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Abstract

This paper considers the application of the Sylvester resultant matrix to the com-
putation of the degree of the greatest common divisor (GCD) of three Bernstein
basis polynomials f(y), g(y) and h(y). It is shown that the governing equations
can be written in two forms, which lead to different Sylvester matrices. The first
form requires that the polynomials be considered in pairs, but different pairs of
polynomials may yield different computational answers, for example, the solution
of the computations GCD (f, g) and GCD (g, h) may differ from the solution of the
computations GCD (f, g) and GCD (f, h), depending on f(y), g(y) and h(y). This
problem does not arise when the second form is considered, which requires that the
three polynomials be considered simultaneously. Complications arise in both forms
because of the combinatorial terms in the Bernstein basis functions, which cause the
entries of the matrices to span several orders of magnitude, even if the coefficients
of the polynomials are of the same order of magnitude. It is shown that the adverse
effects of this wide range of magnitudes can be mitigated by postmultiplying both
forms of the Sylvester matrix by a diagonal matrix of combinatorial terms and pre-
processing f(y), g(y) and h(y) by three operations. Results of GCD computations
from the two forms of the Sylvester matrix when f(y), g(y) and h(y) are perturbed
by noise, and with the omission and inclusion of the preprocessing operations, are
shown.

Key words: Greatest common divisor; Sylvester resultant matrix; Bernstein basis
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1 Introduction

The computation of the greatest common divisor (GCD) of two polynomials
arises in many applications, including control theory, image processing and the
computation of multiple roots of a polynomial, and this has been the main
motivation for the continued research into this problem [3–7,17–27]. More re-
cent work has considered the computation of the GCD of several power basis
polynomials [1,2,8,9,12,15], the GCD of two bivariate power basis polynomials
[10,11] and the GCD of two multivariate power basis polynomials [14,16,28].
These GCD problems are extended in this paper by considering the compu-
tation of the degree of the GCD of three univariate Bernstein basis polyno-
mials. These computations are important in computer-aided geometric design
(CAGD), and the reason for restriction of the computation to the degree of
the GCD, rather than consider the computation of its degree and coefficients,
is discussed.

Bernstein basis polynomials are used extensively in CAGD because of their
elegant geometric properties and superior numerical properties with respect
to the power basis. These properties of the Bernstein basis functions are [13]:

(1) The recursive generation of the nth order Bernstein basis function from
the (n− 1)th order Bernstein basis function.

(2) The variation-diminishing property.
(3) The positivity and partition of unity.
(4) The degree elevation procedure.

Two of the most important computations in CAGD are the calculation of the
points of intersection of curves, and the points and curves of intersection of
surfaces. These computations have been considered for two intersecting curves
and two intersecting surfaces, but the calculation of the points of intersection
of three curves has not been addressed. This problem raises issues that are
not present when two curves or two surfaces are considered. In particular, if
the polynomials f(x, y), g(x, y) and h(x, y) are factorised as

f(x, y) = d(x, y)u(x, y),

g(x, y) = d(x, y)v(x, y),

h(x, y) = d(x, y)w(x, y),

where u(x, y), v(x, y) and w(x, y) are coprime polynomials and d(x, y) is the
GCD of f(x, y), g(x, y) and h(x, y), then the curves

f(x, y) = 0, g(x, y) = 0, h(x, y) = 0,
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intersect at the points that satisfy d(x, y) = 0. It therefore follows that the
determination of the points of intersection of two or three curves reduces to
the calculation of the GCD of their polynomial forms. The computation of the
GCD of two bivariate polynomials in the power basis has been considered, as
noted above, but much less work has been devoted to the computation of the
GCD of three bivariate polynomials.

The Sylvester matrix and its subresultant matrices [3] are often used for the
computation of the GCD of two univariate polynomials, and it is desirable to
extend their use to the computation of the GCD of three bivariate polyno-
mials. This computation raises, however, several issues because the Sylvester
matrices of three univariate or bivariate polynomials are not trivial extensions
of their equivalent forms for two polynomials. For example, there are four
forms of the Sylvester matrix and its subresultant matrices of three polyno-
mials, and the Sylvester matrix of each form is rectangular but the Sylvester
matrix of two polynomials is unique and square. It is therefore appropriate to
consider initially the simpler problem of the computation of the degree of the
GCD of three univariate polynomials, before the more difficult problem of the
computation of the GCD of three bivariate polynomials is considered. This
simpler problem is addressed in this paper in order to understand the prop-
erties of Sylvester matrices of three polynomials. This problem has not been
addressed in the literature and there do not, therefore, exist results from other
methods for comparison. The effectiveness of the Sylvester matrices for the
computation of the degree of the GCD of three polynomials can, however, be
quantified because its calculation reduces to the change from rank deficiency
to full rank as rows and columns of a matrix are removed. A good (bad) result
is therefore characterised by a large (small) change in the smallest singular
value of each matrix as the rows and columns of the matrices are removed.

The discussion above has referred to the GCD of three polynomials, but these
polynomials are corrupted by noise in practical problems and thus an approx-
imate greatest common divisor (AGCD) they possess must be considered. An
AGCD of three polynomials is discussed in Section 2, but it is convenient to
derive the theory for the computation of the GCD of three polynomials and
then show that if the polynomials are preprocessed, an AGCD they possess
can be computed when their coefficients are corrupted by noise.

Four formulations of the GCD problem for three polynomials are considered
in Section 3, and it is shown in Section 4 that each of them yields a Sylvester
matrix, as noted above. Although these matrices are theoretically equivalent
because the GCD and coprime polynomials can be computed from each of
them, their numerical properties differ such that they may return different
solutions to the same GCD computation. The adverse numerical effects of the
combinatorial terms in the Bernstein basis functions are considered in Section
5, and it is shown in Section 6 that these adverse effects can be mitigated
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by processing the polynomials before computations are performed on their
Sylvester matrices and subresultant matrices. Section 7 contains examples of
these computations, and the paper is summarised in Section 8.

