance 
problem because some appliances are frequently used (e.g. 
refrigerators) while others may only occasionally used (e.g. 
coffee machines). Class imbalance is a common issue in many 
real-world applications, such as diagnosis of rare diseases, 
forecasting rare extreme returns in financial markets [8], power 
system dynamic stability assessment [9], fault diagnosis, and 
anomaly detection [10]. Class imbalance problems occur when 
one class severely out-represents another [11], i.e. a class 
consists of much more samples (i.e., majority class) than other 
classes (i.e., minority class). Without properly handling the 
class imbalance issue, classifiers learnt from the skewed dataset 
will be biased to the majority class and yield a low accuracy on 
the more important minority class. However, this issue has not 
been well discussed in current multi-label based learning 
models for NILM. 

Another important issue is that current NILM models are 
built based on the assumption that the number of appliances 
during training and testing is fixed. However, in a real-world 
setting, this assumption seldom holds true because users may 
add new appliances after a period of time, especially in 
households and non-restrictive locations. In this sense, existing 
algorithms may not be able to accurately monitor loads in the 
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target location. With the introduction of appliances in the loads, 
it may imply that that the resident has gradually changed the 
resident behavior due to personal issue or external factors. For 
example, driven by the price differences, residents may prefer 
to purchase and use more energy-saving appliances, or users 
choose to use more electrical appliances during the valley load 
period than during the peak load period [12]. Better capturing 
these patterns may help to infer residents’ potential interests and 
more personalized electricity plan and energy saving appliances 
could be recommended [13]. 

Therefore, in this work, a new NILM method using the 
Stochastic Sensitivity Measure-based Noise Filtering and 
Oversampling method, i.e. SSMNFOS, and the Multi-Label 
Classification-based New Appliance Detection and Training 
method, i.e. NADT, are proposed to tackle both the class 
imbalance issue and the new appliances emerging issue. The 
SSMNFOS is designed to handle the class imbalance problem. 
The NADT is designed to detect new appliance being added to 
the load and to update the classifier ensemble to adapt to the 
introduction of a new appliance in the multi-label NILM 
classification problem.  

Major contributions of this work are: 
1) Based on the knowledge of the authors, this is the first work 
to investigate the problem of deployment of new appliance 
during the NILM which is inherently unavoidable in real-world 
NILM problems. This proposed new research problem to the 
NILM may lead to a new branch of interesting researches to the 
load monitoring community. 
2) A detection and training algorithm for emergence of new 
appliance is proposed to help the multi-label classifier ensemble 
to adapt to new load monitoring environment (i.e. with more 
appliances than being told).  
3) For multi-label classifier ensemble training, the SSMNFOS 
is used to relieve the class imbalance problems among different 
appliance classes. The SSMNFOS denoises the training dataset 
before oversampling to enhance the robustness of oversampling 
with respect to noisy samples. In contrast to existing 
oversampling methods, e.g. SMOTE (Synthetic Minority 
Oversampling Technique), the SSMNFOS is more robust to 
noisy samples in the minority class. This is important to the 
NILM problem because the load measured by the smart meter 
may have noise interference from deficiency of wires, 
environment, and/or other factors.  

Details of all abbreviations are given in TABLE I. The rest 
of this paper is organized as follows. Related works are 
introduced in Section II. Section III introduces the proposed 
method. Experimental setup and results are discussed in Section 
IV. Section V concludes this work.  

TABLE I 
List of Abbreviations  

ILM Intrusive Load Monitoring 
NILM Non-intrusive Load Monitoring 
MLP Multilayer Perceptron 

SMOTE Synthetic Minority Oversampling Technique 
SSM Stochastic Sensitivity Measure 

SSMNFOS 
Stochastic Sensitivity Measure-based Noise 

Filtering and Oversampling 
NADT New Appliance Detection and Training 

MLCDTL 
Multi-label Consistent Deep Transform 

Learning 

MLCDDL 
Multi-label Consistent Deep Dictionary 

Learning 
MLKNN Multi-label K-Nearest Neighborhood 
KINOS K-influential Neighborhood Oversampling 
REDD Reference Energy Disaggregation Dataset 

II. RELATED WORKS 

In this section, the NILM, the multi-label classification 
problem for NILM, and imbalance classification techniques are 
introduced in subsections A, B, and C, respectively. 

A. NILM 

 Load monitoring refers to the monitoring of the usage of 
appliance in a house. Appliance-level models are crucial for 
many smart grid technologies such as demand response, energy 
storage, and integration of more renewables [3]. The two major 
categories of load monitoring are the intrusive load monitoring 
(ILM) and the non-intrusive load monitoring (NILM) [4]. The 
ILM installs a sensor on each appliance or uses intelligent 
socket for each appliance. It requires a large number of 
installation and maintenance costs. To solve this problem, Hart 
proposed the NILM in 1990s [4]. Ideally, it only requires data 
from a smart meter to disaggregate appliance-level data. Most 
researchers of the NILM focus on monitoring switching events 
on a single appliance while monitoring a set of the same type of 
appliances may be more meaningful [14]. Although an 
appliance does not consume much energy, there may be many 
such type of appliances (such as lights) in the house and users 
may switch them all ON or OFF together. In addition to smart 
meter data, appliance usage characteristic is another important 
information for load monitoring because the usage period 
(being turned ON) of some appliances may be relatively fixed 
(e.g. coffee machine in the morning but rarely in mid-night) 
[13]. Authors of [15] applied deep learning to the NILM while 
authors of [16] use a semi-supervised learning method to deal 
with situations of label missing in some training data.  

