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Abstract

We compute the exact partition function for the 3-state Potts model on square lattices of
several sizes larger than previously accessible. Making comparison with the exactly solved Ising
model we show that, for aspects of the analytic structure close to the ferromagnetic transition
point, these lattices are large enough to approach the thermodynamic limit. Subject to certain
assumptions this allows for computation of estimates for the specific heat critical exponent. We
thus obtain an estimate for this exponent. The estimate is consistent with the known result,
thus demonstrating the potential use of this method for other models. We also discuss the
antiferromagnetic transition.

Keywords: statistical mechanics, Potts model, square lattice, universal critical exponent

This paper is dedicated to the memory of Vladimir. What PM knows of mentoring he learned

from Vladimir, his mentor. Hopefully FZ will become another link in the chain.

1 Introduction

We assume familiarity with Potts models on square lattices as toy models exhibiting phase transi-
tions — see for example [58] or [41] (and cf. e.g. Rittenberg [56] and [3, 5, 6, 21, 49]). We give
formal definitions in § 1.1.

The outline of this paper is as follows. First we compute the exact partition function for the
3-state Potts model on square lattices of several sizes larger than previously accessible. Such a
partition function takes the form of a huge polynomial in eβ . A good way to present it is to plot
the zeros in the complex plane. Then the density of zeros is measured near the transition point. The
specific heat critical exponent α is approximated from the zero density function. Many properties
of the partition function depend heavily on system size, but this density exponent does not (for
sufficiently large size). The 3-state model is not integrable, but by a trustworthy folklore the
specific heat exponent is known exactly (see e.g. [5, 59]). Thus this paper obtains an approximation
to a number that has been known exactly for many years! So why is it interesting?... It is
interesting because the folklore gives relatively little information about the physics, and very little
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about the analytical ‘mechanics’ of phase transition modelling (cf. for example [16, 17]). The
present calculation offers the prospect of an interpolation between the direct physical approaches
such as in [16, 17], the renormalisation group [9, 13], and the conformal field theoretic (CFT)
approach [23].

See [41, Ch.11], and references therein, for a thorough general discussion of our method. We
will cite some more recent related references in § 6.

1.1 The Potts model - basic definitions

Fix a spacial dimension d. The Q-state Potts model gives representations of a bulk ferromagnet
(depending on the coupling constant) in R

d, in which spins are allowed to be oriented from Q
possible spin directions. The physical spins are assumed to sit at a regular collection L of points
in some interval of Rd. This lattice induces a ‘nearest neighbour’ graph.

We take L = Z
2 ⊂ R

2, or some finite interval thereof; and Q = 3. Hence this paper studies the 3-
state Potts model on the square lattice (edge directions on the corresponding graph are unimportant
for us, but by convention we will consider vertical edges pointing upwards and horizontal edges
pointing rightwards). It will be useful to define the model slightly more generally.

Definition 1.1. A graph Λ is a triple Λ = (V,E, f) where V,E are sets, and f is a function

f : E → V × V .

Fix Q a natural number and Q = {1, 2, ..., Q}. Given a set V , a function σ : V → Q is called a
Q-state Potts spin configuration on V . Let Ω be the set hom(V,Q) of all spin configurations.

Definition 1.2. For given Q the bare Potts Hamiltonian on Λ = (V,E, f) is

H : hom(V,Q) → Z

given by

H(σ) =
∑

〈i,j〉=f(e),
e∈E

δσ(i),σ(j)

where the Kronecker delta function

δσ(i),σ(j) =

{

1, if σ(i) = σ(j)

0, if σ(i) 6= σ(j)
.

Definition 1.3. For given Q and Λ the Potts partition function is a function of a scalar β defined

as

Z(β) =
∑

σ∈hom(V,Q)

exp(βH(σ)) (1)

We may think of β = J/(kBT ) in which J is the coupling constant, T is temperature and kB is

Boltzmann’s constant. We will not specify physical units, so here only the sign of J is significant.

Let x = eβ . For a given graph Λ, the partition function (1) can be written in polynomial form,

Z(β) =
∑

σ∈Ω

xH(σ). (2)
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Roughly speaking, the partition function of a single graph is of no use and no interest — unless
it is the graph Λlab corresponding to a laboratory sample of material (but such samples are so
big that computing their partition function is impossible). So, what is interesting is properties
of the partition function that (a) become stable through a sequence of lattices including Λlab; (b)
correspond to physical observables. There are several subtleties to this statement. For brevity we
refer the reader to [41, Ch.11] for these. Here we turn now to our results.