This paper considers only the computation of the degree of the GCD of three
univariate Bernstein basis polynomials because the computation of the coeffi-
cients of the GCD involves considerable extra work. In particular, it requires
the extension of the non-linear structure-preserving matrix described in [7]
from the Sylvester matrix and its subresultant matrices of two polynomials to
their equivalents for three polynomials. The structures of these matrices for
three polynomials are more complex than the structures of their equivalents
for two polynomials, and the theoretical development for the preservation of
these structures is therefore more difficult and thus requires a separate study.
The major contribution of this paper is therefore the extension of the Sylvester
matrix from two univariate polynomials to three univariate polynomials, and
investigations into its use for the computation of the degree of their GCD,
and its use for the computation of an AGCD when the coefficients of the
polynomials are perturbed by noise.

2 An AGCD of three polynomials

It was noted in Section 1 that practical problems require that an AGCD,
rather than the GCD, of two or more polynomials be considered, and thus
this section considers an AGCD of three polynomials.

The following definition of an AGCD of three polynomials is an extension of
the definition of an AGCD of two polynomials [5,10]. It includes the properties
of minimum distance and maximum degree of an AGCD [27].

Definition 2.1 (An AGCD) A polynomial d(y) is an ε-divisor of f(y), g(y)
and h(y), which are of degrees m,n and p respectively, if there exist polyno-
mials f̃(y), g̃(y) and h̃(y) of degrees m,n and p respectively, such that

∥

∥

∥f(y)− f̃(y)
∥

∥

∥

l

‖f(y)‖l
≤ ε ‖f(y)‖l ,

‖g(y)− g̃(y)‖l
‖g(y)‖l

≤ ε ‖g(y)‖l ,

∥

∥

∥h(y)− h̃(y)
∥

∥

∥

l

‖h(y)‖l
≤ ε ‖h(y)‖l ,

and d(y) is a divisor of f̃(y), g̃(y) and h̃(y), where l = 1, 2,∞. If d(y) is the
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ε-divisor, of maximum degree, of f(y), g(y) and h(y) for which the distance
between the exact and perturbed polynomials is the minimum among the
set of ε-divisors, then it is an ε-GCD or AGCD of f(y), g(y) and h(y). The
polynomials u(y) = f̃(y)/d(y), v(y) = g̃(y)/d(y) and w(y) = h̃(y)/d(y) are
ε-cofactors.

3 The GCD of three polynomials

The GCD of three polynomials, f(y), g(y) and h(y), can be obtained by two
GCD computations, each of which is performed on two polynomials,

GCD (f, g, h)=GCD (GCD (f, g), h) = GCD (df,g, h)

=GCD (GCD (g, h), f) = GCD (dg,h, f)

=GCD (GCD (h, f), g) = GCD (dh,f , g), (1)

where dp,q = dp,q(y) = GCD (p, q). The methods described in [3–7,18,21–24,26]
can be used for these GCD computations on two polynomials, and it may occur
that

df,g(y) = GCD (df,g, h),

in which case all the subresultant matrices of the Sylvester matrix S(df,g, h)
are rank deficient. It is therefore difficult to determine the degree of the GCD
of df,g(y) and h(y) because there does not exist a change from rank deficiency
to full rank as the index k of the Sylvester subresultant matrices Sk(df,g, h),
k = 1, . . . ,min(deg df,g, deg h), increases. Another problem arises when com-
putations suggest that

GCD (f, g, h) 6= GCD (GCD (f, g), h) ,

and this situation may exist for one or more pairings of the polynomials, but
other pairings may yield good results. It is, however, not possible to determine
a priori the pairings that yield good results, which is a disadvantage of the
reduction of the three-polynomial GCD problem to two GCD computations,
each of which is performed on two polynomials (1). These problems that arise
when two GCD computations are performed on two polynomials do not occur
when f(y), g(y) and h(y) are considered simultaneously and only one GCD
computation is therefore performed. In this case, it is necessary to extend the
Sylvester matrix and its subresultant matrices from two polynomials to three
polynomials. There are two forms of these matrices for three polynomials and
they are now discussed briefly, and they are considered in detail in Section 4.

5



Let d(y) be the GCD of f(y), g(y) and h(y), and let their coprime polynomials
be u(y), v(y) and w(y), respectively,

f(y) = u(y)d(y), g(y) = v(y)d(y), h(y) = w(y)d(y). (2)

The simultaneous consideration of these equations leads to one form of the
Sylvester matrix, and the second form of the Sylvester matrix is obtained by
grouping the three equations (2) pairwise:

Group 1: f(y) = u(y)d(y), g(y) = v(y)d(y),

Group 2: f(y) = u(y)d(y), h(y) = w(y)d(y),

Group 3: g(y) = v(y)d(y), h(y) = w(y)d(y).

It is clear that consideration of any two groups includes the three equations
(2), and thus computations on any two groups is adequate to compute the
GCD of f(y), g(y) and h(y).

This discussion leads to two variants of the Sylvester matrix of three polyno-
mials:

Variant 1 The polynomials f(y), g(y) and h(y) are considered simultaneously
and there is only one Sylvester matrix.

Variant 2 The polynomials f(y), g(y) and h(y) are considered pairwise in
three sets,

((f, g), (f, h)), ((f, g), (g, h)), ((f, h), (g, h)), (3)

which correspond to Groups 1 and 2, Groups 1 and 3, and Groups 2 and 3,
respectively. Each set yields a different Sylvester matrix, but each Sylvester
matrix can be used to compute the GCD of f(y), g(y) and h(y). These three
matrices yield, theoretically, the same result, but they may return different
computational results. The Sylvester matrix that yields the best result may
not be known a priori, which is a disadvantage of this variant.