B. Multi-label Classification for NILM 

When more than one appliance is being monitored, the 
specific state of the appliance can be obtained by direct 
observation without using sensors to measure. The multi-label 
consistent deep transform learning (MLCDTL) and the multi-
label consistent deep dictionary learning (MLCDDL) are 
applied to learn the multi-label classification for NILM 
problems by combining transform learning, dictionary learning, 
and deep learning [15]. The MLKNN is a multi-label 
classification variant being derived from the general k-nearest 
neighborhood classifier [17]. A more effective way may be 
training an ensemble of classifiers for the multi-label 
classification NILM problem with each base classifier trained 
particularly for each appliance [18]. The multi-label 
classification is then formed by concatenating all results from 
the classifier ensemble in a vector form. Another method is the 
Label Powerset which trains a classifier for each pair of class 
labels for better distinguishing different labels [19]. However, 
the problem becomes very complicated and huge when the 
number of labels (i.e. appliances) is large.  

Current NILM researches focus on the classification of the 
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ON/OFF states of an appliance or a group of appliances. 
However, all of them assume that the number and types of 
appliances are previously fixed prior to the NILM. This is 
unrealistic because people always buy new appliances and plug 
them to the power network. In this common scenario, current 
methods will fail because of the unexpected addition of new 
appliances. Therefore, the detection and adaptation of addition 
of new appliance is an important new challenge to the NILM 
researches. Better identification of the introduction of new 
appliances would improve the overall classification 
performance of the multi-label learning machine. 

C. Imbalance classification 

When NILM is considered as a multi-label classification 
problem, the target is to classify if an appliance is switched ON 
(1) or OFF (0) at a given time step. Some appliances (e.g. air 
conditioning) are rarely switched off while some appliances 
(e.g. coffee machine) are rarely switched on. Therefore, class 
imbalance is unavoidable in NILM problem. Proper techniques 
should be employed to improve the robustness and 
effectiveness of these systems. Resampling is effective in 
handling the class imbalance problems and is one of the key 
elements for successful operation of many complex systems 
such as smart grids [9], [20].  

Undersampling removes redundant majority samples while 
oversampling replicates or generates new minority samples in 
order to rebalance the class distribution. Undersampling usually 
refers to undersampling the majority class because minority 
class consists of fewer samples and removing them may lead to 
severe information loss. For example, the diversified 
sensitivity-based undersampling [21] employs clustering to 
maintain the distribution of both classes and introduces a 
stochastic sensitivity-based sampling method to select the most 
informative samples to create a balance dataset. This procedure 
is executed several times and a robust classifier is iteratively 
retrained using these rebalance datasets. Recent studies have 
been carried out to explore the potential of removing minority 
samples so as to eliminate minority noisy samples [22]. In [22], 
a k-nearest neighbors-based noise filter is applied to remove 
noises in both classes, after which an undersampling method is 
applied to rebalance the dataset. In this way, both class noise 
and class imbalance problems are handled simultaneously.  

In contrast to undersampling, oversampling tries to enhance 
the representation of the minority class by replicating existing 
minority samples or generates new ones. Among many 
oversampling methods, the synthetic minority oversampling 
technique (SMOTE) is of most popularity [23], which generates 
new samples to increase the number of minority samples along 
a line connecting adjacent minority samples. Variants of the 
SMOTE mainly try to overcome the drawback of the SMOTE, 
i.e., it may introduce new noisy minority samples to the dataset 
or enlarge the overlapping area between classes. For example, 
the K-influential neighborhood oversampling (KINOS) [24] 
first filters the minority samples and then applies an 
oversampling method to the noise-filtered dataset. After that, 
the filtered noisy samples are added back to the rebalance 
dataset to avoid the loss of information.  

In this work, the oversampling technique is applied to handle 
the class imbalance problem to maintain as much useful 

information as possible. However, the energy data obtained by 
the meter is often unstable and will fluctuate within a certain 
range. Thus, the obtained data contains noise, which may affect 
the classification results. Therefore, a noise filter based 
oversampling method is applied in this work to better handle 
the noisy imbalance problem in the non-intrusive load 
monitoring system. 

