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Abstract  

Encouraging multimodality as a tool to reduce exclusive car use is seen as a key ingredient of 

transport policies aimed at reducing greenhouse gases emissions, such as CO2. These policies 

are based on the assumption that increasing multimodality will contribute to a reduction in 

emissions. Yet, hardly any scientific attention has been paid to the empirical relationship 

between multimodality and CO2 emissions. This article addresses this unexplored question at 

both the individual and trip level using the English National Travel Survey. We find that the 

level of multimodality is only weakly associated with CO2 emissions. It is only when 

controlling for levels of travel activity (trip frequency, total distance travelled) that a 

moderate association in the expected direction is observed (i.e. that higher levels of 

multimodality correspond with lower CO2 emissions). This suggests that greater levels of 

travel activity among multimodals tend to offset the benefits derived from their more diverse 

modal choices. Similar patterns emerge from the trip-level analyses: higher emissions are 

found for (the typically longer) multimodal trips compared to unimodal trips, even when the 

only mode used is the car.  However, for trips over similar distances, multimodal trips do 

have lower emissions. While there is merit in encouraging greater multimodality, this can 

hardly be the only or primary goal of climate mitigation policies in the transport sector. More 

attention needs to be paid to the key role of high levels of travel activity, and how these could 

be reduced.   
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1. Introduction 

In the wake of the 2015 Paris Agreement, anthropogenic climate change continues to be a 

focus of governments throughout the world, including in Europe. The emission of greenhouse 

gases (GHGs), notably carbon dioxide (CO2), in the atmosphere is the primary cause of 

climate change. In the EU, transport contributes to a quarter of direct GHGs, and to 20% CO2 

emissions (EC 2018a). In Great Britain, domestic transport accounts for 41% of all energy 

used by final users, and for 27% of all GHG emissions (DfT, 2018a). It is now the largest 

contributor of GHG emissions in Great Britain, as emissions from other sectors have declined 

since 1990, while transport emissions have flat lined (DfT, 2018a)—a development that has 

also been observed at the EU level (EEA, 2018).   

The European Commission declared 2018 the ‘year of multimodality’, which in their 

words, reflects a commitment to reducing CO2 (Civitas, 2018). While the EC’s definition of 

multimodality is ‘the use of different modes of transport during the same journey’, in the 

scientific literature, the term generally refers to the use of multiple modes by individuals in a 

given time frame, whether as part of the same trip or for separate trips (Heinen and Mattioli, 

2017)—with the term ‘intermodality’ sometimes used to refer more specifically to the use of 

multiple modes on a single trip (Oostendorp & Gebhardt, 2018; Dacko & Spalteholz, 2014). 

Either way, the assumption underlying the desire to increase multimodality is that by using 

multiple modes of transport, the use of the car may be reduced resulting in lower CO2 

emissions. 

The notion of multimodality as a policy solution is well aligned with the ‘behaviour 

change agenda’ for sustainable mobility (Barr & Prillwitz, 2014) and the broader ‘citizen–

consumer’ model of environmental policy (Akenji, 2014; Barr et al., 2011; Shove, 2010). In 

this framework, responsibility for changing behaviour is placed on (environmentally 

motivated) ‘citizen–consumers’, while the role of policy makers is that of ‘helping people 
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make better choices’ (Barr et al., 2011; DEFRA, 2005). This resonates with narratives of 

multimodality, which emphasise how sustainability can be achieved by people diversifying 

their modal choices, rather than through an outright reduction in levels of mobility.  

Perhaps reflecting the rise of this policy agenda, as well as heightened environmental 

concerns, multimodality has received growing scientific attention over the past few years. 

Most studies have focussed on the correlates of individual-level multimodality, often based 

on analysis of nationally representative datasets (e.g. Buehler and Hamre 2015; Heinen and 

Chatterjee 2015; Susilo and Axhausen 2014; Kroesen 2015; Scheiner et al. 2016; Olafsson et 

al. 2016; Block-Schachter 2009). These studies show that multimodality is more prevalent 

among women and in areas with greater densities, and that unimodal car users are more likely 

male, white, full-time employees, individuals with young children, and car owners. Two 

studies have shown that higher level of multimodality of an individual may be associated 

with a higher likelihood of behavioural change. Kroesen (2015) showed that individuals who 

use multiple modes had a higher likelihood of changing from one multimodality group to 

another group over time compared to individuals who only used one mode of transport. 