Section 4 considers the Sylvester matrices and subresultant matrices for Vari-
ants 1 and 2, and their application to the calculation of the degree of the GCD
of f(y), g(y) and h(y). These matrices contain combinatorial terms, some of
which are very large and may therefore lead to computational problems. It
is shown in Section 6 that the adverse numerical effects of these problems
can be mitigated by processing f(y), g(y) and h(y) before computations are
performed on their Sylvester matrices and subresultant matrices.
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4 The Sylvester matrices for three polynomials

The discussion in Section 1 considered three polynomials in an arbitrary basis,
but the polynomials f(y), g(y) and h(y) in this section and all subsequent
sections are expressed in the Bernstein basis. The polynomials are real and of
degrees m,n and p respectively, and the degree of their GCD is t,

f(y) =
m
∑

i=0

ai

(

m

i

)

(1− y)m−iyi, (4)

g(y) =
n
∑

i=0

bi

(

n

i

)

(1− y)n−iyi, (5)

h(y) =
p
∑

i=0

ci

(

p

i

)

(1− y)p−iyi. (6)

The polynomials have more than one common divisor d(k)(y) of degree k =
1, . . . , t − 1, and one common divisor (the GCD) of degree k = t. There
therefore exist quotient polynomials u(k)(y), v(k)(y) and w(k)(y) of degrees m−
k, n− k and p− k respectively, such that

d(k)(y) =
f(y)

u(k)(y)
=

g(y)

v(k)(y)
=

h(y)

w(k)(y)
, k = 1, . . . , t, (7)

where

u(k)(y) =
m−k
∑

i=0

uk,i

(

m− k

i

)

(1− y)m−k−iyi, (8)

v(k)(y) =
n−k
∑

i=0

vk,i

(

n− k

i

)

(1− y)n−k−iyi, (9)

w(k)(y) =
p−k
∑

i=0

wk,i

(

p− k

i

)

(1− y)p−k−iyi. (10)

It follows from (7) that the polynomials d(k)(y) are common divisors of f(y), g(y)
and h(y) if the equations

f(y)v(k)(y)− g(y)u(k)(y) = 0, (11)

f(y)w(k)(y)− h(y)u(k)(y) = 0, (12)

g(y)w(k)(y)− h(y)v(k)(y) = 0, (13)

are satisfied for k = 1, . . . , t, and each of these three equations defines the
GCD problem for two Bernstein basis polynomials [6,7]. In particular, it is
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shown in these references that the kth Sylvester subresultant matrix Sk(f, g)
of f(y) and g(y) is

Sk(f, g)=P−1
k Tk(f, g)

=diag
[

1

(m+n−k

0 )
1

(m+n−k

1 )
· · · 1

(m+n−k

m+n−k)

]

×










































a0
(

m

0

)

b0
(

n

0

)

a1
(

m

1

) . . . b1
(

n

1

) . . .
...

. . . a0
(

m

0

) ...
. . . b0

(

n

0

)

...
. . . a1

(

m

1

) ...
. . . b1

(

n

1

)

am
(

m

m

) . . .
... bn

(

n

n

) . . .
...

. . .
...

. . .
...

am
(

m

m

)

bn
(

n

n

)











































,

where

P−1
k = diag

[

1

(m+n−k

0 )
1

(m+n−k

1 )
· · · 1

(m+n−k

m+n−k)

]

,

Tk(f, g) =
[

Fk(f) Gk(g)

]

∈ R
(m+n−k+1)×(m+n−2k+2),

and Fk(f) ∈ R
(m+n−k+1)×(n−k+1) and Gk(g) ∈ R

(m+n−k+1)×(m−k+1) are Tœ-
plitz matrices that contain the coefficients of f(y) and g(y) scaled by their
combinatorial terms,

Fk(f) =











































a0
(

m

0

)

a1
(

m

1

) . . .
...

. . . a0
(

m

0

)

...
. . . a1

(

m

1

)

am
(

m

m

) . . .
...

. . .
...

am
(

m

m

)











































, Gk(g) =











































b0
(

n

0

)

b1
(

n

1

) . . .
...

. . . b0
(

n

0

)

...
. . . b1

(

n

1

)

bn
(

n

n

) . . .
...

. . .
...

bn
(

n

n

)











































. (14)

Theorem 4.1 shows that the degree of the GCD of two polynomials can be
computed from their subresultant matrices.
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Theorem 4.1 The degree tf,g of the GCD of f(y) and g(y) is equal to the
largest integer k such that Sk(f, g) is rank deficient,

rank Sk(f, g) < m+ n− 2k + 2, k = 1, . . . , tf,g,

rank Sk(f, g) = m+ n− 2k + 2, k = tf,g + 1, . . . ,min(m,n).
(15)

It is shown in [6,7] that bad results may be obtained when the degree of
the GCD of f(y) and g(y) is computed from Sk(f, g), k = 1, . . . ,min(m,n),
because of the combinatorial terms in P−1

k and Tk(f, g). Better results are
obtained when the modified Sylvester subresultant matrices

Sk(f, g)Rk = P−1
k Tk(f, g)Rk, k = 1, . . . ,min(m,n),

are used, where

Rk =







Qn−k

Qm−k





 , Qs = diag
[

(

s

0

) (

s

1

)

· · ·
(

s

s

)

]

. (16)

Since P−1
k and Rk(f, g) have full rank, the four matrices

{

Tk(f, g), P−1
k Tk(f, g), Tk(f, g)Rk, P−1

k Tk(f, g)Rk

}

, (17)

have the same rank for each value of k = 1, . . . ,min(m,n), and thus the rank
property (15) of the subresultant matrices is satisfied by all these matrices,
and not only by Sk(f, g) = P−1

k Tk(f, g). Although these four matrices are
theoretically equivalent for the calculation of tf.g, it is shown in [6] that they
may return different results, in particular in the presence of noise and for
polynomials of high degree.

Theorem 4.1 and the four forms (17) can be extended to the computation of
the GCD of three polynomials, and the differences, due to the combinatorial
terms, in these forms are considered in Section 5. It is shown in [6,7] that,
in general, the form P−1

k Tk(f, g)Rk yields the best result for the computation
of the GCD of two polynomials, and the extension of this form from two
polynomials to three polynomials will therefore be used in Sections 4.1 and 4.2
for consideration of the four forms of the Sylvester matrix of three polynomials.
It is shown, however, that even with the best form, an incorrect result may
be obtained and additional methods must therefore be used to minimise the
adverse numerical effects of large combinatorial terms.
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It is convenient to introduce a small change of notation between the two-
polynomial GCD problem and the three-polynomial GCD problem. In par-
ticular, the kth Sylvester subresultant matrix for the polynomials f(y) and
g(y) is P−1

k Tk(f, g), and (17) shows that four matrices must be considered for
the computation of the degree of the GCD of f(y) and g(y). Since, as noted
above, P−1

k Tk(f, g)Rk yields the best result for this problem, it is convenient,
when considering the computation of the degree of the GCD of three poly-
nomials, to redefine the kth Sylvester subresultant matrix as the extension
of P−1

k Tk(f, g)Rk to its three-polynomial equivalent. This modified definition
of the Sylvester matrix and its subresultant matrices is used for Variants 1
and 2 of the Sylvester matrix of three polynomials, and they are considered
in Sections 4.1 and 4.2, respectively.