III. NILM WITH NEW APPLIANCE DETECTION 

In standard NILM problems, a classifier or an ensemble of 
classifier is trained using a given dataset to learn the multi-label 
classification of the ON/OFF states of a set of given appliances 
in a house. In real-world situation, new appliances may be 
added while existing appliances may be removed from the 
house. In this work, the removal of existing appliance is ignored 
because they can be classified as OFF without affecting the 
overall NILM. However, current methods ignoring the 
emergence of new appliance may jeopardize the NILM task and 
mislead the following disaggregation process. 

The multi-label state classification problem is a steaming 
problem in which a chunk of data (readings of the smart meter) 
arrives in every time step. In each time step, the NADT in the 
proposed method detects deployment of any new appliance and 
learns the behavior of this new appliance for multi-label state 
classification. For both existing and new appliances, the multi-
label state classification is learned by the SSMNFOS.  

So, there are two major components in the proposed method 
for NILM with class imbalance and emerging appliances. The 
first one is the sensitivity-based noise filtering and 
oversampling (SSMNFOS) while the second one is the new 
appliance detection and training (NADT). They will be 
introduced in Sections III-A and III-B respectively. 

A. Stochastic Sensitivity Measure-based Noise Filtering and 

Oversampling Method (SSMNFOS) 

The classification of noisy samples will change easily if their 
features change slightly. Noisy samples exist in both NILM and 
classification problems. The robustness of the trained classifier 
can be enhanced by identifying and removing those noisy 
samples. The SSMNFOS is proposed to train classifiers for 
noisy and imbalance problems by identifying and removing 
noisy samples before oversampling to improve the classifier 
training. Stochastic sensitivities of training samples are 
evaluated using a neural network ensemble. Samples yielding 
stochastic sensitivity measures (Eq. 3) larger than a pre-selected 
threshold value are considered as noisy samples and will be 
removed because they are likely to be misclassified. The 
threshold value controls how conservative one treats a sample 
to be noise. The smaller the threshold, the more training 
samples are regarded as noises. In contrast, a too large threshold 
leads to very few noisy samples being recognized and the 
performance of the following oversampling will be hindered.  

Then, the SSMNFOS oversamples the noise filtered dataset 
to balance the class distribution. In this way, new noises are not 
easily introduced to the dataset, thus the SSMNFOS enhances 
the performance of the oversampling and leads to a classifier 
with higher generalization capability. Finally, the SSMNFOS 
trains a classifier using the final balance denoised dataset. The 
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pseudocode of the SSMNFOS is given in Algorithm 1. Fig. 1 
illustrates the overall procedure of the SSMNFOS. 

Fig. 2 demonstrates how the SSMNFOS handles noisy 
imbalance dataset. A noisy dataset is given in Fig. 2(a). Fig. 
2(b) shows the balance dataset created by the standard SMOTE 
while Fig. 2(c) shows the balance dataset created by the 
SSMNFOS using the SMOTE as the oversampling method. 
Both methods create balance datasets, but the standard SMOTE 
creates a noisier dataset in comparison to the original one. In 
contrast, the balance dataset created by the proposed method is 
free from noise in this case. This shows the effectiveness of the 
proposed method. 

The stochastic sensitivity measure (SSM) of a sample is 
computed by the average output deviations yielded by small 
perturbations to its input features. If classifier outputs are 
severely perturbed by these small perturbations in inputs, the 
classifier is sensitive to this particular training sample. This 
sample is more likely to be a noisy sample because it is likely 
to be surrounded by samples in the other class.  

 
Fig. 1 Overall procedure of the SSMNFOS 

In this work, the SSM of a training sample 𝑥 is defined as the 
proportion of randomly perturbed samples with predicted labels 
being different from the true label 𝑦 of 𝑥. The SSM is 
formulated as follows:                            𝑆𝑆𝑀(𝑥, ℎ) = ∑ |𝑦−ℎ(𝑥𝑝)|𝛽𝑝=1 𝛽                          (1)                 

where x, 𝑦, xp, 𝛽, and h(⋅) ∈{0,1} denote a given training 
sample, the true label of x, the pth perturbed samples around x, 
the number of perturbed samples, and the predicted label by the 
classifier h, respectively. Perturbed samples are created via 
adding small perturbations to inputs of the training sample, such 
that they are located in a region, i.e. Q-neighborhood. The Q-
neighborhood of x is defined as follows: 

SQ (𝑥) = {𝑥p|𝑥p = 𝑥 + Δ𝑥, |Δ𝑥i| ≤ 𝑄, 𝑖 = 1, 2,…, 𝑛}    
(2)        
where Δ𝑥, Δ𝑥i, Q, 𝑛 denote the magnitude of perturbations to 
the training sample, the magnitude of perturbation to the ith 
input feature of the training sample, the maximum magnitude 
of perturbation, and the number of features, respectively. For a 
dataset normalized to [0, 1], Q = 0.1 means that a maximum 
deviation of 10% from the training sample is allowed for 
perturbations. Samples located within the Q-neighborhood of a 
training sample are expected to be in the same class with the 
training sample. It is because a classifier with a good 
generalization capability is expected to be robust to such small 
perturbations.  