Heinen and Ogilvie (2016) showed that individuals who were more variable before an 

intervention were more likely to increase their active travel (walking and cycling) mode share 

and decrease their car mode share in response to the intervention that aimed for this 

behavioural change. These findings suggest that higher levels of multimodality are desirable 

as they may serve as a first step towards less car-dependent and more sustainable travel 

behaviour.  

Recent findings, however, do not corroborate the assumption that higher levels of 

multimodality automatically result in less car use. For example, Heinen and Mattioli (2017) 

showed that the average multimodality level of individuals decreased between 1995 and 2015 

in England using time-series data from the National Travel Survey. This decline occurred at 
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the same time as a significant reduction in car use. This unexpected finding challenges the 

conventional wisdom that multimodality levels are on an upward trend in developed 

countries, and that this is beneficial from a sustainable transport perspective (Kuhnimhof et 

al., 2012).  

Two levels of the discussion must be distinguished with regard to the relationships 

between multimodality, car use, and CO2 emissions. From a theoretical perspective, if a given 

trip (or set of trips) is partially shifted to lower-carbon modes, with a one-to-one substitution, 

this almost by definition results in lower CO2 emissions (see e.g. Gebhardt et al., 2017). From 

a practical perspective, however, the question is rather whether providing more opportunities 

for multimodality (i.e. greater ‘multioptionality’ – Groth, 2019) would actually have the 

desired effect on emission reductions. There are several reasons why this may not be the case. 

First, higher levels of multimodality may correspond with greater mobility, which is likely 

associated with higher levels of overall emissions. Second, transport-related CO2 emissions 

have a highly unequal distribution, with income being the most powerful predictor of 

emission levels (Brand & Boardman, 2008; Brand & Preston, 2010; Büchs & Schnepf, 2013). 

The fact that multimodality is also correlated with income (Heinen and Chatterjee, 2015) 

increases the complexity of the relationship between multimodality and CO2 emissions. 

Third, more broadly, history suggests that innovations in the transport sector (e.g. the 

provision of new transport modes, infrastructure, and information and communication 

technology) often defy initial expectations of one-to-one substitution, and result in more 

complex transformations in travel behaviour (Mokhtarian et al., 2006; Newman & 

Kenworthy, 1999). It is thus conceivable that a push towards multimodality may have similar 

unexpected implications.  

While these questions are to some extent speculative, our argument is that debates on 

multimodality would benefit from moving beyond ‘one-to-one substitution’ assumptions, to 
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investigate whether, in practice, more multimodal travel patterns are associated with lower 

emissions. This paper will investigate this relationship, which has received surprisingly little 

scientific attention to date. We will test this for both the individual and trip level, following 

the two definitions and lines of research. The investigation on an individual level contributes 

to an understanding whether multimodal travel patterns are linked to lower levels of CO2 

emissions (regardless of whether they include multimodal trips). The investigation on a trip 

level contributes to an understanding whether multimodal trips are indeed less polluting 

(regardless of the overall travel patterns of the individuals undertaking them).  

Existing research closely related to our aim, shows conflicting results. Reichert and 

Holz-Rau (2018), using a regression analysis of travel diary data from the German travel 

survey, show that multimodal travellers have greater climate impact than unimodal car users, 

even after controlling for confounding factors. However, this analysis was limited to large 

cities, and higher carbon-equivalent emissions for multimodals were entirely due to greater 

long-distance travel, particularly flights which have much greater climate impact than other 

modes. If these trips were excluded, multimodals had lower emissions than unimodal car 

users. Other studies, focussed more broadly on ‘modality styles’, have found suggestive 

evidence that clusters of individuals with multimodal travel behaviour have lower emissions 

than those characterised by regular car use. Circella et al. (2019) used latent-class cluster 

analysis on two questions regarding the frequency of using various transport modes—one for 

commuting and the second for all other trips—of millennials in California, to identify four 

groups (driving a private vehicle; carpooling; riding public transit; and active modes). They 

then linked these groups to annual travel-related emissions. Keskisaari et al. (2017) used a 

latent class choice model on a one-day transport survey of the Helsinki Region Transport. 

