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13 Abstract 
 

14 By designing a composite of one-part mix geopolymer and hollow cenospheres, a commercially viable 

15 and environmentally-friendly foam was synthesized with a high strength/density ratio. The composite 

16 is made of a dry mix powder of geopolymer source materials, sodium silicate alkali activator and 

17 cenospheres, which starts to react when mixed with water. As the geopolymer reacts and gains 

18 strength over time, the surface of the cenospheres takes part in the reaction and forms a strong bond 

19 with the binding matrix. Synchrotron-based Fourier transform infrared microspectroscopy revealed, 

20 for the first time, the chemical bonding interaction of the amorphous interfacial layer between the 

21 geopolymer and  cenospheres. The  resulting foam  composite  gained a  strength of 17.5   MPa  at a 

22 density  of  978  kg/m3,  which  is  noticeably  higher  than  that  of  existing environmentally-friendly 

23 lightweight  foams  made  under  ambient  conditions.  The  thermal  conductivity  of  the  foam was 

24 measured to be around 0.28 kW/mK, which is similar to that of foam concrete. This foam produced 

25 in this study is found to be lightweight, strong and possess a desirable insulating capacity, while the 

26 preparation process of the one-part mix composite is maintained simply by adding water and curing 

27 the mixture at an ambient temperature. 

28 
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30 1. Introduction 

31 

32 Lightweight prefabricated panels have been widely used for construction and refurbishment [1]. The 

33 application of these building elements in construction has many advantages. Their light weight 

34 simplifies the handling of the panels and reduces the dead load of buildings. By specialising the design 

35 of these panels for rapid assembly and insulation, they remarkably reduce the construction time, and 

36 improve the  acoustic  and  thermal performance of  buildings [2].  Also, by  reducing the quantity of 

37 required materials and increasing the potential for recycled waste, lightweight building elements can 

38 reduce the embodied energy and carbon footprint of buildings. 

39 

40 Many studies have been conducted on developing lightweight concrete and composites for non- 

41 structural and structural building components [3, 4].  Polymeric foams have been explored  as a core 

42 of lightweight sandwich panels, and in fact expanded polystyrene (EPS) is widely used in Australia. 

43 However, the problem with polymeric foams is their vulnerability to high temperatures and fire. 

44 There is growing interest in improving the properties of these panels while maintaining their low cost 

45 in order to develop environmentally friendly options [5]. Lightweight concrete has been  researched 

46 for decades  as a potential  fire-resistant  building component;  with  many advantages such  as high 

47 durability,  long  service  life  and  low  cost,  concrete  seems  to  be  an  ideal  material  for modular 

48 construction if it can be lighter [6]. Many techniques have been applied for manufacturing concretes 

49 with a lower density, and the most popular technique is the application of lightweight aggregates [7]. 

50 The low fire resistance of polymeric foams can be compensated by embedding them in a fire-resistant 

51 cementitious  matrix,  and  the  resulting  composite  would  thereby  have  the  advantages  of both 

52 components to some extent. 

53 

54 In addition to using the lightweight aggregates, the other popular technique available for reducing 

55 the weight of concrete is by inserting air voids into the cement matrix. This technique, which is known 

56 as foaming, can be conducted by mechanically mixing a pre-made foam with cement paste or adding 

57 a chemical foaming agent (such as hydrogen peroxide) that releases gas as a result of its reaction in 

58 an alkaline environment [4]. Compared with the use of lightweight aggregates, the foaming technique 

59 is generally more efficient in reducing overall density. Therefore, ultra-lightweight components with 

60 densities as low as 300 kg/m3 can be developed. However, the major problem associated with 

61 foaming is that controlling the density is not straightforward [8]. The stability of pre-made foam, the 
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62 setting time of the cement, and the simultaneous reaction of the binder and chemical foaming agent, 

63 bring complications to the design and manufacturing of the foam concrete. Some variations in the 

64 quality and density of the foamed concrete seem unavoidable during the manufacturing process. 

65 Above all, the main problem is that foam concrete is in general not strong enough for applications as 

66 a structural component. Lightweight and foam concrete with a density of 1000 kg/m3 (or lower) have 

67 been broadly researched for non-structural applications. The typical lightweight concrete in this 

68 density range can reach a strength of about 2-7 MPa [9]. However, for structural lightweight systems 

69 such as floor systems, a strength in the range of 10-14 MPa is required [10]. 

70 

71 This study explores the possibility of developing high-strength lightweight composites using one-part 

72 mix geopolymers and cenospheres. Geopolymers are known as environmentally-friendly construction 

73 materials  that  can  convert  landfill  wastes  such  as  fly  ash  and  blast  furnace  slag  into  useful 

74 cementitious binders [11-13]. The conventional geopolymer reaction process involves the alkali 

75 activation of aluminosilicate powders, often sourced as waste materials, by using alkaline solutions 

76 such as water glass and sodium hydroxide. The key silica and alumina elements of the powder 

77 precursors   are   released   into   the   alkaline   aqueous   environment   and   undergo   speciation, 

78 reorganisation, gelation and polymerisation stages    until   they   form a three-dimensional 

79 aluminosilicate network. One of the problems with this form of geopolymer synthesis is the difficult 

80 handling of the alkali solutions; nevertheless, one-part geopolymers have been explored to resolve 

81 this problem [14]. 