However, evaluating the SSM value of a sample using only 
one classifier may yield a high variance. Moreover a classifier 
trained using an imbalance dataset may be biased to the 
majority class. Therefore, a neural network ensemble trained 
via a balance bagging method is employed in the SSMNFOS to 
evaluate the SSM values of training samples, which is 
formulated as follows: 𝑆𝑆𝑀(𝑥, 𝐻) = ∑ 𝑆𝑆𝑀(𝑥,𝐻(𝑡))||𝐻||𝑡=1 𝑇                            (3)     

where H(t) and T denote the tth base classifier in ensemble H and 
the number of base classifiers in H, respectively. The average 
value of the SSM values of each training sample yielded by all 
base classifiers in H is utilized as the final SSM value of each 
sample for noise evaluation. The balance bagging (Algorithm 2) 
is employed to create multiple balance sub-datasets to train the 
neural network ensemble. 

Algorithm 1 SSMNFOS  
Given: training dataset 𝒟 , threshold λ, oversampling method  
Output: Noise-reduced and balance dataset 𝒟 ∗ 

1.      Train a neural network ensemble 𝐻  based on 𝒟  using balance  
bagging 

2. Compute the average SSM value of each training sample through 𝐻   
using Eq. (3)  

3. Remove all training samples yielding 𝑆 𝑆 𝑀 (𝑥 (i),𝐻 ) > λ and set the  
filtered dataset as 𝒟  '  

4. Apply oversampling on 𝒟 ′ and set the balance dataset as 𝒟 ∗ 
 

Algorithm 2 Balance Bagging  
Given: training dataset 𝒟, number of base classifiers T, learning 
algorithm L  
Output: Ensemble of base classifiers H 
1. For t = 1 to T do  

a)  Set sub-training dataset 𝑈  = ∅  
b)  Draw ‖𝒟 ‖/2 samples from each class randomly with  

replacement and put them in U  
c)  Train a base classifier 𝐻 (t) based on U using learning  

algorithm L   
End for 

2. 𝐻  =arg maxy ∑ 1𝑡:𝐻(𝑡)(𝑥)=y  
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(a) Original dataset                                            (b) Balance dataset created by the SMOTE               (c) Balance dataset created by the SSMNFOS 

Fig. 2 Balance  dataset created by the SMOTE and the SSMNFOS 

B. New Appliance Detection and Training (NADT) 

The assumption that all appliances are known at the 
beginning of NILM is not reasonable and unrealistic. In 
practice, however, new appliances may be added to the house 
and the number of appliances may change. Therefore, an 
appliance detection and training algorithm is proposed to 
improve the multi-label classification for NILM. In multi-
label NILM problems, an ensemble of neural networks is 
trained with each base classifier corresponding to the 
ON/OFF state classification for an appliance. Each base 
classifier is trained using the SSMNFOS for a given 
appliance. 

To formulate the learning problem, the data collected by 
the smart meter is assumed to be consecutively sent to the 
learning system in batches with a fixed size (for example, 
half an hour of energy readings). In this setting, the learning 
model is firstly trained using the first several data chunks and 
is evaluated using the later upcoming data chunks. So the 
learning model is evaluated over each data chunk.  

If no new appliances emerge in the consecutive data 
chunks, the performance of the model is expected to maintain 
at a stable level. However, if new appliances are added to the 
loads, the performance of the model would be negatively 
affected because it can only recognize appliances learnt from 
the previous training data chunks. Therefore, the new 
appliance detection and training method (NADT) in this 
work detects new appliances when the overall performance 
of the ensemble of neural networks drops. 

 

Algorithm 3 NADT  
Given: preprocessed dataset 𝒟, batch number of dataset M, initial 
training batch number M’, initial appliance number R, threshold λ 
Output: Classifier sets for initial appliances and new appliances H' 
1. Uses M' batch data of D to train the initial R appliances and get R 

classifiers. 
2. The average metric value of these R classifiers on the M' batch 

data is called the baseline B, which represents the performance of 
the classifiers when it is working normally (no new appliances 
emerge). 

3. Add R initial classifiers to H'. 
4. For t = M'+1 to M do  

a) Use R classifiers to test the tth data chunk and get a metric 
value E of the current data chunk. 

b) If |E-B|>λ, considers that the new appliance emerges, go to 
4(c), else continue. 

c) If new appliance is used on tth data chunk, the algorithm is 
judged correctly, go to 4(d), else continue. 

d) The number of new appliances is called W. Use (t-1)th and 
tth data chunks to train the classifiers of new appliances. If 

the size of new appliance‘s minority class on these samples 
is less than 2, add the previous chunk. (Such that both 
positive and negative samples are available and there are at 
least two samples in each class). 

e) Add W new classifiers to H'. 
f) The average metric value of these R+W classifiers on the tth 

and (t-1)th data chunks is used to update the baseline B. 
g) R=R+W. 
End for 

 
For example, at the beginning of the experiment, there are 

R appliances in the house. The proposed method first trains 
R base classifiers for the R appliances. The performance 
evaluated on these training data is recorded and used as the 
baseline. Then, the trained model is used to evaluate on each 
incoming data chunk and the performance is recorded. If the 
performance on current data chunk differs from the baseline 
by more than a given threshold, a new appliance is 
considered to emerge in the current data chunk. This data 
chunk is used to train a new base classifier to monitor the 
emerging appliance. Detailed procedures are shown in 
Algorithm 3. 