2 Raw results: zeros of partition function

We write N ×M ′ for the square lattice with periodic boundary condition in the N direction and
open boundary condition in the M direction.

M

N

(a)

horizontal open boundary

vertical periodic boundary

(b)

vertical periodic boundary

horizontal periodic boundary

(c)

Figure 1: Square lattices with system size N ×M and different boundary conditions.

Suppose we have ‘ferromagnetic’ coupling J > 0. Then eβ → 1 as T → ∞. If T → 0 then
eβ → ∞. Thus the x ∈ (1,∞) region in this case corresponds to physical states.

On the other hand when J < 0 (antiferromagnetic coupling) then T → 0 gives eβ → 0. Here
the x ∈ (0, 1) region is the physical region.

We compute the partition function by transfer matrix methods; and zeros using a high-precision
Newton-Raphson method. In terms of computation it is easier to ‘grow’ the N ×M ′ lattice in the
M direction than the N direction. Also finite size effects are, in practice, slightly greater with open
boundary conditions, where there is a boundary. On the other hand for the analysis we will perform,
making the M direction significantly longer than N makes the system into a ‘thickened’ 1d system
rather than 2d (see [41, Ch.11] for details). A practical balance between these considerations is to
have M slightly larger than N , and most of our results are for lattices of this type.

One of the biggest previous results is in [42] (see § 6 for others), with square lattice sizes up to
12 × 13′. These were achieved using essentially the same transfer matrix methods as results from
almost twenty years earlier (see e.g. [41]), with the increase being due simply to ‘Moore’s Law’.
Since we are interested in sequences of lattices, some of the previous results are reproduced here
for comparison. Figure 2 presents the zeros distributions for square lattices with N = 10, 11, 12.

Almost another 20 years later, advancement of technology (again simply in the Moore’s Law
sense) now allows us to extend to bigger lattice sizes. Here new results are shown for N = 13, 14, 15.
See Figures 3 to 5.
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Figure 2: Zeros distribution in eβ for 3-state Potts models on (a) 10×12′, (b) 11×11′, (c) 12×13′,
(d) 12× 15′ square lattices.
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Figure 3: Zeros distribution in eβ for 13× 13′ and 13× 14′ square lattices.
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Figure 4: Zeros distribution in eβ for 14× 14′ and 14× 17′ square lattices.
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Figure 5: Zeros distribution in eβ for 15× 17′ square lattice.
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2.1 Preliminary analysis

The circular locus of zeros pinching the ferromagnetic phase transition point is in evidence as before.
But two features of the distribution obfusc in earlier results have become manifest.

As we increase the lattice size, the density of zeros close to the physical region increases. The
line density near the physical region can now be investigated using the new results. The line
density near the phase transition is related to the specific heat universal critical exponent of the
phase transition [19, 38, 41]. We will discuss this in more detail in § 3.

Second, while the complex locus in the antiferromagnetic region remains unclear, we can analyse
aspects of the zeros distribution there. Baxter showed that there is a critical point of the Q-state
Potts model when (x+1)2 = 4−Q [4] (cf. also [39]). For Q = 3 this gives x(x+2) = 0, and hence
a critical point at x = 0. Here, the zeros may form multiple lines, or become dense in some kind
of ‘cone’-like structure near the real axis.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

12x12’

13x13’

14x14’

15x17’

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

12x12’

12x13’

12x15’

13x13’

14x14’

14x17’

15x17’

Figure 6: Accumulated zeros distributions in eβ close to origin for N = 12, 13, 14, 15.

All else being equal, we expect that the closest zeros to the physical axis occur for the largest
lattice. Figure 6 shows a subtlety to this. The distribution for different lattice sizes for the
(−0.5, 0.5)-region is shown in this figure. The closest zeros in this region are given by the square
lattice of size N = 14, not 15. Comparing the zeros near the real axis for even and odd N suggest
that the finite size effect is greater in the antiferromagnetic region than the ferromagnetic region.
Such parity effects are also observed in a Bethe ansatz context in Jacobsen–Saleur [32], and are
implicit in the height model treatment as for example in [12]. We shall discuss this in § 5.