82 

83 A cenosphere is an aluminosilicate hollow sphere which is filled with air or inert gas, and is generated 

84 as a by-product of coal combustion in thermal power plants, readily separated from the bulk of the 

85 combustion ash by density separation [15]. The rigidity, lightweight, small size and spherical shape of 

86 cenospheres have made them very useful for manufacturing syntactic foams [16]. Syntactic foams 

87 are  lightweight  composites that  are  made from  hollow  spheres and  a binding matrix. The matrix 

88 material can be any metal, ceramic, polymer or resin that can hold the lightweight filler together and 

89 give it the desired shape. Lightweight cementitious composites made from cenospheres are  gaining 

90 much attention recently because of their attractive structural and thermal performance. 

91 

92 Blanco et al. [17] manufactured lightweight concretes using cenospheres. They used powder packing 

93 theory to optimize the properties of the concrete, but no microstructural enhancements and high 
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94 curing temperatures were applied. The optimum strength achieved for low densities (around 1000 

95 kg/m3)  was  5  MPa  [17].  Huang  et  al.  [18]  used  cenospheres  and  industrial  wastes  to produce 

96 environmentally friendly lightweight composites. They achieved mixtures as light as 1649 kg/m3 with 

97 the compressive strength of 25 MPa, whereby  the samples were cured under ambient conditions 

98 [18].  Nematollahi  et   al.   [19]   studied   lightweight   geopolymer  composites  using  cenospheres, 

99 expanded  perlite  and  expanded  glass  aggregates,  achieving  densities  of  1586-1833  kg/m3  and 

100 reporting strengths of 43.4-56.8 MPa [19]. Gao et al. [20] used aerogels to reduce the density of 

101 cement composites to 1000 kg/m3 and gained a strength of about 8.3 MPa [20]. TŽƉಮƵ et al. [21] 

102 fabricated lightweight cement composites using diatomite and pumice lightweight aggregates. The 

103 density of the samples with pumice was dropped to around 1500 kg/m3, and with diatomite as low 

104 as 900 kg/m3. For the lightweight diatomite samples, the maximum strength was reported to be 

105 around 6 MPa [21]. Ng et al. [22] reported making lightweight composites from cement and aerogels. 

106 They reported that the optimum amount of aerogel addition is about 50 vol%, yielding samples of 

107 density 1400 kg/m3 with a strength of 20 MPa at 28th day; the strength of the samples sharply 

108 dropped with higher amounts of aerogel (i.e. lower densities) [22]. 

109  

110 Some researchers also applied microstructural enhancement techniques to achieve higher strength 

111 to density ratios. Hanif et al. [23] produced lightweight composites using cenospheres and aerogel, 

112 and achieved high strength to density ratio. They enhanced the binder performance by the addition 

113 of silica fume, PVA fibre and superplasticizer. Their oven dried samples could reach 1003 kg/m3
 

114 density and 18.63 MPa strength, but the oven temperature and the duration of drying was not 

115 reported [23]. Senthamarai et al. [24] also investigated replacing cement with cenospheres, and 

116 adding silica fume to compensate for the strength reduction caused by the cenospheres. The density 

117 of  the  samples  was  not  reported,  but  12%  silica  fume  replacement  helped  in  enhancing  the 

118 microstructure of the binder and maintaining the strength of matrix [24]. Liu et al. [25] made high 

119 strength lightweight cement composites adding cenospheres to a cement binder. The strength of the 

120 lightest samples (1300 kg/m3) was reported to be about 58 MPa, with the use of silica fume, PVA fibre 

121 and  superplasticizer,  curing  for  28  days  in  high  humidity  (>95%)  [25].  Wang  et  al.  also  made 

122 lightweight samples using cement and cenospheres, with a density of about 1040 kg/m3 and 

123 compressive strength of 25 MPa. Silica fume, shrinkage reducing admixtures and superplasticizer 

124 were used, and the curing condition of the samples was not reported [26]. Wang et al. have also 

125 reported making high performance lightweight composites using metakaolin-based geopolymer and 



5  

126 cenospheres, reaching 36.5 MPa strength for samples (small cylindrical specimens of ø20x20 mm) 

127 with  820  kg/m3 density. In  their  study,  metakaolin  was  calcined  at 800  °C for  4 hours,  and  the 

128 geopolymer composite was cured at 80 °C for 6 days [27]. Shao et al. [28] have reported making high 

129 strength to density geopolymer composites using ultra-fine fly ash with a mean particle size of 4.6 

130 µm, and hollow glass spheres as lightweight fillers. They reported achieving 22 MPa in compression, 

131 for the samples as light as 782 kg/m3 [28].  Wu et al. made lightweight cement composites using 

132 hollow cenospheres, at a density of 1154 kg/m3 after one day, with a strength of 33 MPa at 28 days. 