4.1 The Sylvester matrix for Variant 1

Variant 1 of the Sylvester matrix of three polynomials follows from the simul-
taneous consideration of (11), (12) and (13), and this leads to the Sylvester
matrix and its subresultant matrices S̃k(f, g, h), k = 1, . . . , q, q = min(m,n, p).
The forms of these matrices follow easily from their forms for two polynomials,
and in particular, the extension of the proof of Theorem 4.1 shows that (11),
(12) and (13) can be combined and written in matrix form,

S̃k(f, g, h)x̃k = 0, S̃k(f, g, h) = D̃−1
k T̃k(f, g, h)Q̃k, k = 1, . . . , t, (18)

where S̃k(f, g, h) is a 3×3 block matrix of order (2(m+n+p)−3k+3)×(m+
n+p−3k+3), D̃−1

k is a square diagonal matrix of order 2(m+n+p)−3k+3,

D̃−1
k = diag

[

D−1
m+n−k D−1

m+p−k D−1
n+p−k

]

,

D−1
s = diag

[

1

(s0)
1

(s1)
· · · 1

(ss)

]

,

T̃k(f, g, h) =















Tn−k(f) Tm−k(g)

Tp−k(f) Tm−k(h)

Tn−k(h) −Tp−k(g)















, x̃k =















v(k)

w(k)

−u(k)















,

the matrices

Tr(f) ∈ R
(m+r+1)×(r+1), Tr(g) ∈ R

(n+r+1)×(r+1) and Tr(h) ∈ R
(p+r+1)×(r+1)

are lower triangular and Tœplitz, and their non-zero entries contain the co-
efficients of f(y), g(y) and h(y), scaled by their combinatorial terms, respec-
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tively, as shown in (14), u(k), v(k) and w(k) are vectors of the coefficients of

u(k)(y), v(k)(y) and w(k)(y), which are defined in (8), (9) and (10), Q̃k is a
square diagonal matrix of order m+ n + p− 3k + 3,

Q̃k = diag
[

Qn−k Qp−k Qm−k

]

, (19)

and Qs is defined in (16). These definitions of D̃−1
k , T̃k(f, g, h) and Q̃k allow

S̃k(f, g, h) to be written as

S̃k(f, g, h) =















Cn−k(f) Cm−k(g)

Cp−k(f) Cm−k(h)

Cn−k(h) −Cp−k(g)















, (20)

where

Cn−k(f) = D−1
m+n−kTn−k(f)Qn−k ∈ R

(m+n−k+1)×(n−k+1),

Cm−k(g) = D−1
m+n−kTm−k(g)Qm−k ∈ R

(m+n−k+1)×(m−k+1),

Cp−k(f) = D−1
m+p−kTp−k(f)Qp−k ∈ R

(m+p−k+1)×(p−k+1),

Cm−k(h) = D−1
m+p−kTm−k(h)Qm−k ∈ R

(m+p−k+1)×(m−k+1),

Cn−k(h) = D−1
n+p−kTn−k(h)Qn−k ∈ R

(n+p−k+1)×(n−k+1),

Cp−k(g) = D−1
n+p−kTp−k(g)Qp−k ∈ R

(n+p−k+1)×(p−k+1). (21)

The Sylvester matrix is defined by the condition k = 1, S̃(f, g, h) = S̃1(f, g, h),
and thus the Sylvester matrix of three polynomials is rectangular, which must
be compared with the Sylvester matrix of two polynomials, which is square.

Theorem 4.2 shows that the degree t of the GCD of f(y), g(y) and h(y) can
be computed from S̃(f, g, h). The proof of the theorem is very similar to the
proof of Theorem 4.1 and it is therefore omitted.

Theorem 4.2 The degree t of the GCD of f(y), g(y) and h(y) is equal to the
largest integer k such that S̃k(f, g, h) is rank deficient,

rank S̃k(f, g, h) < m+ n+ p− 3k + 3, k = 1, . . . , t,

rank S̃k(f, g, h) = m+ n+ p− 3k + 3, k = t + 1, . . . , q,

where q = min(m,n, p).

11



The polynomials u(k)(y), v(k)(y) and w(k)(y) are defined for k = 1, . . . , t, and if
this definition is extended to k = 1, . . . , q, such that each polynomial is equal
to the zero polynomial for k = t+ 1, . . . , q,

u(k)(y) = v(k)(y) = w(k)(y) ≡ 0, k = t + 1, . . . , q,

then it follows from (18) and the proof of Theorem 4.2 that S̃t(f, g, h) has unit
rank loss, and

S̃k(f, g, h)x̃k =
(

D̃−1
k T̃k(f, g, h)Q̃k

)

x̃k = 0, k = 1, . . . , q,

where x̃k is not unique for k = 1, . . . , t− 1, and x̃t contains the coefficients of
u(t)(y), v(t)(y) and w(t)(y) and is therefore unique up to a non-zero constant
multiplier,

x̃k =



































[

vT(k) wT
(k) −u

T
(k)

]T

6= 0, k = 1, . . . , t− 1,
[

vT(t) wT
(t) −u

T
(t)

]T

(coprime polynomials), k = t,
[

vT(k) wT
(k) −u

T
(k)

]T

≡ 0, k = t + 1, . . . , q.