2.2 Comparison with Onsager’s solution: zero distributions for Q = 2

When addressing the question of how to analyse these results, a fresh look at Onsager’s exact
solution [33, 43] to the square lattice Ising model provides a useful comparison. Onsager’s partition
function allows us to find the zeros distribution for any square lattice (but in general for boundary
conditions different from ours). (It also allows us to take the thermodynamic limit and extract
critical exponents directly and exactly — which is the natural and normal approach [1]. But for
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the (non-integrable) 3-state model this approach is not directly available. Instead here we will look
at extracting exponents from ‘stable’ sequences of finite lattice cases.)

Onsager’s partition function is given by [33, 43]

ZNM ∼
N
∏

k=1

M
∏

r=1

(

(1 + e−4β)2

e−2β(1− e−4β)
− 2(cos(2πk/N) + cos(2πr/M))

)

. (3)

Here ∼ means we omit analytically unimportant overall factors, for clarity (cf. e.g. [22, 57]). This
particular form requires Kaufman’s boundary conditions [33]. But the aspect relevant for us does
not depend heavily on boundary conditions.

For x = e2β and Ckr = cos(2πk/N) + cos(2πr/M), the vanishing of each factor in (3) becomes:

(1 + e−4β)2

e−2β(1− e−4β)
− 2(cos(2πk/N) + cos(2πr/M)) = 0

e−8β + 2Ckre
−6β + 2e−4β − 2Ckre

−2β + 1 = 0

x−4 + 2Ckrx
−3 + 2x−2 − 2Ckrx

−1 + 1 = 0

x4 − 2Ckrx
3 + 2x2 + 2Ckrx+ 1 = 0 . (4)

Note that this factorises as
(x2 + α+x− 1)(x2 + α−x− 1)

where α± = −C ±
√

C2 − 4. The roots of these factors are given by

−(−C ±
√
C2 − 4) +

√

2C(C ∓
√
C2 − 4)

2
and

−(−C ±
√
C2 − 4)−

√

2C(C ∓
√
C2 − 4)

2
(5)

It follows that the zeros lie on the locus shown in Fig.7(a), and that in the limit they become dense
on this locus.

Let us put M = N . We are interested in the zeros close to the ferromagnetic transition point,
and hence in small values of k, r, for which the quadratic Maclaurin expansion

Ckr ∼ 2− ǫkr

where

ǫkr =
2π(k2 + r2)

N2

is good. We have
C2 − 4 = (C + 2)(C − 2) ∼ −4ǫkr

Substituting in (5) (first case) we get

2∓ 2i
√
ǫkr + 2

√
2(1∓ i

√
ǫkr)

2
; (1 +

√
2)(1∓ i

√
ǫkr)

close to the critical point at x = 1 +
√
2. From this we see that the imaginary part is

∼ √
ǫkr

while the real part varies much more slowly with k, r. (N.B. This simple analysis was well-known
from Onsager’s result. But we now use it to test a computation for the exponent which generalises
to other models.)
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Figure 7: Square lattice Ising model (a) Locus of zeros in x (scale is given by unit length of solid
segment of positive real axis); (b) blow-up of zeros close to critical point.

As we will see below, we wish to determine the large-N -asymptotic position dependence of the
density of points on the line close to 0 given by the set

√
ǫkr as k, r vary. Note from our analysis

that the zeros lie on the loci shown in Fig.7(a); and, for sufficiently large lattice, the blow up of
the part of the first quadrant very close to the phase transition point is given by Fig.7(b).

Note that this zero distribution is the same up to an overall scale for every sufficiently large
lattice. The scale does not affect the exponent (see below), so in this sense this figure gives the
thermodynamic limit even though it is discrete.

Caveat: Kaufman’s boundary conditions are not physical. For physical boundary conditions
there cannot be a zero on the positive real axis. However the differences in boundary conditions
become irrelevent in the thermodynamic limit, so for us they are simply part of the finite-size effects
that we must control in our analysis below.

It might also be interesting to compare with the cubic lattice Ising model. This is not integrable,
but see for example [8, 38, 44, 54].

3 Zero density analysis I: theory and benchmarking

In our results above we observe the tendency of the locus of zeros to stabilise for larger lattices.
This is well-known (if not fully understood). But our progress with computing bigger lattices gives
us the opportunity to begin a more sophisticated and useful analysis of the zeros distribution.

Formally the locus of zeros determines the phase transition points, which could be considered
physical. But these are not universal properties, and so are not in practice experimentally quanti-
tatively observable. The most natural observable properties to consider are critical exponents.