133 They  used  silica  fume,  superplasticizer,  viscosity  modifier,  shrinkage  reducing  admixture,  and 

134 polyethylene fibres, curing in a fog room at 28-30°C until the testing age. They mentioned a further 

135 drop of the density to 1042 kg/m3 in the oven-dried samples, but the temperature and duration of 

136 the drying process were not reported [29]. 

137  

138 From this summary of some of the available literature, it is evident that the  application of ultra-fine 

139 fly  ash,   silica  fume,   and   other  admixtures  can   improve  the  microstructure   and enhance  the 

140 performance of lightweight cementitious composites. Also, high humidity, high temperature curing, 

141 calcination  of  the  source  materials  at  high  temperatures,  or  extending  the  curing  duration  of 

142 composites can all enhance the performance of composites. However, costly source materials and 

143 energy-intensive  processes  negatively  impact  the  environmental  sustainability  and  commercial 

144 viability of the products for construction applications. 

145  

146 In this study, a syntactic foam of cenospheres with a matrix of one-part mix geopolymers has been 

147 explored  for  the  first  time  to  synthesise  an  environmentally-friendly  and  commercially  viable 

148 lightweight  composite.  One-part  mix  geopolymers  are  user-friendly  binders  that  improve  the 

149 commercial viability of geopolymers by eliminating the difficulties associated with handling corrosive 

150 alkali solutions.  They facilitate manufacturing of a dry component that can be activated simply by 

151 just  adding  water  (similar  to  cement)  [14].  Samples  are  manufactured  and  cured  at  ambient 

152 conditions, and it was targeted to achieve high strength to density ratios at very low densities (below 

153 1000 kg/m3). 

154 

155 The importance of interfacial microstructure on strength development of composites is well known 

156 [30] . Since cenospheres have a similar chemical composition to the other fractions of the bulk fly ash, 

157 there is a possibility that, if exposed to an alkaline environment, the surface of the filler can take part 
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158 in the reaction. The bonding of a filler with its surrounding matrix can improve the mechanical 

159 performance  of  the  composite  in  the  long  term  and  facilitate  the  development  of lightweight 

160 structural  foams  [31].  Wang  et  al.  [27]  mapped  the  elemental  distribution  at  the  interface  of 

161 geopolymers and cenospheres, and reported that an interfacial layer is forming due to the elemental 

162 diffusion.  Li et  al. [32] studied  the  interface  of  phosphate  geopolymers  with  cenospheres. They 

163 reported that the formation of the  amorphous layer  at  the  interface  indicates  chemical  reaction 

164 between  cenospheres  and  geopolymer,  although  their  electron  diffraction  results  could  not 

165 distinguish the nature of the chemical bonding due to the amorphous structure of interface region 

166 [32]. 

167 This summary of  the literature highlights that  there is a large research  gap  in  understanding  how 

168 cenospheres interact within geopolymer composites. The superior characteristics of high photon flux 

169 density   and  diffraction-limited  spatial  resolution   with   enhanced  spectral   quality   achieved by 

170 synchrotron Fourier transform infrared (SR-FTIR) microspectroscopy was demonstrated to be the key 

171 requirement allowing for spatially resolved chemical mapping measurement of amorphous materials 

172 at a micron-scale spatial resolution [33] . In this research, we utilized the SR-FTIR technique to reveal 

173 the  spatial  distribution  of  chemical  bonding  interaction  at  the  interface  of  the  geopolymer 

174 composites. 
 

175  

176 2. Materials and methods 

177 The fly ash (FA) used in this study was obtained from Cement Australia with the commercial name of 

178 Melbourne Ash, and ground granulated blast furnace slag (GBFS) was purchased from Independent 

179 Cement, Australia. Sodium metasilicate powder with a composition of 50.5 wt% Na2O, 46.2 wt% SiO2 

180 and 3.3 wt% H2O was supplied from Redox. Cenospheres, with a commercial name of E-Spheres 
 

181 (grade ES300), were purchased from Envirospheres. According to the material data obtained from 

182 the manufacturer, the maximum bulk density of E-Spheres is 450 kg/m3, maximum moisture content 

183 is 0.5 %, and the shell thickness of each sphere is approximately 10% of the diameter.   Table 1 

184 summarises the results obtained by X-ray fluorescence (XRF) analysis of the source materials. 

 
185  

 

186 To make one-part mix geopolymer composites, 21 wt% FA, 14 wt% GBFS, 38 wt% E-Sphere and 3 wt% 

187 sodium metasilicate were dry mixed. They were then blended for one minute, and 24 wt% of water 

188 was added and mixed into the dry mixture for five minutes to make a paste. The composition and the 
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189 percentage of the lightweight filler (E-Spheres) were adjusted to target a dry density of around 1000 

190 kg/m3. 