The seven identified modality style groups showed varying greenhouse gas emissions.  
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Given the current policy focus on increasing multimodality as one of the strategies to 

reduce GHGs, and the limited and conflicting scientific evidence, it is essential to investigate 

this relationship in more depth. This paper will explore the relationship between the level of 

multimodality—both on an individual and trip level—and associated tailpipe CO2 emissions 

of over-land travel. It uses the English National Travel Survey (NTS) data, a representative 

national dataset, which is uniquely suited for the accurate assessment of both multimodality 

and CO2 emissions, given the availability of a seven-day travel survey and detailed 

information on household vehicle emission factors.   

 

 

2. Method 

2.1. Data 

To investigate the relationship between multimodality and CO2, data on individual travel 

behaviour is required, preferably collected over multiple days to measure both variables of 

interest accurately. The NTS was designed to provide a representative sample of households 

in England and was based on a stratified two-stage random probability sample of private 

households. The sampling frame was a Postcode Address File, a list of all addresses in 

England (NatCen, 2016). The NTS was first conducted in 1965/66 (Rofique et al. 2011) and 

has been conducted every year since 1988.   

We used the 2015 NTS of England. The NTS 2015 sample consists of 18,071 

individuals in 7,564 households. Data collection began on 1st January 2015 and lasted until 

1st March 2016. An incentive of a £5 gift voucher was offered to each person if all household 

members completed every section of the survey and six first-class stamps were offered as an 

unconditional incentive (NatCen, 2016). To recruit participants, households received an 
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advance letter with background of the survey. After this letter, a personal visit was made to 

schedule an interview.  

The NTS consists of four data collection parts: a household questionnaire, individual 

questionnaire, vehicle questionnaire, and travel survey. The first three were completed in the 

household interview. The interviews were conducted with all household members and 

normally took place before the data collection on travel. Each household member was 

requested to fill in a seven-day travel diary. Within six days of the end of diary week, the 

diaries were collected and checked. The diaries only collected information on trips within 

Great Britain.  Trips to other places are included only up to the ticket control point at the 

transport mode going abroad is boarded. This means that international travel (including 

flights abroad) is not recorded. The overall response rate in 2015 was 61%, but lower in 

London (43%-56%) compared to the rest of the country (62%) (NatCen, 2016).  

 The NTS includes several weights (NatCen, 2016): weights for the selection of the 

dwelling unit and/or household at the sampled address; weights for household-level non-

participation; weights for the exclusion of participating household at which not every 

individual completed the interview; composite weights for selection and participation with 

the interview survey; weighting of the trips in the travel diary to account for drop-off in 

recording observed; and weighting for short walking trips (i.e. walking trips of less than one 

mile only recorded for one day of the travel week).  

 

2.2 Measurement of CO2 emissions 

CO2 emissions were calculated using the NTS diary week in combination with information 

on vehicle characteristics, and transport mode emission factors provided by the UK 

government. We calculated CO2 emissions for each trip (adding up the emissions for each 

stage) and individual (adding up the emissions of all stages in the travel diary week). All 
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kgCO2/km emission factors were derived from two sources. First, the 2015 wave of the NTS 

provides unique emission factors for most household vehicles (73% in the analysis sample). 

These were derived from the data provider by matching household vehicle registration plates 

provided by respondents to a register held by the Driver & Vehicle Licensing Agency 

(DVLA). For most remaining household vehicles, we imputed values based on an OLS model 

with four predictors (type of vehicle, engine capacity, type of fuel, and vehicle age), selected 

based on the demonstrated association with CO2 emissions (Cuenot, 2009; Fontaras & 

Samaras, 2007; Zachariadis, 2006). The model yielded very good predictive power 

(R2=0.79—model results not reported here for the sake of brevity). The OLS model and 

subsequent imputation was conducted only for four-wheel cars, land rovers, and jeeps, as 

these vehicle types had less than 50% missing values on the emission factor variable1 (and 

accounted for over 92% of vehicles in our dataset). For other vehicle types (motorcycles and 

scooters, mopeds, light vans, other vans and lorries, minibuses, motor caravans, and 

dormobiles), more than 50% of cases had missing information on CO2 factors. We therefore 

avoided imputation and derived CO2 factors from government emission factors, as described 

below.  

Second, for household vehicles with missing data, non-household vehicles (for which 

vehicle information is not available), and all other motorised transport modes, we derived 

emission factors from the ‘UK Government conversion factors for Company Reporting’ 

(DECC, 2015) (Table 1). This is consistent with previous emission studies based on the NTS 

(Mattioli & Anable, 2017; Preston et al., 2013). All walking and cycling stages were 

allocated zero direct CO2 emissions.  