The general theory connecting density of zeros to the specific heat critical exponent is given for
example in [41, §11.1].

In short, the setup is as follows [38, 39, 41]. Let y denote the distance away from the critical
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point in the complex plane (note that, for differences, working with x or β is asymptotically the
same). Suppose the density of zeros a(y) obeys a power law for small y, that is

a(y) ∼ |y|1−p. (6)

for 0 ≤ p < 1. The specific heat is then given by [41]

dU

dβ

(β−βc)→0∼ |β − βc|−p.

This gives the critical exponent α = p.

3.1 On zero density in the discrete case

A laboratory sample of a ferromagnet is, of course, not infinite. The physicist’s interest in the
thermodynamic limit stems from the assumption that laboratory samples are large enough that
suitable intensive observables have stopped depending on system size — so that the infinite lattice
result is as good as the one we want, the large finite lattice result. So in the present context the
question arises: what does the zero density analysis above look like for a finite system that is big
enough to be in the limit?

The natural answer is that if we break the complex neighbourhood of the transition point
up into several very small finite equal intervals (‘bins’) and count zeros in the intervals then the
variation as we move away a short distance from the critical point along the line (i.e. in some
non-real direction in the complex plane) will discretely reflect the limit dependence. In the power

law cases of interest this implies that a log-log plot of frequency in a bin against distance from the
critical point will (for sufficiently large systems) have a constant gradient; we will get the same
gradient for all sufficiently large systems; and the gradient is m = 1− α.

Observe that several conditions must be in place for this to work. In order to have a verifiable
constant gradient we need several bins. And to have several bins close to the transition point the
bins must be small. But in order for the number of points in a small bin to not be small (else we
will have discretisation errors) the number of points must be high. So the system must be large.
None of these observations gives us quantitative estimates of the size needed. Practical verification
must then arise from finding bin sizes that give a constant gradient to high accuracy; and from
confirming that this constant is stable with (sufficiently large) system size. (Remark: It seems
likely that a system satisfying the former condition will necessarily satisfy the latter. But we will
test both.)

Here the data for the log-log graph is obtained as follows. A working assumption is that,
sufficiently close to the critical point, the zeros in x lie on a line essentially perpedicular to the
real axis. Note from the results above that this is valid in our case (but cf. § 5). In this case
the distance y from the critical point can be taken to be given by the imaginary part, and bins
constructed accordingly. However for a lattice of finite size there will not be many zeros ‘arbitrarily’
close to the critical point, in which case the larger scale structure of the locus is relevant to how y
is measured. Here the first quadrant in the complex plane is divided into several segments of equal
angle from the centre of the circular locus. This is somewhat ad hoc (cf. for example the analysis
discussed in [41, §11.1]), but any procedure which constructs essentially similar bins close to βc is
equivalent in the limit. We number the bins 1, 2, ..., b from the real axis. The total number of zeros
in each bin ∆i is then counted and plotted against the mid-point value of y in ∆i, in the log-log
plot. We use only the bins closest to the real axis — which we take to be those up to the high
point of the circular locus.
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Linear regression line fitting is used to fit the log-log plot, and to give a quantitative measure
of the quality of linear fit. For various reasons the linear fitting is predicted to work near the
transition point (first few bins), and not necessarily further away. But as noted, we do not have a
quantitative guide for what ‘near’ means, so we run the fit until it fails.

3.2 Benchmarking with the Ising model

Here we examine the zeros from Onsager’s partition function. For 100 × 100 square lattice (and
others), the log-log plot gives a line distribution as illustrated below. Changing the number of bins
(within a range that keeps down discretisation effects) does not greatly affect the log-log graph.
The gradient is approximately m ∼ 1 which gives α ∼ 0. This observation supports the method,
since we know that α = 0 for the Ising model (see e.g. [1, 59]).
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Figure 8: Lattice size 100× 100, Q = 2: Bin occupancy and linear regression analysis.

Fig.9 is the version for a large lattice (N ≥∼ 1000) in the asymptotic region using our analysis
above. It is interesting to note (for reference below) that the first bin is (very slightly) an outlier,
even in the limit.