191  

192 Table 1. Chemical composition (mass %) of FA, GBFS and E-Spheres determined by XRFa. 
 

 
SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO K2O P2O5 SO3 Na2O LOI (a) 

FA 42.09 1.44 25.13 13.16 0.18 1.27 13.56 0.41 1.10 0.41 0.81 0.44 

GBFS 31.00 0.49 13.96 0.32 0.33 6.33 40.92 0.31 0.01 2.17 t(a) 4.16 

E-Sphere 60.96 1.00 29.08 4.20 0.02 0.97 0.70 2.21 0.10 0.04 0.41 0.31 

193 a t: trace amounts detected. LOI: loss on ignition at 1000 °C. 

 
194  

 

195 After preparing the paste, the mixtures were poured into 50 mm cubic moulds, and sealed and cured 

196 under ambient conditions. The compressive strength of the samples was determined using an ELE 

197 ADRAuto 1500 compression testing machine at a rate of 0.5 kN/s. For each age of testing, three cubic 

198 samples  were   tested,  and  the   average   results  reported.  Attenuated  total  reflectance  Fourier 

199 transform infrared (ATR-FTIR) spectroscopy was used to monitor the chemical bonding interaction of 

200 the geopolymer binder over time. A Varian FTS 7000 FT-IR spectrometer with a single reflectance 

201 diamond ATR attachment was used for this analysis. Absorbance spectra within the spectral range of 

202 4000-400 cm-1 were collected at a resolution of 2 cm-1 and a scanning speed of 5 kHz with 64 scans. 

203 The  paste used for the ATR-FTIR analysis did  not  include the  E-Sphere filler,  in  order to  show the 

204 chemical changes in the geopolymer binder. The setting time of the geopolymer paste has also been 

205 measured using a Vicat instrument, following ASTM C191 . 

 
206  

 

207 XRD analysis has been performed on E-Spheres and the geopolymer binder to show the crystalline 

208 phases and estimate the amorphous content of the samples. XRD data were collected using Bruker 

209 D8 Advance X-ray diffractometer with Ni-ĨŝůƚĞƌĞĚ CƵ Kɲ ƌĂĚŝĂƚŝŽŶ ;ϭ͘ϱϰ ÅͿ͕  ǁŝƚŚ Ϭ͘ϬϮȗ Ϯɽ ƐƚĞƉƐ ĂŶĚ Ă 

210 scan rate of 1.0 s per step. To identify the crystalline phases, diffraction patterns were  compared to 

211 the  ICDD  PDF4  database  using  the  Jade  7  software.  Phase  identification  was  conducted  using 

212 Diffrac.EVAV4.1 software with the ICDD PDF4+ 2015 database and Quantitative Rietveld analysis for 

213 the  quantification  of  identified  crystalline  phases  was  carried  out  using  Bruker Diffracplus Topas 



8  

214 software. Crystal structures for the identified phases were taken from the ICDD PDF4+ 2015 database 

215 and entered into Topas. The model parameters were allowed to vary in order to give the best fit 

216 between the model and the measured data. 

 
217  

 

218 A Leica M205FA automated microscopy unit was used to produce microscopic images of  E-Spheres: 

219 a thin layer of E-Spheres was moistened and spread on a microscope slide to capture microscopic 

220 images. The particle size distribution of the E-Spheres was calculated by image analysis. The image 

221 pixels were first calibrated to the scale of the image in millimetres and the size distribution of the E- 

222 Spheres was then calculated using the Fiji ImageJ software [34]. 

 
223  

 

224 The  thermal  conductivity  of  the  lightweight  geopolymer  composites  was  measured  using  the 

225 transient method with a needle probe. Cylindrical samples with a diameter of 50 mm and a height of 

226 110 mm were prepared with a hollow core that can accommodate the probe. A heat transfer gel was 

227 applied on the probe  and  the probe was inserted  into the hollow core. The temperature  was then 

228 recorded for 10 minutes under constant heat dissipation over the length of the probe. To obtain the 

229 thermal   conductivity,  the   inverse   value   of   thermal   resistivity  was   calculated  based  on  the 

230 temperature difference. 

 
231  

232 Scanning Electron Microscopy (SEM) was used to analyse the microstructure of the foam; a Philips 

233 XL30 (FEG-SEM) instrument was used with a voltage of 20 kV. A fractured surface of each sample was 

234 mounted on the SEM stubs using double carbon adhesive film and then carbon coated for preventing 

235 the electric charging. In addition, SEM with a backscatter detector, combined with energy dispersion 

236 X-ray   (EDX)   analysis,   was   also   used   to   determine   chemical   compositions   and   composite 

237 microstructures. The samples were cut with a diamond saw to a small size (< 10 × 10 × 10 mm) and 

238 then embedded in resin inside a 25 mm diameter container. The total height of the samples was cut 

239 to less than 11 mm and the surface was polished to a 1 µm diamond finish. 