 

Table 1 – Lookup table between NTS travel mode classification and UK government 
CO2 emission factors 

NTS ‘stage mode’ variable label UK Government emission factors 
                                                           

1
 We attributed a zero-emission factor to small, recent alternative fuel cars with negative predicted values (n=4). 
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Label kgCO2/km Type 

Private (hire) bus Coach 0.02870 Passenger.km 

Household car (driver or passenger)*;  
Non-household car (driver or passenger) 

Average car, fuel 
unknown 0.18529 

Vehicle.km 

Household motorcycle (driver or passenger)*;  
Non-household motorcycle (driver or passenger) 

Average 
motorbike 0.11666 

Vehicle.km 

Household van/lorry (driver or passenger)*;  
Non-household van/lorry (driver or passenger) 

Average van, fuel 
unknown 0.39683 

Vehicle.km 

Other private transport* 
Average car, fuel 

unknown 0.18529 
Vehicle.km 

London stage bus Local London bus 0.07861 Passenger.km 

Other stage bus 
Local bus (not 

London) 0.10788 
Passenger.km 

Public express bus/coach;  
Excursion/tour bus Coach 0.0287 

Passenger.km 

London Underground 
London 

Underground 0.05586 
Passenger.km 

Surface Rail National rail 0.04480 Passenger.km 

Light rail 
Light rail and 

tram 0.05417 
Passenger.km 

Air 
Flights, domestic 

to/from UK 0.29636 
Passenger.km 

Taxi Regular taxi 0.17355 Passenger.km 

Other public transport Average local bus 0.09949 Passenger.km 

* denotes modes for which Government emission factors were used only when the CO2 
emission factor was missing from the NTS dataset and could not be imputed.  
 

All emission factors derived from the NTS dataset, and some of those derived from 

the UK government dataset (Table 1) were on a vehicle-km basis and must therefore be 

allocated to passengers. Since our analysis focussed on the adult population alone (minors 

were excluded because of their limited access to some modes of transport), our preferred 

solution would have been to share emissions equally among adult passengers, since they 

collectively bear the responsibility for each trip. However, this was impossible, as the NTS 

provides information on the total number of passengers (regardless of age) only, which does 

not allow us to distinguish between adult and minor passengers for any given trip. We 

therefore conducted our analysis using two alternative measurements. Our first and main 

measure of CO2 emissions (CO2(a)) attributes all vehicle emissions to the driver, and none to 

passengers. For the second measure (CO2(b)), total vehicle emissions were divided by the 

total number of vehicle occupants, independent of their age (i.e. driver and passengers were 
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allocated the same emissions). Both methods have limitations: CO2(a) leads to an 

underestimation of the emissions of individuals, for example, who travel often as car 

passengers, whereas CO2(b) entails a ‘leakage’ of emissions, as some emissions are attributed 

to minors, which are not included in our analysis. This can lead to an underestimation of 

emissions, e.g. for adults who often travel by car with children. However, the two calculated 

measures highly correlated on individual-level (R=0.92) and trip-level measurements 

(R=0.87). We conducted most of our analysis using both measures, although our findings 

were robust using either (unless otherwise mentioned).  

Since our analysis focusses on the relationship between travel behaviour and resulting 

CO2 emissions, and not on vehicle purchase behaviour, the calculation considered tailpipe 

emissions only, although we acknowledge that these account for only part of total life-cycle 

GHG (Chester & Horvath, 2009).  

 

2.3 Measurement of multimodality 

We constructed two types of multimodality measures: on an individual level and on a trip 

level. For individual-level calculations, we followed previous studies on multimodality using 

the NTS data to prepare the data for the analyses (Heinen and Chatterjee, 2015; Heinen and 

Mattioli, 2017). The first step made use of the ‘stages file’ in the NTS. We ascertained the 

number of stages in total and by mode of transport applying weighting for short walks and 

drop-offs in reporting for eight categories of transport mode (NTS weight: SSXSC (short 

walk weight) and W5xHH (‘Trip/stage weight excluding household weight’) (NatCen, 2016; 

DfT, 2016). Walking trips of less than one mile in distance are only recorded for one day. 