The very simple but rather beautiful distribution in Fig.7(b) has been discussed many times,
in a variety of contexts. See for example [1, 20]. We reiterate that it is of interest to us now for
comparison to the Q = 3 result. In particular note the irregularity of the pattern on the small scale
(which would here defeat a simple analysis of the type proposed in [41, p.294] for example). The
Q = 3 result, even for much smaller lattices, is much more regular in comparison. The ferromagnetic
loci look superficially similar between Q = 2 and 3 because of the large scale geometry, but this
shows that they are substantively different. We will develop this point in a separate work.

4 Zero density analysis II: 3-state Potts model

Here we apply the analysis from § 3.1 to the 3-state Potts model zeros distributions. Our first
examples use bins radial from the centre of the ferromagnetic circular locus, from the axis to
vertical. Firstly for 15 × 17′ with number of bins b = 10, 11, 12. Note that the first bin can be
empty, in which case we omit it — this is ad hoc, but there are plenty of bins:
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Figure 9: Scaled asymptotic bin occupancy for Q = 2, b = 100.
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The linear regression fits to these give slope m = .8, .67, .66 with standard deviations .09, .05, .06
respectively. (Recall that the exact value is 2/3, giving α = 1/3.) Fig.10 gives N = 14.
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Figure 10: Case N = 14, b = 9− 12. Linear fit m = .77± .1, .68± .06, .73± .16, .76± .05.

Another way to extract a density from the discrete data, in principle, is to plot the separation of
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Figure 11: Separation versus locus distance from critical point for 15× 17′ and 14× 14′.

zeros against distance from the critical point. Under suitable circumstances separation is inversely
proportional to density. This would not work in the Q = 2 case since there is too much fine
structure in the distribution. The log-log plot here is in Fig.11. The gradient (with opposite sign
due to the inverse) is .72± .02. The regression fitted gradient is the same for N = 15 and 14, and
indeed even the pattern of zeros looks similar, much as happens for the thermodynamic limit Ising
model above (although the pattern is intriguingly different between the two models). However the
gradient is slightly too high, so there is something very interesting to investigate further here.

To test for finite-lattice sensitivity to the method of division into bins see Figs.12 and 13; and
Table 1. These give results using bins radial from the origin (b is the number of bins in the positive
quadrant, but again we keep only bins meeting the ferromagnetic locus before the high-point of the
circle). Several further variants on these plots can be found in [60].
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Figure 12: Lattice size 14× 14′: Linear regression on log-log plots.

Discussion. We use linear regression to get objective numerical estimates, but even supported by
visual checks (the ‘Manual’ column is obtained by eye with a ruler) linear regression on log-log plots
is a famously tricky way to extract exponents and error bars (there are analogous problems even
with experimental data). So there is no claim that the above is a complete engine for computing
exponents. Bluntly put, the combined analysis above gives something like α ∼ .3± .1. But what is
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Figure 13: Lattice size 15× 17′: Linear regression on log-log plots.

Table 1: Fitted slope m of log-log plot for 14× 14′ and 15× 17′ square lattices.

Lattice size 14× 14′ 15× 17′

Bin, n Lin. reg. Std. dev. Manual Lin. reg. Std. dev. Manual

6 0.5858 0.1611 0.75 0.4933 0.11493 0.6
7 0.7688 0.09357 0.6 0.5344 0.13894 0.8
8 0.69276 0.11134 0.7 0.6109 0.08523 0.7
9 0.67331 0.08984 0.6 0.7027 0.08235 0.6
10 0.74003 0.09145 0.7 0.7116 0.10301 1
11 0.7128 0.04786 0.7
12 0.7047 0.06792 0.7

interesting is that the numerics are close enough that we can indeed study quantitatively the way

the analytics manifests the phase transition.

5 On the antiferromagnetic region

For various reasons, such as the complexity of the ground-state, we expect that finite size effects are
more severe in the antiferromagnetic region. And in any case it will be evident from the main figures
that the locus of zeros is more complex than the ferromagnetic locus. Nonetheless, we can make
some interesting observations from our results. Recall Baxter’s formula for the critical AF Q-state
Potts model [4] is (x + 1)2 = 4 − Q, which at Q = 3 gives x(x + 2) = 0 (see also [39]). This says
that the antiferromagnetic critical point is at temperature T = 0, which corresponds to the origin
in the complex x plane. We now focus briefly on the zero distribution in the neighbourhood of the
antiferromagnetic region — the antiferromagnetic region is the interval (0, 1) of the real line in the
complex x plane. See Figure 6 for the zeros distribution for the antiferromagnetic neighbourhood,
for N = 12, .., 15.