240  

241 To understand the interfacial bonding interaction between geopolymers and E-Spheres, and to 

242 observe  any  spatial  variations  of  the  chemical  bonding  at  the  interface,  spatially resolved FTIR 

243 microspectroscopic technique that allows an acquisition of chemical mapping measurement at a high 
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244 resolution is the key requirement. For this purpose, a synchrotron IR light source was used. SR-FTIR 

245 measurements were  performed  at  the Australian  Synchrotron  Infrared  Microspectroscopy (IRM) 

246 Beamline (Victoria, Australia), using a Bruker Vertex 80v spectrometer coupled with a Hyperion 2000 

247 FTIR  microscope  and  a  liquid  nitrogen-cooled  narrow-band  mercury  cadmium  telluride  (MCT) 

248 detector (Bruker Optik GmbH, Ettlingen, Germany). 

249  
 

250 An in-house macro ATR-FTIR device equipped with a 250 µm diameter germanium (Ge) ATR crystal 

251 was used for collecting the SR-FTIR spectra. Details of this in-house developed ATR-FTIR technique 

252 were published elsewhere [35]. The area of interest, which is the interface between E-Spheres and 

253 geopolymer binder, was initially observed and captured on the sample surface to create a visible 

254 microscopic image prior to commencing the SR-FTIR spectral data acquisition. With this synchrotron 

255 ATR-FTIR technique, a background spectrum was collected only once through the air in non-contact 

256 mode and used for the entire mapping measurements. When the sample was brought into contact 

257 with the Ge ATR crystal, the SR-FTIR data were collected in the range of 3800䳼700 cm-1 over a defined 

258 area on the sample at two different step resolutions of 10 µm and 2 µm for low- and high-resolution 

259 mapping  measurements,  respectively.  All  SR-FTIR  spectra  were  recorded  using  4  cmо1  spectral 

260 resolution. Blackman-Harris 3-Term anodization, Mertz phase correction, and zero-filling factor of  2 

261 were  set  as default  acquisition  parameters using  OPUS  7.2  software  suite  (Bruker Optik GmbH, 

262 Ettlingen, Germany). After that, the collected SR-FTIR map were post-processed using spectral cut 

263 and vector-normalisation within the spectral range of 1400-700 cm-1. A Chemical map is subsequently 

264 created based on an integrated area under the overlapping bands within the spectral range of 1050- 

265 1030 cm -1, using the same OPUS 7.2 software suite (Bruker Optik GmbH, Ettlingen, Germany). The 

266 average spectra were extracted from each color group and color-coded according to the areas on the 

267 map. 
 

268  

269  

3. Results and Discussion 

 

270  

271  

3.1. The characteristics of the binder and filler 

 

272 Figure 1 shows the microscopic image of E-Sphere and its particle size distribution. The majority of 

273 the hollow spheres have diameters between 0.19-0.22 mm. Quantitative X-ray diffraction (XRD) 
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274 analysis has shown that E-Sphere is 75% amorphous. The weight percentage of the crystalline phases 

275 determined by Rietveld refinement for each sample is listed in Table 2. 

 

276  
 

 
 

 

 

 

 

 

 

 

 
277  

Table 2. Rietveld refinement results for identified crystalline phases in E-Spheres 
 

Phase Powder Diffraction 

File (PDF) 

Content 

(estimated error ± 2%) 

Amorphous - 75% 

Mullite 01-079-1458 15% 

Quartz 01-074-9758 10% 

 

278 The size and density of E-Spheres make them a suitable filler for developing lightweight geopolymer 

279 composites.  Due  to  the  small  size  of  the  spheres,  they  can  be  easily  blended  with  a one-part 

280 geopolymer dry mix, and by adding 38 wt.% to the mixture, the dry density of the paste can easily 

281 drop to about 1000 kg/m3. The glassy surface of E-Spheres is expected to be reactive in a geopolymer 

282 alkaline environment, and may thus help to develop a bond between the fillers and the matrix. If this 

283 type of bonding occurs, the E-Sphere surface will become a part of the geopolymer matrix and the 

284 resulting composite will be a strong network of geopolymer gel connected to the lightweight filler. 
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286 Figure 1. Optical micrograph of E-Spheres, and results of particle-size distribution determination 

287 obtained by image analysis. 

288  
 

289 Figure 2 shows the results from a Vicat test on a geopolymer binder in the absence of any filler. With 

290 penetration depths  of 21.6  mm  and 1.3 mm, the  initial  and final  setting times recorded were 120 

291 minutes and 134 minutes, respectively. It takes about two hours before geopolymer starts setting but 

292 it becomes fully set within 14 minutes of this time. Compared to foamed concretes, lightweight 

293 concretes and composites are easier to handle because soon after their preparation, it is possible to 

294 move and transfer them without changing the pore size and the density of the foams. The size of the 

295 air voids entrapped in E-spheres will remain the same and the density of the lightweight composite 

296 is very easy to control. 
 