IV. EXPERIMENTAL STUDIES 

In this section, we divide the experiment into two parts. 
Part A confirms the advantages of the proposed method 
SSMNFOS in dealing with noisy imbalance data, and part B 
confirms that the proposed NADT algorithm can be well 
combined with SSMNFOS to deal with the problem of new 
appliance detection in NILM. In parts A and B, the basic 
classifier of all the methods used is a well-known multilayer 
perceptron (MLP). The implementation of MLP in WEKA 
[25] is employed in this work and the default parameters are 
used. 

A. Imbalance Classification with Noise 

In order to evaluate the superiority, robustness and 
effectiveness of the SSMNFOS, experiments on imbalance 
classification with label noises are designed. An electricity 
price dataset (Australian Electricity Price Data) collected 
from the Australian National Electricity Market [26], a 
stability of electrical grid dataset, and another eight widely 
used imbalance datasets from the KEEL dataset repository 
[27] and the UCI dataset repository [28] are employed. 
Although some of datasets employed in this experiment are 
not related to electric load monitoring, without loss of 
generality, they can illustrate the purpose of proposing the 
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method. Both the Electrical Grid Stability Simulated Data 
and the Australian electricity price data are datasets related 
to smart grid. The collected Australian electricity dataset 
consists of electricity price data in New South Wales (NSW) 
and Victoria (VIC) in year 2018. The task is to determine 
whether the average spot price ($/MWh) in NSW is higher 
than that in VIC in every 30 minutes. The features used in 
the classification tasks are day in a week, period in a day, 
demand of NSW and VIC. Characteristics of datasets are 
given in TABLE II, where imbalance ratio (IR) is defined as 
the number of majority samples divided by the number of 
minority samples. Missing data in each dataset has been 
removed and the number of samples shown in TABLE II is 
the number of samples of the processed dataset. Each dataset 
is randomly split into two halves, one for training and the rest 
for testing. A ten-time five-fold cross validation is employed 
for each dataset. The mean and standard deviation values of 
the performance for each method over ten runs are recorded 
for performance evaluation. 

To show the differences among different methods, the 
Friedman's test with a post-hoc Hochberg's test [29] at the 
significance level of 0.05 is applied to compare the proposed 
method with other methods over multiple datasets. The 
compared methods used in this experiment are the SMOTE 
and the basic MLP (with no treatment to imbalance 
problem). The performance metric adopted for this 
experiment is a new metric F derived from the F1 measure. 
The F1 measure provides a comprehensive consideration of 
precision and recall for the positive class. It is defined as 
follows:                                  𝐹1 = 2𝑇𝑃2𝑇𝑃+𝐹𝑃+𝐹𝑁                                    (4) 

where TP, FP, and FN denote true positive, false positive, 
and false negative, respectively. For imbalance problems, F1 
is often biased to the positive class and ignores the 
performance of the negative class. In order to evaluate the 
overall performance of the classifier, F is used as the 
performance metric of the classifier instead which is defined 
as follows:                               𝐹1′ = 2𝑇𝑁2𝑇𝑁+𝐹𝑁+𝐹𝑃                                    (5)                               𝐹 = 𝑃𝑁+𝑃 𝐹1 + 𝑁𝑁+𝑃 𝐹1′                             (6) 

where TN, P, and N denote true negative, the number of 
positive samples, and the number of negative samples, 
respectively. 

To analyze how different methods handle noisy imbalance 
datasets, noises are manually introduced in the training 
datasets because most of the datasets we used in this work 
may not actually contain noises. We adopt a pair-wise noise 
introduction scheme as follows: given a pair of 
classes(𝑦1,𝑦2) and a noise level ρ, an instance with label 𝑦1 
has a probability of ρ to be incorrectly labeled as 𝑦2, so does 
an instance with label 𝑦2. This mechanism was proposed by 
Zhu et al. [30], claiming that in realistic situations, only 
certain types of classes are likely to be mislabeled. Five 
levels of noises are introduced in the datasets, namely, 0.05, 
0.1, 0.2, 0.3, and 0.4. 

TABLE II  

Characteristics of Datasets 
Name #Features #Samples IR 

Australian Electricity Price 
Data [26]  4 17520 1.66 

Electrical Grid Stability 
Simulated Data [28] 13 10000  1.76 

Iris0 [27] 4 150 2 

New-thyroid2 [27] 5 215 5.14 

Pima [27] 8 768 1.87 
Wisconsin [27] 9 683 1.86 

Breast Cancer Wisconsin 
(Original) [28] 10 683 1.86 

Chronic_Kidney_Disease 
[28] 25 158 2.67 

Credit Approval [28] 15 653 1.21 
Z-Alizadeh Sani [28] 56 303 2.48 

  
Results of different methods on dataset Australian 

Electricity Price Data with different levels of noises are 
shown in Fig. 3, the rest are omitted due to space limitation 
and they all produce similar results.  