In the ferromagnetic region, as the lattice size is increased the closest zeros approach the real axis
monotonically. The zeros in the antiferromagnetic region converge to the axis less straightforwardly
with system size. However consider the separate even and oddN plots in Figure 14. Each individual
sequence in this figure is ‘moving closer to’ the real axis as the size increases.

In the Ising model, the antiferromagnetic groundstate is frustrated on small periodic lattices
for odd N , and this indeed leads to a parity-dependent size effect. However this kind of alternating
groundstate is only one of many for Q = 3, and there are other patterns that are frustrated by
even N (cf. e.g. Burton–Henley [10], Cardy et al [12]), so it is intriguing that there is a noticable
odd/even dependence in our data. (Confer also Jacobsen–Saleur [32] and references therein.)
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Figure 14: Antiferromagnetic region in eβ for lattice sizes with a) even N and b) odd N .
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The present data seems unlikely to yield an accurate specific heat exponent. But we can
investigate the ‘fine structure’ in the size dependence.

Observe that in all computed cases there is, for each of the two critical points, a unique complex
conjugate pair of zeros closest to it (see e.g. Fig.15). Let the distance from closest zero to critical
point be denoted df and daf respectively. To separate out the odd/even effect from the size effect,
consider the ratio. See Table 2. Note the marked parity dependence. Can we explain this?

Table 2: Closest zeros distance from critical points and their ratio for different N .

N df daf r = daf/df
10 0.436885 0.200684 0.4593520034
11 0.391279 0.280068 0.7157756997
12 0.353739 0.178626 0.5049655254
13 0.322341 0.247607 0.7681523604
14 0.295721 0.162422 0.5492406694
15 0.255333 0.222039 0.8696055739

Write the partition function in the form

Z =

2NM−N
∑

i=0

aix
i.

Thus a0 is the degeneracy of the antiferromagnetic groundstate. Does this have a significant parity
dependence? For a 3-state Potts model on a one-dimensional N -site lattice with periodic boundary
condition — a ring, the antiferromagnetic ground states are the ‘Barlow sequences’ (see e.g. [53]),
so the degeneracy is given by the Barlow number [51]:

bN = 2N + 2(−1)N for N > 0. (7)

Every ring groundstate induces 2d groundstates in an obvious way (start with the ring as a first
layer and add further layers each by applying +1 or −1 (mod.3) to the whole ring configuration).

So let us compare the number of antiferromagnetic ground states between the one-dimensional
case and the N ×M ′ lattice case.

We normalise the groundstate multiplicities by expressing them as a fraction of all configu-
rations. We make intensive quantities by taking the appropriate root of the ratio. Obviously
N

√

bN/3N converges rapidly to 2/3. The odd/even difference is essentially undetectable from about
N = 7. Table 3 tabulates this with

rM = M

√

a0
3NM

(8)

and
rNM = N

√
rM . (9)

The asymptotic value of rNM for large N,M is known. This is via Lenard’s observation of the
equivalence with the ice model solved by Lieb in [35, 36] (see also [2] and [5, §8.13]). The asymptotic

value is
1

3
(
4

3
)2/3 ∼ .5132.

Fig.16 shows that the odd/even difference persists for much longer in 2d. This might explain the
noted parity difference in the zero distributions, but raises its own questions. The even sequence
appears to be converging monotonically to the asymptotic value, but the odd sequence does not.
Jacobsen–Saleur give a technical explanation for the odd-even difference in [32], but further number-
theoretic fine structure within the convergence of the odd sequence is not ruled out there. We
will further address these challenges elsewhere.
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Table 3: Antiferromagnetic groundstate ratios and roots (here M = N except for 15× 17′).