 

297  

298 Figure 2. Vicat needle penetration depth as a function of time for the geopolymer paste 

299  
 

300 Figure 3 shows the results from XRD analysis of a geopolymer binder after 28 days of reaction, as well 

301 as the E-Sphere and fly ash. The crystalline phases detected are mullite Al4.56Si1.44O9.72 , PDF 01-079- 

302 1458;   quartz  SiO2, PDF 01-074-9758;   magnetite  Fe3O4, PDF  01-075-0449;  and  tricalcium silicate 

303 Ca3SiO5,  PDF  00-055-0740.  The  presence  of  tricalcium  silicate  indicates  a  small  degree  of 

304 contamination of the fly ash by Portland cement. The large diffuse features are an indication of the 

305 amorphous content of the samples. With geopolymer, the amorphous scattering contribution is 

306 centred around 30° 2θ, and with the E-sphere, at around 12 and 26° 2θ. While the quartz and mullite 

307 contained in E-Spheres (25%) are not likely to be reactive phases , the glassy content of these particles 

308 might be reactive. 
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309  

310 Figure 3. X-ray diffraction of geopolymer (cured for 28 days) and E-Sphere samples. Q: quartz, 

311 M: mullite, C: tricalcium silicate, F: magnetite. 

312  
 

313 The gradual development of a chemical bonding structure in geopolymer binder is initially observed 

314 using a laboratory-based ATR-FTIR, and is shown in Figure 4. From the first day, a strong band at 946 

315 cm-1 is detected. This band is related to the Si-O-T (T: tetrahedral Al or Si) vibrations in geopolymer 

316 gels. Over time, this band shifts to a slightly lower wavenumber which is an indication of a higher 

317 amount of Al substitution in the Si-O-T network [36]. The shoulder at 1100 cm-1 is related to polymeric 

318 Si-O vibrations in fly ash and the shoulder at 1025 cm-1, which forms from the third day of reaction is 

319 associated with silica rich Si-O-T networks [37]. While the intensities of the shoulders at wavelengths 

320 of 1100 and 1025 cm-1 decrease over time, both bands still remain after 56 days of reaction. The band 

321 at 870 cm-1 is related to the Si-O- small anions [38], and the band at 700 cm-1 is related to AlO3 

322 vibrations [39]. After three days of reaction, these bands changed to the bands around 875 cm-1 and 

323 850 cm-1. 
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324 
 

325 

326 

Figure 4. ATR-FTIR spectra showing geopolymer reaction over 56 days of reaction. 

 

327 The small shoulder at 1100 cm-1 and the strong band at 946 cm-1, which appeared since the first day 

328 of reaction, indicate the early formation of geopolymer products. The bands at 700, 870 and 900 cm-
 

329 1 indicate the presence of dissolved Al and Si species in the bulk solution which are ready for 

330 development into a geopolymer network. The formation of the 1025 cm-1 band shows that  some of 

331 the dissolved silica has been polymerised into silica-rich networks. The decrease of this shoulder over 

332 time shows that this gel has been slightly dissolved and participated in geopolymer gel development. 

333 However, the presence of this shoulder after 56 days of reaction indicates that some of this silica-rich 

334 gel remains kinetically stable in the matrix. The formation of the band at 875 cm-1 from the third day 

335 and the appearance of the band at 850 cm-1 from the 7th day of reaction are known to be indicative 

336 of Al3+ substitution into the silicate network [40]. 

 
337  

 
338  

 
339  
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340 3.2. Interfacial chemistry 
 

341  
 

342 Figure 5  shows SEM images of a fractured surface of the syntactic foam. The spherical shapes are 

343 cenosphere  particles  which  are  bonded  with  the  geopolymer  matrix.  These  spherical particles 

344 appear to be well-integrated within the matrix.   The geopolymer binder microstructures at the 

345 interface and in the bulk region appear to be very similar. However, the elemental analysis of the 

346 interfacial layer (discussed below) will show if there are any differences in the distribution of key 

347 elements at the interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
348  

349 Figure 5. SEM images of the geopolymer and E-spheres composite 
 

350  
 

351 Figure  6  shows  the  results  obtained  from  chemical  composition  analysis  using  SEM-EDX.  The 

352 concentrations of the key elements were measured over a 50 µm line starting from the inner surface 

353 of the E-sphere into the bulk geopolymer paste and used to calculate Si/Al and Ca/Si molar ratios. The 

354 wall thickness of the E-Sphere is observed to be about 5 µm. The Si/Al molar ratio in the E-sphere is 5- 

355 7, and the Ca/Si  ratio  is almost  zero. The chemical  composition  suddenly changes  at the interface 

E-Spheres 
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356 between the E-sphere and the geopolymer, 5 µm from the inner surface of the E-Sphere wall. The 

357 amount of calcium in this region is still very low, but the Si/Al molar ratio is reduced to about 4. Beyond 

358 10 µm from the inner surface, in the bulk geopolymer, the Si/Al ratio is roughly constant at around 2, 

359 and the Ca/Si molar ratio is around 0.5. 
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360  

361 Figure 6. SEM-EDX analysis of the interfacial chemistry between geopolymer and E-Sphere. 

 
362  

 

363 It is therefore evident that there are two distinct binder regions. The binder next to the shell has a very 

364 small amount of calcium and is rich in silica, while the binder in the bulk region is almost consistent in 

