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‘‘Lozenge’’ Contour Plots in Scattering from Polymer Networks

D. J. Read and T. C. B. McLeish
Department of Physics, University of Leeds, Leeds, LS2 9JT, United Kingdom

(Received 9 December 1996)

We present a consistent explanation for the appearance of “lozenge” shapes in contour plots of the
two dimensional scattering intensity from stretched polymer networks. By explicitly averaging over
quenched variables in a tube model, we show that lozenge patterns arise as a result of chain material
that is not directly deformed by the stretch. We obtain excellent agreement with experimental data.
[S0031-9007(97)03453-4]

PACS numbers: 61.41.+e, 61.12.Bt, 83.80.Dr

Recently there have been a number of neutron scat-
tering experiments on selectively-labeled and uniaxially
deformed polymer networks and melts. A common ob-
servation in these experiments is that contour plots of the
two dimensional scattering intensity take on a diamond or
“lozenge” shape. The experiments fall mainly into two
categories; for pure networks with dilute labeled chains
[1] the lozenge pattern is permanent and does not relax,
but if the labeled species is mobile the lozenge pattern
relaxes and is a precursor to “butterfly” contour patterns
[2,3]. In this Letter we demonstrate that the lozenge shape
can largely be explained by taking into account those chain
sections in the system which are not directly deformed by
the stretch. We concentrate mainly on the case of pure net-
works containing labeled chains, and discuss briefly how
the concept may be transferred to systems with a mobile
species.

In a polymer network, the effect of crosslinks and
topological entanglements is to localize the network
chains in space. Each monomer is confined to a region
around its mean position and deviations from this result
in an elastic energy penalty due to the deformation of
the surrounding network. To model this effect, Edwards
and co-workers [4] introduced the concept of a “tube”
by placing each monomer on the chain in an isotropic
harmonic localizing potential. The total free energy
functional for the chain (in units ofkBT ) for a fixed
configuration of potentials is then
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where rl is the position of monomerl. The first term
represents the Gaussian chain statistics (b is the step
length) and the second term represents the localizing
potentials, centered onRl (d is the tube diameter).
The tube configuration given by theRl is “quenched”
in the sense that it is fixed at the time of formation
of the network. A stretch may be imposed by affine
transformation of theRl.

This model was used by Warner and Edwards [5] to
predict the neutron scattering function for a stretched
network in which a fraction of the chains is entirely
deuterated. They used the “replica trick” to perform the

average over the quenched variablesRl. In terms of the
stretch ratiolm in the three main axessm ­ x, y, zd they
found a scattering function;
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where Rg is the radius of gyration of the undeformed
chain, Qm ­ qmRg is the normalized wave vector, and
x ­ lyN andx0

­ l0yN are chain contour length coordi-
nates. Physically the first term in the exponential is that
obtained by affine deformation of a Gaussian chain. The
second term allows for local fluctuations about the mean
path of the chain.

A modified form of the Warner-Edwards result has
been used recently by Straubeet al. [1,6,7] to interpret
a series of experiments on stretched, labeled networks.
One experiment [1] involved scattering from networks
formed by randomly crosslinking melts which contained
a small fraction of deuterated chains, providing a crucial
test for the Warner-Edwards result. It was found that the
original Warner-Edwards expression did not consistently
fit the neutron scattering patterns obtained. Specifically,
the expression does not yield the experimentally observed
lozenges.

Straubeet al. [1] presented modifications, empirically
introduced at the level of the final result of Warner and
Edwards, which fitted the data well and were intended to
describe a deformation of the localizing tube-potential [8].
However, we have found [9] that if the assumptions of
Straubeet al. are implemented at the fundamental level
of the model, it is impossible to derive their suggested
formula. Harmonic localizing potentials can give only a
result which is separable in the three main axes, yet their
suggested formula does not have axis separability. We
find that their assumptions cannot account for the lozenge
pattern.

Other calculations making the approximations of phan-
tom networks [10] or uniform density fields [11] have
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given lozenge scattering patterns, but have not been able
to identify their physical origin.

Instead, we propose a physical mechanism for the
appearance of lozenges in neutron scattering patterns from
deformed networks. We suggest that in all the experi-
ments which give lozenges, there exists chain material
which is not directly deformed by the strain. It is the
combination of deformed and undeformed material and
the interactions between them which gives rise to the
lozenges. We illustrate this argument by taking a simple
model for a pure network in which some of the chain
paths are labeled. Each labeled chain is constrained by
crosslinks and entanglements, modeled by a harmonic
tube potential. The crucial aspect of the model is that the
free ends of the chain can relax their orientation. These
“dangling ends” extend as far down the chain as the first
crosslink, since entanglement constraints on this part of
the chain may be relaxed by starlike breathing modes [12].
For this reason, the length of the dangling end may in fact
be several tube diameters.

In our model the dangling end fraction is preaveraged,
assuming that each chain in the system has two dangling
ends of identical length, each a fractionf of the total
length of the chain. Since all the averages involving the
chain variables are Gaussian, the single chain scattering
function is of the form
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and k· · ·l represents an average over all quenched (i.e.,
tube) and annealed (i.e., chain) variables.

For the central chain segment confined to the tube, we
take the original Warner-Edwards model (with isotropic
tube potentials). We find that for any two monomers in
the central tube section,
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where we have used the contour length variablesx ­ lyN

and x0
­ l0yN. Note thathqsx, x0d is identical to the

exponent in the Warner-Edwards expression (2), although
the calculation was done without recourse to the replica
trick, but by diagonalizing the free energy functional (1)
using normal modesrp andRp , where
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The weights for theRp are chosen so as to yield the
standard Gaussian chain result for the scattering in the
limit lm ­ 1.
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Note that theRp depart from the behavior of a Gaussian
walk at short length scales (highp). The quenched and
annealed averages can then be performed explicitly using
Gaussian integrals.