4.2 The Sylvester matrix for Variant 2

Variant 2 of the Sylvester matrix of three polynomials follows from the ob-
servation that any two of the three equations (11), (12) and (13) implies the
third equation. This variant therefore leads to three Sylvester matrices and
subresultant matrices, and their forms have the same structure as (20), but
each form has two rows, not three rows, because the polynomials are consid-
ered in pairs, as shown by the three pairings in (3). It therefore follows that
the polynomial pairs ((f, g), (f, h)) yield the equation,

S̄k(f, g, h)x̄k,1 =







Cn−k(f) Cm−k(g)

Cp−k(f) Cm−k(h)





















v(k)

w(k)

−u(k)















= 0, (22)

the polynomial pairs ((f, g), (g, h)) yield the equation,

12



S̄k(g, f, h)x̄k,2 =







Cm−k(g) Cn−k(f)

Cp−k(g) Cn−k(h)





















u(k)

w(k)

−v(k)















= 0, (23)

and the polynomial pairs ((f, h), (g, h)) yield the equation,

S̄k(h, g, f)x̄k,3 =







Cn−k(h) Cp−k(g)

Cm−k(h) Cp−k(f)





















v(k)

u(k)

−w(k)















= 0, (24)

for k = 1, . . . , q. The dimensions of the matrices, and the equations from which
they are formed, are

S̄k(f, g, h) ∈ R
(2m+n+p−2k+2)×(m+n+p−3k+3) is formed from (11) and (12),

S̄k(g, f, h) ∈ R
(m+2n+p−2k+2)×(m+n+p−3k+3) is formed from (11) and (13),

S̄k(h, g, f) ∈ R
(m+n+2p−2k+2)×(m+n+p−3k+3) is formed from (12) and (13),

and each matrix is a 2 × 3 block matrix, which must be compared with the
Sylvester matrix of Variant 1, which is a 3 × 3 block matrix. Theorem 4.2
is also satisfied by the matrices S̄k(f, g, h), S̄k(g, f, h) and S̄k(h, g, f), and its
application to these matrices is stated in Theorem 4.3.

Theorem 4.3 The degree t of the GCD of f(y), g(y) and h(y) is equal to
the largest integer k such that S̄k(f, g, h), S̄k(g, f, h) and S̄k(h, g, f) are rank
deficient,

rank S̄k(f, g, h) < m+ n+ p− 3k + 3, k = 1, . . . , t,

rank S̄k(g, f, h) < m+ n+ p− 3k + 3, k = 1, . . . , t,

rank S̄k(h, g, f) < m+ n+ p− 3k + 3, k = 1, . . . , t,

and

rank S̄k(f, g, h) = m+ n+ p− 3k + 3, k = t+ 1, . . . , q,

rank S̄k(g, f, h) = m+ n+ p− 3k + 3, k = t+ 1, . . . , q,

rank S̄k(h, g, f) = m+ n+ p− 3k + 3, k = t+ 1, . . . , q.
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The matrices S̃k(f, g, h) and (S̄k(f, g, h), S̄k(g, f, h), S̄k(h, g, f)) have a parti-
tioned structure and badly scaled polynomials f(y), g(y) and h(y) may there-
fore lead to incorrect results. These problems that arise from badly scaled
polynomials also exist when the GCD of two polynomials is considered [6,24].

Example 4.1 Consider the Bernstein forms of the polynomials f(y), g(y)
and h(y) of degrees m = 29, n = 19 and p = 18 respectively, whose factored
forms are

f(y)= (y − 9.2657984335)2(y − 1.2657984335)4(y − 0.41564897)6 ×

(y − 0.21657894)(y − 0.0654654561)2(y + 0.7879734)9 ×

(y + 1.654987654)2(y + 1.932654987)(y + 2.3549879)2,

g(y)= (y − 9.2657984335)2(y − 1.75292)(y − 1.2657984335)4 ×

(y − 0.99851354877)3(y − 0.21657894)(y − 0.0654654561)2 ×

(y + 0.1654988136)4(y + 1.654987654)2,

h(y)= (y − 9.2657984335)2(y − 1.2657984335)4(y − 0.564987986958)3 ×

(y − 0.21657894)(y − 0.0654654561)2(y + 0.778912324654)2 ×

(y + 1.654987654)2(y + 1.75)2,

and whose GCD df,g,h(y) is of degree t = 11,

df,g,h(y)= (y − 9.2657984335)2(y − 1.2657984335)4(y − 0.21657894)×

(y − 0.0654654561)2(y + 1.654987654)2.

Noise was added to the coefficients of the polynomials, thereby forming the
inexact polynomials f̂(y), ĝ(y) and ĥ(y), such that the upper bound of the
relative error in each coefficient was 10−9. The coefficients of these polynomials
are plotted in Figure 1 and it is seen they span about 10 orders of magnitude.

Figures 2, 3, 4 and 5 show the singular values of S̃k(f̂ , ĝ, ĥ) and (S̄k(f̂ , ĝ, ĥ),
S̄k(ĝ, f̂ , ĥ), S̄k(ĥ, ĝ, f̂)), respectively. The degree of the GCD can be deduced
from Figures 2, 4 and 5, with different levels of clarity, but Figure 3 yields
a bad result because there does not exist a significant change in the smallest
singular value between k = 11 and k = 12. �

Example 4.1 shows that Variant 1 may return the correct value of t but it
may be poorly defined, and one or more pairs of polynomials in Variant 2
may yield the correct result, but the other pair(s) of polynomials may yield
incorrect results. The next section considers the combinatorial terms in the
Sylvester matrices and their subresultant matrices, and it is shown that, even
for moderate values of m,n and p, they span many orders of magnitude. This
wide range of magnitudes is a cause of incorrect results when computations are
performed on these matrices, and Section 6 considers operations on f(y), g(y)
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Fig. 1. The coefficients of (a) f̂(y), (b) ĝ(y) and (c) ĥ(y) for Example 4.1.
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Fig. 2. The singular values σk,i of S̃k(f̂ , ĝ, ĥ) for Example 4.1.
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Fig. 3. The singular values σk,i of S̄k(f̂ , ĝ, ĥ) for Example 4.1.
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Fig. 4. The singular values σk,i of S̄k(ĝ, f̂ , ĥ) for Example 4.1.
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Fig. 5. The singular values σk,i of S̄k(ĥ, ĝ, f̂) for Example 4.1.

and h(y) that are implemented before computations are performed on their
Sylvester matrices and subresultant matrices in order to minimise the adverse
numerical effects of this wide range of magnitudes. The examples in Section 7
show that these preprocessing operations lead to significantly improved results.