Therefore, SSXSC is applied to ensure a representative weekly record of short walking trips. 

We applied W5xHH to generate representative trip rates, excluding household weight, which 

is applied later in our analysis. We considered two mode categorisations. The first considered 
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only three modes of transport: car transport (car driver and car passenger), active travel 

(walking and cycling), and public transport (bus, rail, taxi, and other). The second considered 

eight modes of transport: walking, cycling, car driver, car passenger, bus, rail, taxi, and other 

(motorcycling and other private and public transport). The second step entailed combining 

this information with the individual file in NTS. In the third step, we calculated various 

indicators of multimodality for each individual. We adjusted for non-response, probability of 

selection, and to reproduce sample population characteristics applying weighting available in 

NTS (NTS weight: W2 (‘Diary sample household weight’)), which adjusts for non-response 

and should be applied to all analysis of the diary sample at household, individual and vehicle 

level. 

 To investigate the relationship between multimodality and associated CO2 emissions, 

we used continuous indicators of individual transport mode variability. We explored various 

indicators based on existing studies on multimodality given that no single indicator 

outperforms all others (e.g. Diana and Pirra 2015; Heinen and Chatterjee 2015; Heinen and 

Mattioli 2017). We considered indicators that were demonstrated to have mathematically 

superior quality to measure multimodality, were widely used, or relatively easy to interpret 

(e.g. Diana and Pirra 2015; Heinen and Chatterjee 2015; Susilo and Axhausen 2014; Streit et 

al., 2015), the formulae can be found in the papers described below and Appendix 1 (Table 2 

presents basic statistics): 

 The number of modes used (Heinen and Mattioli, 2017); 

 The difference in percentage of use between primary and secondary modes (Heinen and 

Chatterjee 2015); 

 The Herfindahl–Hirschman index (HHI) as applied by Heinen and Chatterjee (2015), 

and a variant, HHm, based on Diana and Pirra (2016);  An index based on the Shannon 

entropy, based on Diana and Pirra (2016) OM_PI; 
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 The Dalton index, based on Diana and Pirra (2016) DALm. Following Diana and Pirra 

(2016), we set İ at 0.5 in order to maximise the sensitivity of the index (p.785); 

 The multimodal indicator (MM), based on Streit et al. (2015). 

Of the indicators listed above, three are indicators of variability (i.e. with higher values 

indicating greater multimodality): number of modes, Shannon entropy, and MM; the other 

indicators measure concentration (i.e. higher values indicate less multimodality): The 

difference between primary and secondary mode, the Herfindahl–Hirschman index, and the 

Dalton index.  

 

Table 2 – Descriptive statistics for individual level multimodality indicators, and share 
of multimodal individuals (N=11,918) 

Multimodality indicator Min Max Median Mean 
Standard 
deviation 

Share of 
unimodal 

individuals 

Multimodality 
based on 3 
modes 
 

No. of modes 1.00 3.00 2.00 1.71 0.73 

45.03% 

OM_PI 0.00 1.00 0.28 0.31 0.32 
MM  1.00 9.00 2.21 2.37 1.57 
HHI 0.00 1.00 0.75 0.68 0.33 
HHm 0.33 3.00 1.25 1.81 1.10 
Difference 
primary-
secondary 0.00 1.00 0.82 0.69 0.34 
DALm 0.00 0.67 0.41 0.45 0.22 

Multimodality 
based on 8 
modes 

No. of modes 1.00 7.00 2.00 2.17 1.07 

31.60% 

OM_PI 0.00 0.83 0.26 0.24 0.20 
MM  1.00 22.98 2.64 3.39 2.65 
HHI 0.10 1.00 0.63 0.66 0.28 
HHm 0.24 8.00 2.53 3.84 2.92 
Difference 
primary-
secondary 0.00 1.00 0.63 0.60 0.35 
DALm 0.18 0.88 0.76 0.75 0.12 

 

 

For the calculation of trip-level multimodality (also sometimes referred to as 

‘intermodality’) we also used the ‘stages file’ in the NTS. Here, we adopted a simple 

categorical indicator, classifying trips into two groups: whether a trip consisted of multiple 
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stages with more than one mode (multimodal trips), or was made by only one mode 

(unimodal trips). In these analyses, we applied trip-level weighting (NTS weight: W5). 