N
N

√

bN
3N

a0
a0

3NM
rM rNM

3 0.6057 24 0.00121933 0.1068334089 0.4744994304
4 0.6865 4626 0.000107465 0.1018161711 0.5648773878
5 0.6581 38880 4.59E-008 0.0340674062 0.5087071172
6 0.6700 37284186 2.48E-010 0.0250722546 0.5410020343
7 0.6651 1886476032 7.88E-015 0.0096659433 0.5154395618
8 0.6673 9527634436194 2.77E-018 0.0063885629 0.5317106966
9 0.6663 2825260002442752 6.37E-024 0.0026466285 0.5171690832
10 0.6667 77048019386429374638 1.49E-028 0.0016499225 0.526922027
11 0.6666 132046297983569105731584 2.45E-035 0.000713757 0.5175581207
12 0.6666 19698820973096872077077373450 3.88E-041 0.0004289582 0.524044193
13 0.6666 193554351965524736352758387687424 4.50E-049 0.0001909958 0.517517353
14 0.6666 159147870862104841838351532192943853490 4.85E-056 0.0001119444 0.5221387133
15 0.6666 2927476648137810571486137368142321550071037034496 6.32E-074 0.0000494483 0.516349101
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Figure 16: The NM th-roots for (a) all N ; (b) even N ; (c) odd N .

5.1 Comparison with other models

For context it might be helpful to recall aspects of what is known of the AF region by other
methods. As noted, regarding Q as a variable the AF critical curve corresponds to an integrable
model, through the work of Baxter [4], so our zero-temperature point is the point Q = 3 there. The
phase diagram and results from conformal field theory were discussed in beautiful work of Saleur
[48]. A detailed investigation of the AF critical theory was initiated by Jacobsen and Saleur [32].
See also [12, 24–28] and [11].

In [12] Cardy et al use a height model realisation to study the AF critical point. This reveals a
role both for a relevant scaling operator and a marginal one. This recalls other models such as the
XY model (see e.g. [5]) and in particular the 6-state clock model (see e.g. [16, 17, 41]). To give
a framework for discussing the various models from our perspective we use the χ-model notation
for ZQ-symmetric models discussed for example in [41, §11.4]. Thus χ = (χ0, χ1, ..., χQ/2) means
that the Hamiltonian contribution at a lattice edge where the two spins differ by i is given by χi

(so in particular if χ0 is largest then the naive ferromagnetic groundstate is ordered). For example
χ = (1, 0, 0, ...) is the Potts model.

For comparison we reproduce here zero distributions for the 6-state clock model in the form of
the χ = (3, 2, 1, 0) model; and the 5-state (3, 2, 0) model. As discussed in [41] the ferromagnetic
(3, 2, 1, 0) model is a possible candidate for a three-phase model with continuous variation in the
middle phase; while the (3, 2, 0) model might simply have two stages of order-disorder transition.
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See Figure 17. Here one is focussing on the ferromagnetic region, and so on the band of zeros
approaching the marked part of the positive real axis (note these figures are plotted in e−β); while
the comparison is with the zeros approaching the AF critical point in our 3-state model figures. (For
lattice of different sizes, and for more such phenomena in the 6-state setting, confer for example [41]
and [60].) Of course present lattice sizes are too small to draw conclusions from these comparisons,
but they are certainly intriguing.

Noting that the height model can be considered as a restricted 6-state model, it would of course
be interesting to interpolate between the various models under consideration. A naive way to do
this is to consider the χ = (0, A, 0, B) 6-state models for large A > B. At low temperature for very
large A,B this Hamiltonian forces a parity change between the odd and even sublattices. Thus
firstly in the groundstate (having fixed the parity of a single site) only three states are possible on
each sublattice. Using the height model shift (see e.g. [12, §2]) this becomes a 3-state model, and
the groundstate coincides (up to fixing) with that of our AF 3-state model (after the shift, the B
energy level corresponds to adjacent sites having the same spin). Unfortunately for our purposes
the energy-entropy trade for finite A,B is such that the phase structure is dominated by the full
6-state model. But the approach is intriguing and we include the zero distributions for a sample
of A values, with B = A − 1, for the reader to ponder — Figure 18. We will return to this in a
separate work.

6 Discussion

We conclude by discussing comparisons between this work and various beautiful existing studies
not already mentioned. (We thank the referees of the article for encouraging this.)