365 composition, with  similar Si/Al and  Ca/Si ratios from a distance  of 10 µm  outwards. According to the 

366 supplier data which stated that the wall thickness of the E-Spheres is approximately 10% of  diameter, 

367 at a diameter of approximately 75-80 µm, this E-Sphere particle should have had an estimated initial 

368 shell thickness of approximately 7.5-8 µm. The fact that the observed shell was significantly thinner 

369 than the estimated values may be an indication of dissolution and reaction at the surface of the particle 

370 (although the initial thickness of this particular shell cannot be known with certainty), but the difference 

371 in binder composition immediately surrounding the filler particle is a strong indication that a chemical 

372 reaction occurred. To further interrogate this point, the spatially resolved SR-FTIR microspectroscopic 

373 technique was used in this study to characterize spatial variations of chemical bonding interaction at 

374 the interface and to observe the homogenity of the geopolymer gel around the lightweight fillers. The 

375 SR-FTIR results obtained from the analysis of the geopolymer interface with E-Sphere are presented in 
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376 Figure 7. The integration area from 1050 to 1030 cm-1 were used to create the chemical maps. Five 

377 different FTIR spectral patterns were observed, the localisation of which within the microstructure is 

378 shown in a colour coded image in Figure 7b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

379  

380  
 

381 Figure 7. The interfacial chemistry between the geopolymer and an E-Sphere, obtained from SR- 

382 FTIR analysis: a) microscopic images of the measured region; b) the chemical map produced 

383 using the integration area within 1050-1030 cm-1; and c) average SR-FTIR spectra extracted from 

384 the areas on the chemical map with the same colours. 

385  
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386 The dark blue area in Figure 7b indicates a lack of contact with the ATR crystal, because this area is 

387 associated with the air voids inside an E-Sphere. The circular region surrounding this area, which is 

388 related to the shell of the E-Sphere, shows a very high intensity of the band at 1040 cm-1 and the 

389 shoulder at 1100 cm-1. The band at 1100 cm-1 is related to the asymmetric stretching of the Si-O-Si 

390 bonds in the aluminosilicate E-Sphere, and the band at 1040 cm-1 is related to the asymmetric stretch 

391 of the Si-O-Si bond with an increased bond length and angle [37] . An increase in the length and angle 

392 of this bond occurs when the amount of network modifiers increases in the neighbouring Si-O-Si 

393 bonds [37]. This area is surrounded by a thin interfacial layer shown in yellow, which has a broad band 

394 around 1000 cm-1. The majority of the gel around the E-Sphere has a distinct band at 960 cm-1. 

 
395  

 

396 The chemical bonding structure in the bulk region is related to a typical geopolymer network with the 

397 main  Si-O-T  band  around  960  cm-1.  This  wavenumber  shows  a  well-developed  geopolymer gel 

398 structure with Al substitution in the silica network. At the interface, the presence of the band at 1000 

399 cm-1 indicates that the gel here is richer in silica [37] , which is in a good agreement with the chemical 

400 composition results obtained from SEM-EDX, Figure 5. However, the thickness of this region and its 

401 overlap with nearby green and light blue regions suggest that the silica-rich region is relatively well 

402 integrated, in a chemical perspective, with the geopolymer matrix. While the inner side of the E- 

403 Sphere is indicated by a clear circular line, its outer layer is noticeably perturbed in its contact with 

404 geopolymer. This may be attributed to the uneven, potentially porous surface of the chemically- 

405 attacked E-Sphere that allows the geopolymer gel to penetrate into the surface, which consequently 

406 makes its interface appear disordered in the chemical map (Figure 7b). As the glassy content of E- 

407 Spheres reacted in the alkali environment over time, the surface dissolved and participated in the 

408 formation and development of a geopolymer gel of composition distinct from the bulk, at the 

409 interface. This reaction can evolve the E-Sphere filler to become a part of the hardening matrix and 

410 assist with the strength development of the composite. However, the wall thickness of the spheres is 

411 sufficiently high,  and their  dissolution  sufficiently slow,  that they are not  punctured or perforated 

412 during the geopolymerisation process, and so are still able to act effectively to reduce the density of 

413 the composite foam. 

 
414  

 

415  

416  

3.3. Strength development and thermal performance 
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417 Figure 8 shows the results obtained from compressive strength testing of the lightweight geopolymer 

418 composites  as a function  of time.  The strength  of the composite  foam was  9 MPa at only 7 days of 

419 reaction,  as the GBFS  in the precursor  blend  provides  good early  strength to geopolymer materials. 

420 After two weeks, not much further strength development was recorded, but at 28 days, the strength of 

421 the composites increased, and dry density reduced to slightly below 1000 kg/m3. When the samples 

422 were tested again after 56 days of reaction, with an average density of 978 kg/m3, an average strength 

423 of  17.5  MPa  was  achieved.  For  materials  of  such  low  density,  this  strength  improvement  is 

424 remarkable, and is attributed to the fact that the surface of E-Spheres has participated in the reaction, 

425 along with the continued alkali-activation of the fly ash in the blended precursor at the later age. 
 