We calculated all individual-level and trip-level multimodality indicators considering 

both three and eight modes, similar to other studies on the NTS data (Heinen and Chatterjee, 

2015; Heinen and Mattioli, 2017). 

 

 

2.4 Analysis  

We investigated the relationship between the level of multimodality and the associated CO2 

emissions on two levels: the individual and the trip.  

 

2.4.1 Individual level analysis 

We conducted all individual-level analyses on all adults (≥16) in NTS with a complete travel 

diary and who reported at least one trip. We excluded 19 individuals who had one or more 

stages by plane for two reasons. First, trips including plane stages have a disproportionately 

large carbon footprint, while also typically being multimodal (due to access and egress travel 

to/from airports), and this might have skewed our analysis. Second, the NTS does not capture 

all travel, as it excludes travel outside of Great Britain (including international flights). It 

would be misleading to include domestic flights while excluding international flights, which 

in the UK account for the majority of air travel. As a form of sensitivity testing, we 

conducted our analyses on a sample including those 19 individuals, obtaining similar results 

(unless otherwise noted). Note that, while we exclude air travel, we include other forms of 

long-distance travel (over 50 miles) reported in the 7-day travel diary in our analysis, and 

analyse these jointly with other trips. To explore whether the findings are robust to the 
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exclusion of long-distance travel, as other research has suggested (Reichert & Holz-Rau, 

2018), we stratify our correlation analysis by travel distance bands, as discussed below.  

The first step in the individual level analyses was to determine the Spearman’s rank 

correlation between the seven indicators of multimodality and the two measures of CO2 

emissions. We conducted these analyses on the entire sample, as well as only multimodal 

individuals (i.e. those who used more than one mode in the survey week). The reason this 

sensitivity testing is necessary is due to the fact that the sample includes a large share of 

unimodal individuals (see Table 2).  By definition, these will have varying levels of CO2 

emissions, but they all have the same value on the multimodality metrics (i.e. the min or max 

value, depending on the indicator). This fact could, in and of itself, result in lower estimated 

correlation, even in presence of a correlation between multimodality and CO2 among the rest 

of the sample. To test if this was the case, we repeated the analyses excluding unimodal 

individuals.  

Second, we determined similar Spearman’s rank correlations, but now stratified by 

established predictors of multimodality as well as CO2 emissions. For the sake of brevity, 

here we use only two multimodality indicators (HHI and OM_PI). These were chosen as the 

Hirfindel–Hirschman index (HHI) is one of the most commonly applied measures of mode 

choice variability (Heinen and Chatterjee, 2015, Susilo and Axhausen, 2014, Scheiner et al., 

2016), and OM_PI is appropriate when considering a set number of travel means, 

independent on whether an individual has access to it (Diana & Pirra, 2016). This selection 

was only made after assessing that the first set of correlations showed fairly similar results. 

This stratification analyses was conducted to detect potential confounding, as we know from 

existing studies, that the level of multimodality is associated with socioeconomic 

characteristics such as income (Susilo and Axhausen 2014; Heinen and Chatterjee 2015; 

Heinen and Mattioli, 2017). Moreover, the level of multimodality is related to the number of 
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stages (i.e. if an individual report more stages in their travel diary they have higher chances to 

be more multimodal). In addition, income and distance also are positively correlated with 

CO2 emissions and could therefore confound the relationship between multimodality and CO2 

emissions. As such, the second step of the analysis was to explore the correlation between the 

multimodality indicators with the two calculated CO2 emissions stratified by (1) income and 

two weekly travel characteristics: (2) number of stages and (3) total distance travelled.  

Third, we estimated the contribution of the level of multimodality to CO2 emissions in 

linear regression models. Given the similarity in the correlation of indicators (see results step 

1), we only estimated models with HHI calculated considering three modes as an independent 

variable, given that it is the most commonly applied measure of multimodality. We step-wise 

adjusted: (Model 1 (M1)) only the multimodality indicator; (M2) the multimodality indicator 

and socio-economic characteristics; and (M3—Maximally adjusted model) similar to step 2, 

but including spatial characteristics. This allowed us to test the ‘stability’ of the association 

between multimodality and CO2 emissions, and detect potential confounders and effect 

modifiers. Moreover, we conducted several sensitivity analyses. We estimated maximally 

adjusted model (step 3) (sensitivity test 1 (s1)) including number of stages, (s2) including the 

total distance travelled (without number of stages), and (s3) with CO2(b) as dependent 

variable. We also conducted sensitivity tests with OM_PI as a multimodality measure, with 

the eight-mode multimodality measure (HHI—8 modes), and including flight (these are 

unreported). Moreover, we repeated the analyses stratified by whether car use was part of the 

modal mix.  