For the isotropic dangling ends, we take standard
Gaussian chain statistics. For any two monomers in the
same dangling end,

Gqsx, x0d ­ kqsx, x0d ,

wherekqsx, x0d ­
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There is no correlation between the distributions of the
dangling ends and the central tube segment. This means
that for monomer pairs in different chain sections we
can always splitGqsx, x0d into separate contributions from
each chain section between the two monomers. Writing
the sum over monomers in (3) as an integral, we find that
the scattering function is
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hqs1 2 f, x0d 1 kqsx, 1 2 fd, for 1 2 f , x, f , x0 # 1 2 f.

kqsx, x0d, for 1 2 f , hx, x0j.

(10)

To illustrate that our model does indeed produce
lozenges, we present in Fig. 1 a fit to the data of Straube
et al. [1], obtained at a stretch ofl ­ 2.9. The lozenge
shape is reproduced extremely well. The pattern can

qualitatively be considered as a superposition of the
isotropic scattering from the undeformed material and the
elliptic scattering from the stretched chains, with cross
correlations. The dangling end fractionf ­ 0.23 required
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FIG. 1. Contour plot of a fit to the data of Straube
et al. for lz ­ 2.9, lx ­ ly ­ 0.587, and Rg ­ 142 Å.
Fitting parameters weref ­ 0.23 and d ­ 24 Å. Contours
are at intensities of (from the outside) 1.6, 3.3, 6.9, 14, and 30
in arbitrary units.

to fit that data is a little higher than expected from
measurements of chain mass between crosslinks. This is
to be expected because of the additional effect of chain
scission and interactions with unlabeled chains, both of
which are present in the Straube system.

Futhermore, our model reproduces precisely the obser-
vation of an “isotropy angle” [13]. It is found that for
a specific angle between the scattering vectorq and the
stretch direction, the scattering is to a good approximation
the same as that of the undeformed system. Experimen-
tally [1], this angle is found to be given by the condition
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Substituting this condition into our expression (10) we
find that

Gqsx, x0d ­
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which is the value ofGqsx, x0d for an undeformed chain.
The reproduction of the isotropy angle is illustrated in
Fig. 2, which is a contour plot of the difference between
the stretched and undeformed scattering functions. The
“zero contour” consists of two straight lines at a fixed
angle to the stretch direction. We note that this feature
is reproduced only under the assumption that the tube
potential does not couple to the strain.

The dangling end model above is appropriate for net-
works of the type used by Straubeet al. [1], formed
by random crosslinking along the melt chains. Dangling
ends may be partially eliminated by tailoring the reac-
tion chemistry to produce specific end linking of chains,
though complete elimination is impossible, due to incom-

FIG. 2. Contour plot of the differenceS 2 S0 between the
stretched and undeformed scattering functions for the same
system as Fig. 1.

plete reaction. We are not presently aware of any rele-
vant scattering experiments on pure networks of this latter
type. Such experiments would constitute a strong test of
our present theory.

We now briefly discuss the lozenges observed in the
recent butterfly scattering experiments [2,3]. The butterfly
is the name given to a contour plot where the contours
have a characteristic “figure 8” shape, aligned in the
stretch direction. Butterflies appear in scattering from
stretched networks swollen by labeled mobile chains.
It is generally accepted [3,14] that the appearance of
the butterflies is related to static inhomogeneities in
the density of network crosslinks or entanglements, and
requires the forced diffusion of mobile chains towards
regions with fewer crosslinks or entanglements.

The butterfly patterns do not appear immediately on
stretching the system; there is typically a progression
from elliptical contours to lozenges to butterflies. An
explanation of the three shapes must take into account
the time window in which each pattern is observed. In
a recent experiment [3] it was observed that the ellipses
appear when the system is first stretched and the entire
system deforms affinely. Lozenges appear at times of
the order of the orientational relaxation time for the
short mobile chains. Butterflies appear at times a good
deal greater than this, when the mobile chains have had
sufficient time to diffuse several radii of gyration.

Clearly the important time scale is the orientational
relaxation time ts of the short chains. At times of
the order ofts the short chains will have relaxed their
orientation, but will have had time to diffuse one radius of
gyration at most. We propose that the interaction between
the relaxed short chains and oriented network chains is
sufficient to explain the lozenge shape in the scattering.
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The uniform density field approach of Edwards and
McLeish [11] provides some mathematical justification
for this conjecture. There may also be some additional
contribution due to dangling ends in the network.

Finally, we mention an alternative explanation for the
lozenge pattern. It has been proposed [3,15] that the
lozenges are due to a mechanism similar to the one which
gives rise to butterfly scattering patterns. It is possible
that the inhomogeneities in crosslink density give rise to
nonaffine local deformations which result in anisotropic
scattering, even in a pure network. The explanation is
that the lozenge is somehow a superposition of elliptic
and butterfly scattering patterns. We believe that this
idea arose historically because lozenges were often seen
in experiments as a precursor to butterflies. It should
be noted, however, that in these butterfly patterns the
zero wave vector limit of the scattering is multivalued
and depends upon the direction of the scattering vector
[15,16]. This does not appear to be a characteristic feature
of the lozenge pattern. Furthermore, this model will
not in general reproduce the isotropy angle observed in
deformed pure networks.

In conclusion, we find that models involving a proper
combination of isotropic and deformed chains will yield
lozenge scattering patterns. This provides a reasonable
and consistent explanation for the neutron scattering
patterns observed in deformed polymer systems.
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