We can draw some conclusions from it. Increasing the 
noise level tends to deteriorate the performances of each 
method. This is mainly because adding noises to the training 
data increases the learning complexity and skewness of the 
data. The proposed SSMNFOS outperforms other methods 
under different noise levels. It shows that SSMNFOS can 
filter out noisy samples and improve the performance of 
oversampling. The performance of SMOTE is ultimately 
lower than that of MLP which does not deal with imbalance 
problems, this is because directly oversampling the minority 
classes without properly handling noises introduces more 
noisy samples to the dataset and further increases the 
learning complexity. The standard deviation of SSMNFOS 
is smaller than that of other methods, which indicates that 
SSMNFOS is more stable than other methods. 

 
Fig. 3 Results of different methods on dataset Australian Electricity 

Price Data with different levels of noises. The error bar on each curve 
shows the mean value over 10 runs ± one standard deviation. 

TABLE III 
Results of Friedman's Test.  

Noise level 0% 5% 10% 

Methods rank p-H rank p-H rank p-H 

SSMNFOS 1.4 N/A 1.1 N/A 1.2 N/A 

SMOTE 2.4 2.53E-02 2.8 1.44E-04 2.6 
1.75E-

03 
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MLP 2.2 7.36E-02 2.1 2.53E-02 2.2 
2.53E-

02 

p-F 6.08E-02 6.76E-04 5.52E-03 

Noise level 20% 30% 40% 

Methods rank p-H rank p-H rank p-H 

SSMNFOS 1 N/A 1 N/A 1 N/A 

SMOTE 2.7 1.44E-04 2.7 1.44E-04 2.5 
7.96E-

04 

MLP 2.3 3.65E-03 2.3 3.65E-03 2.5 
7.96E-

04 

p-F 3.71E-04 3.71E-04 5.53E-04 

Results of the Friedman's test with the post-hoc 
Hochberg's test are given in TABLE III. The p-F and p-H 
mean the p-value computed by the Friedman's test and the 
adjusted p-value computed by the post hoc Hochberg's test 
respectively. From TABLE III the SSMNFOS yields the 
lowest average ranks in almost all cases. Almost all p-F 
values are much less than 0.05, which indicate that there are 
significant differences among the three methods. Using 
SSMNFOS as the control method, the p-H of SMOTE and 
MLP is less than 0.05 in almost all cases, which shows that 
the proposed method significantly outperforms the SMOTE 
and MLP. 

Based on the above observations, it can be safely 
concluded that the performance of SSMNFOS on imbalance 
classification is significantly better than that of the compared 
methods under different noise levels. 

B. Detection of New Appliance 

The Reference Energy Disaggregation Dataset (REDD) 
[31] is used to evaluate the performance of the proposed new 
appliance detection and imbalance multi-label classification 
algorithm. The low frequency data in the REDD dataset is 
used in this work which contains both the total power and the 
appliance-level power data of six houses at the frequency of 
1 Hz. The load monitoring analysis method is based on the 
load steady-state analysis method and all the features are 
derived from power data. 

House 1 is used in our experiments because it has more 
appliances and data. Among them, eleven appliances in 
House 1, i.e. numbers 3, 4, 6, 9, 10, 12, 13, 14, 16, 17, and 
20 in the dataset are used. As the NILM problem is regarded 
as a multi-label classification problem, the appliance-level 
power values are not actually needed but only states of all 
appliances. When the appliance-level power of an appliance 
is zero at a time step, it is considered as OFF state. The 
appliance is at ON state otherwise. In order to simulate the 
experimental environment in which the new appliance 
appears, the power of the total meter is the sum of the power 
of the current appliances in the house. 

In the experiments, data arrives batch by batch with each 
batch containing half an hour of power readings. Then, each 
batch of data is divided into 180 10-second non-overlapping 
data windows. Five load identification features are extracted 
from multiple power data of each window, which are 
average, variance, minimum, maximum and median. Each 
window is labeled by states of all appliances in the last 
second of the window in a multi-label vector form. For 
training and testing division, the protocol in machine 
learning for streaming data is followed. The newly arrived 
data chunk serves as the testing samples for the NILM 