5 The combinatorial terms in the Bernstein basis functions

It was shown in Sections 4.1 and 4.2 that the degree of the GCD of three Bern-
stein basis polynomials can be computed from Variants 1 and 2, respectively,
of their Sylvester matrices and subresultant matrices. Furthermore, it follows
from the form of S̃k(f, g, h) in (18) and the non-singular property of D̃−1

k and
Q̃k that Theorem 4.2 can be applied to the matrices in the set

{

T̃k(f, g, h), D̃−1
k T̃k(f, g, h), T̃k(f, g, h)Q̃k, D̃−1

k T̃k(f, g, h)Q̃k

}

. (25)
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It is clear that each polynomial pair in Variant 2 can also be expressed in the
forms (25). For example, it follows from (21) and (22) that

S̄k(f, g, h) = D̄−1
k T̄k(f, g, h)Q̄k,

where

D̄−1
k =







D−1
m+n−k

D−1
m+p−k





 ,

T̄k(f, g, h) =







Tn−k(f) Tm−k(g)

Tp−k(f) Tm−k(h)





 ,

and Q̄k = Q̃k where Q̃k is defined in (19). The forms (25) of S̄k(f, g, h) are
therefore

{

T̄k(f, g, h), D̄−1
k T̄k(f, g, h), T̄k(f, g, h)Q̄k, D̄−1

k T̄k(f, g, h)Q̄k

}

, (26)

and each of these matrices can, in theory, be used to compute the degree of
the GCD of f(y), g(y) and h(y). The forms (26) of S̄k(g, f, h) and S̄k(h, g, f),
which are defined in (23) and (24) respectively, for this computation follow
similarly.

The combinatorial terms in the four forms (25) of S̃k(f, g, h) (Variant 1), and
the four forms (26) of S̄k(f, g, h) (Variant 2) and their extensions to S̄k(g, f, h)
and S̄k(h, g, f), are different, but it is adequate to consider one set of matrices
because the results for the other set of matrices follow identically. In particu-
lar, it follows from (20) and (21) that a typical block matrix in S̃k(f, g, h) is
Cn−k(f) = D−1

m+n−kTn−k(f)Qn−k, and the combinatorial terms in the matrix
products in Cn−k(f), that is, the matrices,

{

Tn−k(f), D−1
m+n−kTn−k(f), Tn−k(f)Qn−k, D−1

m+n−kTn−k(f)Qn−k

}

,

are, respectively,

{

(

m

i

)

,
(mi )

(m+n−k

i+j )
,

(

m

i

)(

n−k

j

)

,
(mi )(

n−k

j )
(m+n−k

i+j )

}

,

for i = 0, . . . , m, and j = 0, . . . , n− k. Consideration of each term shows that
the ratio of the maximum value to the minimum value attains its minimum
value for the term (mi )(

n−k

j )/(m+n−k

i+j ), that is, the matrix D−1
m+n−kTn−k(f)Qn−k.
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It follows that the adverse numerical effects of the combinatorial terms are
minimised when the forms

{

S̃k(f, g, h), S̄k(f, g, h), S̄k(g, f, h), S̄k(h, g, f)

}

,

of the Sylvester matrix and its subresultant matrices are used. Improved re-
sults are obtained when f(y), g(y) and h(y) are processed before these matrices
are formed, and these preprocessing operations are discussed in Section 6.

6 Preprocessing operations

Example 4.1 shows that the direct use of Variants 1 and 2 for the computation
of the degree of the GCD of three Bernstein basis polynomials may lead to
incorrect results, even in the absence of noise. Similar bad results are obtained
when the GCD of two Bernstein basis polynomials is considered, and it is
shown in [6,7] that processing the polynomials by three operations before
computations are performed on their Sylvester matrix and its subresultant
matrices yields a significant improvement in the results. This section considers
these operations for the computation of the GCD of three polynomials.

Operation 1 The non-zero entries associated with f(y), g(y) and h(y) in each
Sylvester matrix and subresultant matrix are normalised by their geometric
mean in order to balance each block matrix (21) in the larger matrices
S̃k(f, g, h) and (S̄k(f, g, h), S̄k(g, f, h), S̄k(h, g, f)).

Operation 2 The GCD of two or more polynomials is defined to within an
arbitrary non-zero scalar multiplier, and thus two of the polynomials, f(y)
and h(y), are multiplied by constants λk and ρk respectively,

GCD (f, g, h) ∼ GCD(λkf, g, ρkh), k = 1, . . . , q,

where ∼ denotes equivalence to within an arbitrary non-zero constant, and
f(y), g(y) and h(y) are normalised by their geometric means. The subscript
k is included in the constants λk and ρk because their optimal values must
be calculated for each value of k, that is, for each subresultant matrix.

Operation 3 The substitution,

y = θkω, k = 1, . . . , q, (27)

is made, where ω is the new independent variable and θk is a constant
to be determined. The subscript k is included in θk because, like λk and
ρk, its optimal value must be calculated for each subresultant matrix. The
substitution (27) implies that all computations are performed in a basis
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that is closely related to, but distinct from, the Bernstein basis. These basis
functions are, for a polynomial of degree m,

{

θik

(

m

i

)

(1− θkω)
m−iωi

}m

i=0

, k = 1, . . . , q,

and thus a different basis is used for the Sylvester matrix and each subre-
sultant matrix.

The first and second operations yield the polynomials λkḟ(y), ġ(y) and ρkḣ(y),

λkḟ(y) =
λkf(y)

Gk(f)
, ġ(y) =

g(y)

Gk(g)
, ρkḣ(y) =

ρkh(y)

Gk(h)
, k = 1, . . . , q,

where Gk(s) is the geometric mean of the non-zero entries in the partition of
the kth subresultant matrix that contains the coefficients of the polynomial
s(y). For example, it follows from (20) and (21) that f(y) occurs in the matrices
Cn−k(f) and Cp−k(f) in S̃k(f, g, h), and thus

Gk(f) =





n−k
∏

j=0

m
∏

i=0

ai
(

m

i

)(

n−k

j

)

(

m+n−k

i+j

) ×
p−k
∏

j=0

m
∏

i=0

ai
(

m

i

)(

p−k

j

)

(

m+p−k

i+j

)





1
(m+1)(n+p−2k+2)

, (28)

is the geometric mean of the entries associated with f(y) in the kth Sylvester
subresultant matrix for S̃k(f, g, h) (Variant 1). The geometric means associ-
ated with g(y) and h(y), and these means for f(y), g(y) and h(y) for each of
the forms (25) for this variant, are calculated in a similar manner. These com-
putations for the different forms of the Sylvester matrix and its subresultant
matrices for Variant 2, (S̄(f, g, h), S̄(g, f, h), S̄(h, g, f)), and for each matrix
in the set (26), follow identically.