 

426  
 

427 Figure 8. Compressive strength development in geopolymer composites over time 

 
428  

 

429 Figure 9 shows a comparison of the strengths and densities presented in Figure 8, to the results 

430 obtained  from  studies,  which  have  achieved  lightweight  composites  of  similar  densities  using 

431 cementitious materials and lightweight aggregates.   The lightweight composites were developed 

432 using cenospheres (Blanco et al. [17] ; Hanif et al. [41] and Wang et al. [26]), cenospheres and aerogel 
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433 (Hanif et al. [23] and WĂŶŐ Ğƚ Ăů͘ ϮϲͿ͕ ĂĞƌŽŐĞů ;GĂŽ Ğƚ Ăů͘ ϮϬͿ͕ ĚŝĂƚŽŵŝƚĞ TŽƉಮƵ Ğƚ Ăů͘ Ϯϭ and Ünal 

434 et al. [42]], foam and aerated concretes (Awang et al. [43], Sanjayan et al. [44], and Hussin et al. [45]), 

435 foam  and  aggregate  (Jones  et  al.  [46]),  Sidorajo  mud  (Ekaputri  et  al.  [47]),  glass microspheres 

436 (Shahidan et al. [48] and Shao et al. [28] ), expanded perlite (Sengual et al. [49]) and porous siliceous 

437 materials (Pimraksa et al. [50]). 

438  
439 This graph shows that the strength improvement in this study (which used environmentally-friendly 

440 processes) is well above those obtained from the aforementioned studies. The studies in Figure 9 that 

441 are  displayed by triangle markers have been  explained in detail in the  Introduction  section of  this 

442 paper. These have used manufacturing processes which negatively impact the commercial viability 

443 and  sustainability  of  the  composites,  such  as  high  temperature,  ultra-fine  source  materials, or 

444 prolonged high humidity curing followed by oven drying. The high strength/density ratio composites 

445 made in this study are made from one-part geopolymers and the samples are cured in an ambient 

446 environment. The simple sample preparation procedures are desirable for bulk production and 

447 commercial applications of lightweight composites. 
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449 

450 

451 Figure  9. Compressive  strengths of  lightweight  concretes made with various Portland and non- 

452 Portland cementitious binders, and different lightweight aggregates. Samples in literature studies 

453 were tested at ages of 7-56 days, from references [39,53-63]. Data points shown as triangles refer 

454 to  studies  described  in  the  Introduction  of  this  paper,  where  the  production  processes are 

455 deemed to be undesirable in terms of environmental and/or commercial aspects. 

456 
 

457 In  addition  to  strength  and  density,  another  important  property  of  lightweight  composites  in 

458 construction  is  their  thermal  insulation  capacity.  Figure  10  therefore  compares  the  thermal 

459 conductivity  of  the  samples  produced  in  this  study  with  data  reported  for  various lightweight 

460 composites with different aggregates, from a subset of the studies cited above. For lightweight 

461 composites with densities between 943 and 1050 kg/m3, the thermal conductivity varies from 0.2 to 

462 0.52 W/m.K. A thermal conductivity of 0.28 W/m.K with an average density of 978 kg/m3 for the 

463 materials developed here shows that the thermal performance of the samples is in the mid-range and 

464 very close to the thermal performance of foam concretes (0.25 W/m·K). This result confirms that the 

465 lightweight geopolymer composites developed in this study are both strong and suitable as thermal 

466 barriers. This will make the composites suitable for applications in lightweight building elements that 

467 require both strength and insulating properties, such as prefabricated floor systems. 
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468  
 

469 Figure 10. The thermal conductivity of lightweight concretes made with various Portland and non- 

470 Portland cementitious binders, and different lightweight aggregates. Samples in literature studies 

471 were tested at ages of 7-56 days, from references [17, 20, 23, 41, 43, 46, 48, 49]. 

472  
 

473  

474  

4. Conclusions 

 

475 A syntactic foam of one-part mix geopolymer and cenospheres was developed, and the mechanical 

476 and  thermal  performance  of  the  foam  was  compared  with  existing  lightweight  concretes  and 

477 composites reported in the literature. Water was added to the dry mix of geopolymer precursors and 

478 cenospheres, and  the resulting paste was sealed and  cured  at  an  ambient  temperature. Spatially 

479 resolved synchrotron-based FTIR analysis revealed the chemical bonding structure of the  interfacial 

480 layer  between cenospheres  and  geopolymer. As a  result  of this chemical reaction, the lightweight 

481 hollow shells developed a strong bond with the matrix and the resulting foam achieved a 56-day 

482 compressive strength of 17.5 MPa at a density of 978 kg/m3. The thermal conductivity of the foam 

483 was measured as 0.28 w/mK, which is in the acceptable range for this density. The synthesised foam 
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484 has desirable strength and insulation properties for lightweight structural applications in energy 

485 efficient buildings. 

 
486  
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