problem. After testing, this data chunk becomes a set of 
training samples. 
 When NILM is considered as a multi-label classification 
problem, there is no obvious bias between positive and 
negative classes. Therefore, the F measure and Accuracy are 
used as metrics. Owing to the fact that there are multiple 
classes while both F and F1 are designed for two-class 
problems only, Fmacro and Fmicro metrics are derived from F 
for multi-class problems [32]. The Fmacro is calculated from 
the average F of all classes while the Fmicro sums up metrics 
of all classes before computing the final metric. They are two 
ways to compute the average scores, and later experiments 
show that their difference is significant.             𝐹𝑚𝑎𝑐𝑟𝑜 = 1𝑙 ∑ 𝐹(𝑇𝑃𝑖 , 𝑇𝑁𝑖 , 𝐹𝑃𝑖 , 𝐹𝑁𝑖)𝑙𝑖=1           (7) 𝐹𝑚𝑖𝑐𝑟𝑜 = 𝐹(∑ 𝑇𝑃𝑖 , ∑ 𝑇𝑁𝑖𝑙𝑖=1 , ∑ 𝐹𝑃𝑖, ∑ 𝐹𝑁𝑖)𝑙𝑖=1𝑙𝑖=1𝑙𝑖=1    (8) 

where TPi , TNi , FPi , and FNi denote TP, TN, FP, and FN of 
the ith class, F() and l denote the equation computing F in Eq. 
(6) and the number classes, respectively. On the other hand, 
Accuracy provides an overall performance evaluation on the 
classifier. It is defined as follows:         𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁                            (9) 

 Similarly, in order to evaluate the performance of multi-
label NILM problems, Amacro and Amicro are given as follows:     𝐴𝑚𝑎𝑐𝑟𝑜 =   1𝑙 ∑ 𝐴(𝑇𝑃𝑖 , 𝑇𝑁𝑖 , 𝐹𝑃𝑖 , 𝐹𝑁𝑖)𝑙𝑖=1        (10) 𝐴𝑚𝑖𝑐𝑟𝑜 = 𝐴(∑ 𝑇𝑃𝑖 , ∑ 𝑇𝑁𝑖𝑙𝑖=1 , ∑ 𝐹𝑃𝑖, ∑ 𝐹𝑁𝑖𝑙𝑖=1𝑙𝑖=1𝑙𝑖=1 )(11) 

where TNi and A() denote TN of the ith class and equation 
computing Accuracy as given in Eq. (9) respectively. 

The ON/OFF states of an appliance can be highly 
imbalance, so the SSMNFOS is compared with both the 
widely used SMOTE and classifier trained without treatment 
to the imbalance issue. Multilayer Perceptron (MLP) is used 
as base classifier in our experiments. 

 
(a) Scenario 1 (New appliances are added with order: 3, 4, 9, 12, 13, 14, 

and 20) 
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(b) Scenario 2 (New appliances are added with order: 3, 12, 9, 4, 14, 13, 

and 20) 

Fig. 4 Dynamic performance of different methods in the two scenarios in 
terms of Amicro 

There are two scenarios in our experiments and the data 
for the first three days with four appliances (6, 10, 16, and 
17) in the house is used as the initial training data. Then, new 
appliances are added in different orders in the two scenarios 
with randomly selected time intervals for adding a new 
appliance. In Scenario 1, starting from the fourth day (testing 
phase), new appliances are added to the house in the 
following order: 3, 4, 9, 12, 13, 14, and 20. In Scenario 2, the 
order of adding appliances is: 3, 12, 9, 4, 14, 13, and 20. In 
the experiments, the new appliance detection performance of 
different methods is first tested and then their multi-label 
classification performances for NILM problems in the two 
scenarios are tested. For the NADT, λ is set to 0.3 for all 
experiments which is selected via some preliminary 
experiments. 

In order to illustrate the dynamic performance of each 
method in a streaming setting, the performance value of each 
method in the first 1250 batches of data was recorded. Due 
to the limit of space, only the dynamic performance of 
different methods in both scenarios in terms of Amicro is 
shown in Fig. 4 in which, red line named as "MLP", green 
line named as "SMOTE", and blue line named as 

"SSMNFOS" represent the performance of off-the-shelf 
MLP without handling the class imbalance issue, the 
performance of the MLP equipped with the SMOTE, and the 
performance of the MLP equipped with the SSMNFOS, 
respectively. In order to observe the trend of Amicro, we use 
moving average with a window size of 50. As shown in Fig. 
4, the performance of all three methods fluctuates severely 
as time varies. The "MLP" and the "SMOTE" show similar 
patterns but the "SSMNFOS" outperforms the other two in 
most of the time. One possible reason for the performance 
fluctuation is that only five simple time domain features are 
used to distinguish different classes, which may not be 
sufficient for training a very strong classifier. The major 
focus in this experiment is the fair comparison of different 
methods using the same classifiers and input features. More 
sophisticated input features can be employed to enhance the 
robustness of the classifiers, which serves as one of our 
future works. To get a better understanding of the 
performance differences among the three methods, more 
detailed numerical results are given in TABLEs IV to VII. 

TABLEs IV and V show the new appliance detection 
results using the NADT in the two scenarios. There are 
totally 7 new appliances in each scenario. The NADT uses 
the same metric as the final evaluation criterion to detect the 
addition of new appliance. Therefore, the metric has a 
significant effect to the NADT.  