 

2.4.2 Trip level  

The second part focussed on trip-level multimodality, corresponding with the policy aims of 

the EU. For these analyses, we excluded 29 trips that included air stages, for similar reasons 
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as described above, and all trips made by individuals <16 years old. Similarly to the 

individual-level analysis, we test whether our findings are robust to the exclusion of long-

distance trips by stratifying our analysis by travel distance bands.  

We firstly explored whether multimodal trips (i.e. trips involving more than one 

transport mode) and unimodal trips (i.e. trips involving only one mode of transport) differ in 

CO2 emissions (considering both CO2 measures) to reveal the differences in mean and 

variance. For this, we created dot plots displaying mean and median values and tested with 

two-sample t-test whether the observed differences between means were significantly 

different. We repeated this exploration but stratifying by whether a car was used in the trip, 

and by trip distance bands.  

Finally, we conducted OLS regression analyses (with CO2(a) as the dependent 

variable) in which we again stepwise adjusted to investigate whether our findings held when 

controlling for the same covariates as in the individual-level analyses2.  

 

3. Results  

3.1 Individual level 

3.1.1 Descriptive analyses  

The first step of the analysis was to determine the correlation between the indicators of 

multimodality and CO2 emissions on an individual level. Table 3 shows the correlations 

between the different indicators of multimodality and CO2 emissions for (1) all adults in NTS 

that made at least one trip, as well as (2) multimodal individuals only (i.e. those who used 

more than one mode in the survey week). 

                                                           
2 The trips are not independent and the conditions of OLS regression are not met. We therefore do not report or 
discuss the final results in the main text, but present them in Appendix 2. 
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 The results do not support the hypothesis that the level of multimodality is correlated 

with CO2 emissions, as the magnitude of the association is weak and the direction uncertain. 

For the three-mode multimodality indicators on the entire sample, the results are mostly in 

the expected direction, for both CO2 indicators: higher multimodality is associated with less 

CO2 emissions. For the eight-mode multimodality indicators on the entire sample, the results 

are mostly counterintuitive: higher levels of multimodality are generally associated with 

higher levels of CO2 emissions. The weak association together with the large sample could 

explain these varied results. Similarly mixed results were found for multimodal individuals 

only, although with lower levels of statistical significance.  

Table 3 – Spearman’s correlation coefficient between multimodality indices and CO2 
emissions  

  All sample Multimodal individuals only 
  CO2 (a) CO2 (b) CO2 (a) CO2 (b) 
Multimodality based on 3 modes No. of modes -0.03 -0.01 0.07 0.10 

OM_PI -0.04 -0.03 -0.01 0.00 
MM -0.04 -0.02 0.01 0.03 
HHI 0.05 0.03 0.02 0.01 
HHm 0.04 0.02 -0.01 -0.03 
Difference primary-secondary 0.05 0.04 0.03 0.04 
DALm 0.04 0.02 -0.01 -0.03 

Multimodality based on 8 modes No. of modes 0.08 0.10 0.10 0.11 
OM_PI 0.02 0.06 -0.02 0.01 
MM 0.04 0.07 0.01 0.03 
HHI 0.01 -0.05 0.04 0.01 
HHm -0.04 -0.07 -0.01 -0.04 
Difference primary-secondary 0.01 -0.02 0.09 0.06 
DALm -0.04 -0.07 -0.02 -0.04 

In bold the coefficients with p<0.05 significance  

For interpretation of the coefficients, it must be kept in mind that the first three multimodality indicators are 
variability indices (with higher values corresponding to greater multimodality), and the other five are 
concentration indices (with higher values corresponding to less multimodality).  

CO2 (a) is the calculation of individual CO2 emissions, in which all vehicle emissions are attributed to the 
driver, and none to passengers. CO2 (b) is the calculation of individual CO2 emissions, in which total vehicle 
emissions were divided by the total number of vehicle occupants (i.e. driver and passengers were allocated the 
same emissions). 