The optimal values λ∗

k, ρ
∗

k and θ∗k of, respectively, λk, ρk and θk are obtained
from the solution of a linear programming that is very similar to its form for
the preprocessing operations for the two-polynomial GCD problem [6,7]. The
polynomials that arise from the preprocessing operations are, for k = 1, . . . , q,

λ∗

kf̈(ω, θ
∗

k) = λ∗

k

m
∑

i=0

āk,i (θ
∗

k)
i

(

m

i

)

(1− θ∗kω)
m−i ωi,

g̈(ω, θ∗k) =
n
∑

i=0

b̄k,i (θ
∗

k)
i

(

n

i

)

(1− θ∗kω)
n−i ωi,

ρ∗kḧ(ω, θ
∗

k) = ρ∗k

p
∑

i=0

c̄k,i (θ
∗

k)
i

(

p

i

)

(1− θ∗kω)
p−i ωi, (29)

where
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āk,i =
ai

Gk(f)
, i = 0, . . . , m,

b̄k,i =
bi

Gk(g)
, i = 0, . . . , n,

c̄k,i =
ci

Gk(h)
, i = 0, . . . , p,

ai, bi and ci are defined in (4), (5) and (6), respectively, the geometric mean
Gk(f) is given in (28), and the geometric means Gk(g) and Gk(h) are calcu-
lated similarly. All computations are performed on the Sylvester matrices and
subresultant matrices formed from the polynomials (29).

Algorithm 1 shows the algorithm for the computation of the degree of the
GCD of three polynomials.

Algorithm 1 Degree of the GCD of three polynomials

Input
(1) Polynomials f(y), g(y) and h(y) of degrees m,n and p respectively
(2) The variant Y (f, g, h) of the four variants of the Sylvester matrix and

its subresultants used for the GCD computation
Output The degree of the GCD of f(y), g(y) and h(y)

q ← min(m,n, p)
% Loop over the q subresultant matrices
for k ← 1, q do
(i) Compute λ∗

k, ρ
∗

k and θ∗k, the optimal values of λk, ρk and θk
(ii) Form the polynomials λ∗

kf̈(ω, θ
∗

k), g̈(ω, θ
∗

k) and ρ∗kḧ(ω, θ
∗

k)
(iii) Form the matrix Yk(λ

∗

kf̈ , g̈, ρ
∗

kḧ) and calculate the number of columns
of this matrix, c = m+ n + p− 3k + 3
(iv) Calculate the singular values σk,i, i = 1, . . . , c, of Yk(λ

∗

kf̈ , g̈, ρ
∗

kḧ)
end for
% Calculate t = deg GCD (f, g, h) from the singular values σk,i

sv(i)← 0, i = 1, . . . , q
for k ← 1, q do

sv(k)←
maxi{σk,i}
mini{σk,i}

end for
% Calculate the ratio of successive entries of sv
for k ← 1, q − 1 do
ratiosv(k)← sv(k)

sv(k+1)

end for
% Calculate the degree of the GCD of f(y), g(y) and h(y)
t← argmaxk {ratiosv(k)}
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7 Results

This section contains two examples that show the results from Variants 1
and 2 for the computation of the degree of the GCD of three Bernstein basis
polynomials. Results that show the effects of the preprocessing operations and
the addition of noise to the polynomials are included.

Example 7.1 Consider the Bernstein forms of the polynomials f(y), g(y)
and h(y), of degrees m = 12, n = 36 and p = 15, whose factored forms are

f(y)= (y − 0.5654654561)5(y − 0.21657894)(y − 0.01564897)2 ×

(y + 0.2468796514)3(y + 0.7879734)

g(y)= (y − 0.99851354877)7(y − 0.75292)20(y − 0.5654654561)5 ×

(y − 0.21657894)(y + 0.2468796514)3

h(y)= (y − 0.5654654561)5(y − 0.21657894)(y + 0.2468796514)3 ×

(y + 0.778912324654)4(y + 1.75)2,

for which q = min(12, 36, 15) = 12 and whose GCD df,g,h(y) is of degree t = 9,

df,g,h(y) = (y − 0.5654654561)5(y − 0.21657894)(y + 0.2468796514)3.

It is noted that g(y) has four distinct roots in the unit interval, and one of
these roots is of multiplicity 20. Noise was added to the coefficients of the
polynomials f(y), g(y) and h(y), thereby forming the polynomials f̂(y), ĝ(y)
and ĥ(y) whose coefficients are

âi = ai + aiεiri, i = 0, . . . , m,

b̂j = bj + bjεjrj , j = 0, . . . , n,

ĉl = cl + clεlrl, l = 0, . . . , p,

(30)

where εi, εj and εl are uniformly distributed random variables in the interval
I = [10−7, 10−4], and ri, rj and rl are uniformly distributed random variables
in the interval [−1, 1]. The inclusion of the interval I for the upper bound of the
relative errors provides a stringent test for the computation of the degree of the
GCD of f(y), g(y) and h(y) since it implies that a threshold for distinguishing
between the non-zero and zero singular values of the subresultant matrices
cannot be applied.

The polynomials f̂(y), ĝ(y) and ĥ(y) were processed, thus forming the poly-
nomials λ∗

kf̈(ω, θ
∗

k), g̈(ω, θ
∗

k) and ρ∗kḧ(ω, θ
∗

k), k = 1, . . . , 12, and the coefficients
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of these polynomials span a much smaller range, by several orders of magni-
tude, than the coefficients of the unprocessed polynomials. Figures 6 and 7
show, respectively, the singular values of S̄k(f̂ , ĝ, ĥ) and S̄k(λ

∗

kf̈ , g̈, ρ
∗

kḧ), and
it is clear that the unprocessed polynomials return an incorrect result, but the
correct result (t = 9) is obtained with the processed polynomials, and that
the result is clearly defined. �
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Fig. 6. The singular values of S̄k(f̂ , ĝ, ĥ) for Example 7.1.
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Fig. 7. The singular values of S̄k(λ
∗

kf̈ , g̈, ρ
∗

kḧ) for Example 7.1.