Base classifiers are trained with different methods to deal 
with the imbalance issue in the NILM, namely, widely used 
SMOTE and the SSMNFOS in this work. TABLEs IV and 
V show new appliance detection results for Scenarios 1 and 
2, respectively. In Scenario 1, the SSMNFOS and the 
SMOTE detect all 7 new appliances in 3 out of 4 cases, the 
MLP without treatment to imbalance problems can only 
detect all 7 new appliances in 1 out of 4 cases. In Scenario 2, 
the SSMNFOS and the SMOTE detect all 7 new appliances 
in 4 out of 4 cases, the MLP without treatment to imbalance 
problems can't detect all 7 new appliances in any case. The 
results show that the imbalance classification algorithm can 
enhance the performance of NADT in detecting new 
appliances.  

 
TABLE IV 

New Appliance Detection using the NADT with Different Treatment to Imbalance Problems for Scenario 1 
Methods to Deal with Imbalance Issue Fmacro Fmicro Amacro Amicro 

SSMNFOS 4 7 7 7 

SMOTE 7 7 6 7 

MLP 4 4 7 6 

TABLE V 
New Appliance Detection using the NADT with Different Treatment to Imbalance Problems for Scenario 2 

Methods to Deal with Imbalance Issue Fmacro Fmicro Amacro Amicro 

SSMNFOS 7 7 7 7 

SMOTE 7 7 7 7 

MLP 4 4 4 4 

TABLE VI 
Performance Evaluation using the NADT with Different Treatment to Imbalance Problems for Scenario 1 

Methods to Deal with Imbalance Issue Fmacro Fmicro Amacro Amicro 

SSMNFOS 72.74 78.47 69.69 81.22 

SMOTE 68.43 72.12 67.93 79.98 
MLP 72.06 74.56 78.42 79.91 

TABLE VII 
Performance Evaluation using the NADT with Different Treatment to Imbalance Problems for Scenario 2  
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Methods to Deal with Imbalance Issue Fmacro Fmicro Amacro Amicro 

SSMNFOS 80.99 85.09 85.87 85.56 

SMOTE 82.07 81.74 85.10 85.10 
MLP 80.48 80.88 80.62 80.59 

 

TABLEs VI and VII show average testing performance of 
the NADT combined with different treatments to imbalance 
issues in the NILM over all data chunks in the test phase for 
Scenarios 1 and 2, respectively. One can observe that the MLP 
method yields the best performance in terms of Amacro in 
Scenario 1, and the SMOTE performs the best in terms of 
Fmacro in Scenario 2. However, the proposed method by 
combining the NADT with the SSMNFOS yields the best 
performance in 6 out of 8 cases (4 metrics and 2 scenarios), 
which may draw a safe conclusion that the proposed method 
performs better than the other two methods overall.  

In summary, the four metrics provide different angles to 
evaluate the performance of the multi-label learning by the 
ensemble of neural networks for NILM. The proposed method 
yields the best performance in most of cases and is effective 
for training ensemble of neural networks for handling the 
NILM problems. 

V. CONCLUSION AND FUTURE WORKS 

Current methods for non-intrusive load monitoring (NILM) 
problems assume that the number of appliances in the target 
location is known which may be unrealistic. In the real-world, 
the initial settings of the site can be known, but new appliances 
can be added by the user after a period of time, especially in a 
household or unrestricted scenario. In this situation, current 
methods that do not detect new appliances may not accurately 
monitor the load on different appliances and scenarios. 
Therefore, a new appliance detection and a training algorithm 
new appliance detection and training (NADT) are proposed for 
multi-label classification in NILM. Then the stochastic 
sensitivity measure-based noise filtering and oversampling 
(SSMNFOS) is applied to train base classifier for an appliance 
to form the multi-class ensemble of neural network for the 
multi-label classification for the NILM. Experimental results 
show that the SSMNFOS yields a better performance than the 
widely used SMOTE for dealing with imbalance problems in 
the NILM.  

The major contribution of this work is to propose a new 
research problem in the NILM. The new appliance detection 
method proposed in this work is primitive and more 
sophisticated detection methods need to be investigated to 
further improve the new appliance detection for NILM 
problems.  

The proposed method focuses on the multi-label 
classification of ON/OFF states of appliances and the detection 
of new appliances. Off-the-shelf disaggregation methods may 
be combined with the proposed method easily to predict and 
monitor loads of different appliances across time. However, to 
fully utilize the new appliance detection, a dedicated 
disaggregation method may be needed. For example in a hot 
summer, more air conditioning can be expected to be switched 
on. But a demand response program may encourage customers 
to save energy which on the contrary leads to lower switching 

on frequency of appliances. The disaggregation method needs 
to take into account the effects of the demand response 
programs. This will be an important future work.  

A practical application of this work is to combine the 
proposed method with specific knowledge and load patterns of 
an appliance to predict the failure or performance degradation 
of an appliance. Based on the classification of ON/OFF state 
and predicted load patterns, the depreciation model of an 
appliance can be found and user experience can be enhanced 
by more precise customer services.  
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