On boundary conditions — self-dual, periodic and so on. An early point of interest in this
topic, in the 1980s, was the shape of the locus of zeros in the neighbourhood of the ferromagnetic
transition. Since there is only one ferromagnetic phase transition point this point must be fixed
under duality, which thus determines it. If one supposes that the locus of complex zeros is a simple
line meeting the real line in this one point, then duality has to coincide with complex conjugation
on this locus, and the locus is also determined. (Note that the simple line property is only known
to be true in a neighbourhood of the transition point [21], and indeed it is not true in general.)
The real-point argument can be found in many places, see e.g. [2, 4, 5, 58], and the complex
locus argument can be found for example in [39, 41]. Thus from the outset it was of interest to
consider zeros for lattices exactly preserving self-duality. Such results can be found in [39–41] (see
in particular Fig.11.1 in [41]), and this variant of the problem is also explored for example in [15]
and [34]. All these results evidence clearly that the locus of zeros is indeed the ‘duality circle’ in a
significant complex neighbourhood of the transition point. But of course as already noted the shape
of this locus itself is not physical. We computed updated results for self-dual boundary conditions
(see e.g. [60]), but they do not of themselves shed any new light on the problem. The breaking
of exact self-duality is essentially a finite-size effect not radically different, in physics terms, to the
other finite-size effects operative here.

On computation — Newton-Raphson and so on. Finding the zeros of a large polynomial is an
intrinsically interesting problem in computer science. In general the most effective algorithm can
even depend on properties of the class of polynomials under consideration. In our case we have no
problem to compute all the zeros by only mildly sophisticated variants of Newton–Raphson. Since
we focus on the physics rather than the computation in this paper, we do not dwell on this point
here. (Another important technical tool for us is the Gnu multiple-precision library.)
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8x8’

9x9’

Figure 17: Zeros in e−β for the χ = (3, 2, 1, 0) 6-state model (above) and χ = (3, 2, 0) 5-state model
(below) with lattice sizes as shown. The scale is set by unit length of the positive real axis.
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6x6’ 6x6’

6x6’ 6x6’

6x6’ 6x6’ 

Figure 18: Zeros in e−β for the χ = (0, A, 0, A− 1) 6-state model for A = 2, 3, 4, 5, 6, 7 with lattices
size 6× 6′. The scale is set by unit length of the positive real axis.
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On lattices of fixed width. A summary of the basic analytical theory of zero distributions is
given in [41, Ch.11]. In particular it is noted there (see also [40]) that Potts models on fixed-width
strips are essentially integrable, and the limit curves of zeros are explained formally in terms of
the underlying complex analysis. Specific examples are computed for example in [40]. This line of
investigation has been revisited several times since. See for example [14]. While such approaches
allow a superficial comparison of loci, a key point is that it is known that none of the finite-width
models have a phase transition (they are better thought of as exotic 1D models). So allowing one
direction of the lattice to grow much longer than the other is exactly the wrong thing to do for our
purposes. Nonetheless, many of the results of Chang, Salas, Shrock et al are of considerable intrinsic
beauty. The approach to 2D via sequences of fixed-width models is of course directly fruitful —
see e.g. Blote et al [9]. This is one of the CFT aspects mentioned in the Introduction. For works
looking at semi-infinite strip lattices see for example [7] and [40, 41], and cf. [14, 28, 46, 47].

Returning to Saleur [48], it is interesting to consider the unphysical dual point of the AF critical
point. It is natural also to consider the 3-state Potts model on the triangular lattice, as done by
Maillard–Martin: see for example [31, 42, 55]. These topics are outside the scope of the present
paper.

Lee–Yang zeros (in the magnetic field as opposed to, as it were, fugacity) are another intrinsically
interesting area of study (see e.g. [19] for references). However they have a significantly different
flavour, both analytically and physically, to fugacity zeros.

On computation — transfer matrix realisations and algebra. There are many methods in prin-
ciple for computing the Potts partition function (see e.g. [39–41]). We have benchmarked several
of them and found (for the specific problem studied here) a direct transfer matrix approach to be
effective. This paper is about results rather than computation, but for completeness we include
here a set of references discussing various beautiful computational approaches. In its purest form
this can be seen as a study of the representation theory of the Temperley–Lieb algebra [52] (or
for higher dimensional Potts models the partition algebra [37]). From the ‘spectral’ point of view
the TL algebra is completely understood, and the main Theorem is here [41, §7.3]. From the
computational point of view the variants correspond in some cases to changing the representation
(each one derived from an equivalent lattice model), and in some cases to changing the basis for
the representation. For further references on the dichromatic polynomial approach and periodicity
see for example [29, 30]; for RSOS models [45]; for the Fortuyn–Kastelyn approach [14]; for graph–
theoretic methods [50]; and for the height-model approach [10, 12, 18, 46]. Note that, in practice, in
the transfer matrix approach imposing periodic boundary directions in the ‘time’ direction reduced
the size of lattice accessible to computation with given resources.
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