Example 7.2 Consider the Bernstein forms of the exact polynomials f(y),
g(y) and h(y), of degrees m = 24, n = 25 and p = 24, whose factored forms
are

f(y)= (y − 1.46)2(y − 1.37)3(y − 1.20)(y − 0.82)3(y − 0.75)5 ×

(y − 0.56)4(y − 0.10)2(y + 0.27)4,

g(y)= (y − 0.99)4(y − 0.12)4(y + 0.20)3(y − 0.10)2(y − 0.56)4 ×

(y − 0.75)5(y − 1.37)3,

h(y)= (y − 1.37)3(y − 0.75)5(y − 0.72)8(y − 0.56)4(y − 0.10)2 ×

(y + 0.75)2,
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and whose GCD df,g,h(y) is of degree t = 14,

df,g,h(y)= (y − 0.10)2(y − 0.56)4(y − 0.75)5(y − 1.37)3.

Noise was added to the coefficients of f(y), g(y) and h(y), as shown in (30),
thus yielding the polynomials f̂(y), ĝ(y) and ĥ(y), where εi, εj and εl are uni-
formly distributed random variables in the interval I = [10−6, 10−4]. As in
Example 7.1, this interval for the upper bound of the relative errors of the
coefficients provides a stringent test for the computation of the degree of the
GCD of f(y), g(y) and h(y). The polynomials f̂(y), ĝ(y) and ĥ(y) were pro-
cessed, thereby forming the polynomials λ∗

kf̈(ω, θ
∗

k), g̈(ω, θ
∗

k) and ρ∗kḧ(ω, θ
∗

k),
k = 1, . . . , 24. Figures 8 and 9 show the singular values of S̄k(f̂ , ĝ, ĥ) and
S̄k(λ

∗

kf̈ , g̈, ρ
∗

kḧ), and as for Example 7.1, the importance of the preprocessing
operations is clear because the degree of the GCD cannot be deduced from the
subresultant matrices of the unprocessed polynomials, but the correct result
(t = 14) is obtained when f̂(y), ĝ(y) and ĥ(y) are processed. Also, the rank loss
of S̄1(f̂ , ĝ, ĥ) is two, which suggests that the degree of the GCD is two, which
is incorrect, but the rank loss of S̄1(λ

∗

1f̈ , g̈, ρ
∗

1ḧ) is 14, which is correct. The
results for S̃k(λ

∗

kf̈ , g̈, ρ
∗

kḧ) (Variant 1), and the matrices S̄k(g̈, λ
∗

kf̈ , ρ
∗

kḧ) and
S̄k(ρ

∗

kḧ, g̈, λ
∗

kf̈) (Variant 2), were very similar to the result for S̄k(λ
∗

kf̈ , g̈, ρ
∗

kḧ),
which is consistent with the results in Example 7.1.

Figure 8 shows that the coefficients of the coprime polynomials and GCD
cannot be computed from the unprocessed polynomials because the degree of
the GCD cannot be determined from these polynomials. Figure 9 shows, how-
ever, that these coefficients can be computed from the processed polynomials
λ∗

t f̈(ω, θ
∗

t ), g̈(ω, θ
∗

t ) and ρ∗t ḧ(ω, θ
∗

t ), t = 14, and thus the subresultant matrix
S̄t(λ

∗

t f̈ , g̈, ρ
∗

t ḧ) was used to calculate these coefficients, after the polynomials
were transformed, using (27) with θk = θ∗t , from the independent variable ω
to the independent variable y. This calculation reduced to the solution of a
least squares problem, and the relative errors, defined in the 2-norm, in the
coefficient vector of these polynomials are shown in Table 1. It is seen that
the errors lie in the interval I of the noise levels εi, εj and εl. �

Polynomial Error

df,g,h(y) 8.504447e-06

u(t)(y) 1.744320e-05

v(t)(y) 8.334257e-05

w(t)(y) 3.447570e-05

Table 1
The relative errors in the GCD df,g,h(y) and the coprime polynomials, u(t)(y), v(t)(y)
and w(t)(y) with εi, εj and εl in the interval

[

10−6, 10−4
]

, for Example 7.2.
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Fig. 8. The singular values of S̄k(f̂ , ĝ, ĥ) for Example 7.2.
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Fig. 9. The singular values of S̄k(λ
∗

kf̈ , g̈, ρ
∗

kḧ) for Example 7.2.

These examples are typical of many other examples because they show the sig-
nificant improvement in the results when the polynomials are processed before
computations are performed on their Sylvester matrices and subresultant ma-
trices. This improvement manifests itself in a large gap between the non-zero
and zero singular values of all forms of these matrices, such that the degree
of the GCD is clearly defined, including in the presence of noise. This good
result for the degree of the GCD yielded good results for the coefficients of the
GCD and coprime polynomials, even when a least squares solution of a linear
algebraic equation is used and the structure of the coefficient matrix in the
equation is not preserved. It is, however, expected that better results will be
obtained when this structure is preserved, as shown in [7] for the computation
of the coefficients of the GCD of two polynomials.
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8 Summary

This paper has considered the computation of the degree of the GCD of three
Bernstein basis polynomials by their Sylvester matrices and subresultant ma-
trices. These matrices take two forms, denoted Variants 1 and 2, and the best
form of each variant is obtained by postmultiplying the standard form of the
Sylvester matrix by a diagonal matrix of combinatorial terms. One variant
yields a 3 × 3 block matrix and the other variant yields three 2 × 3 block
matrices.

The Sylvester matrix and its subresultant matrices for both variants may
return different values of the degree of the GCD of three polynomials, or they
may return an indeterminate result, particularly when the polynomials are
badly scaled. Significantly improved results are obtained when the polynomials
are processed by three operations before computations are performed on their
Sylvester matrices and subresultant matrices because the degree of the GCD
is then clearly defined.
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