 

The second step of the analysis was to explore the correlation between multimodality indices 

and CO2 emissions stratified by (1) income, (2) number of stages, and (3) total distance 

travelled.  
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Table 4 shows that the correlations between multimodality and CO2 remain weak 

when stratified by income. Although correlations were mostly in the expected direction, with 

lower levels of multimodality associated with higher emissions, the magnitude of the 

correlation still remained low, although slightly stronger than for the sample as a whole. The 

exception here are the two lowest quintiles, were correlations are non-significant or in the 

opposite direction as expected (although of low magnitude). This could be explained by 

lower levels of car ownership and use among low-income households, whereby greater 

multimodality tends to result in greater car use and thus higher CO2 emissions.   

 

Table 4 – Spearman’s correlation coefficients between multimodality indices and CO2 
emissions, stratified by household income quintiles (including descriptive statistics for 
stratifying variable)  

   Pearson´s correlation coefficients N % Mean CO2 
emissions (a) 
(kgCO2) 

Mean CO2 
emissions (b) 
(kgCO2) 

   All sample Multimodal 
individuals only 

   CO2 (a) CO2 
(b) 

CO2 (a) CO2 
(b) 

Income 
quintile 1 
(bottom) 

3 modes OM_PI 0.03 0.02 0.06 0.11 2180 17.9 12.9 12.4 
HHI -0.03 -0.02 -0.07 -0.11 

8 modes OM_PI 0.14 0.13 0.07 0.09 
HHI -0.13 -0.13 -0.05 -0.08 

Income 
quintile 2 

3 modes OM_PI -0.02 0.02 -0.02 0.00 2270 18.5 16.8 16.1 
HHI 0.02 -0.01 0.03 0.01 

8 modes OM_PI 0.07 0.11 0.01 0.05 
HHI -0.06 -0.10 0.02 -0.02 

Income 
quintile 3 

3 modes OM_PI -0.09 -0.09 -0.08 0.08 2540 21.6 23.5 21.8 
HHI 0.09 0.09 -0.07 0.08 

8 modes OM_PI -0.03 -0.01 -0.10 -0.07 
HHI 0.04 0.02 0.12 0.09 

Income 
quintile 4 

3 modes OM_PI -0.10 -0.08 -0.05 -0.05 2439 21.2 29.3 27.4 
HHI 0.10 0.08 0.06 0.06 

8 modes OM_PI -0.08 -0.04 -0.05 -0.03 
HHI 0.09 0.04 0.07 0.04 

Income 
quintile 5 
(top) 

3 modes OM_PI -0.04 -0.03 0.01 0.03 2489 20.8 33.4 31.5 
HHI 0.04 0.04 -0.01 -0.02 

8 modes OM_PI -0.05 0.00 -0.08 -0.04 
HHI 0.05 0.00 0.10 0.06 

Total 11918 100.0 23.7 22.3 

In bold the coefficients with p<0.05 significance  

CO2 (a) is the calculation of individual CO2 emissions, in which all vehicle emissions are attributed to the 
driver, and none to passengers. CO2 (b) is the calculation of individual CO2 emissions, in which total vehicle 
emissions were divided by the total number of vehicle occupants (i.e. driver and passengers were allocated the 
same emissions). 

 

 Stratification by number of stages (Table 5) revealed that for individuals with the 

average weekly travel behaviour in terms of stages (i.e. travelling between 10 and 30 stages 
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in the survey week), the correlation between multimodality and CO2 was in the expected 

direction and statistically significant: higher levels of multimodality were associated with 

lower emissions. The magnitude of the association was stronger compared to the reported 

correlations above, but remained weak (rs=0.28 at best). This finding suggests that the 

association between multimodality and CO2 is confounded by levels of travel activity.  

The weaker and more variable correlations for the lowest trip frequency category may be a 

result of the (statistical and theoretical) association between number of stages and 

multimodality whereby individuals with few reported trips may not have sufficient trips to be 

highly multimodal. The limited correlation between CO2 and multimodality may be a result 

of the fact that multimodality is positively associated with travel activity and that travel 

activity is positively associated with CO2. 

Stratifying the correlations by total weekly travel distance quintiles (Table 6) yielded 

similar results: the correlation between multimodality and CO2 was in the expected direction, 

mostly statistically significant, and of moderate magnitude (up to rs=0.40). The magnitude of 

the correlations did not vary greatly between distance bands, but in the lowest quintile were 

weaker and in the opposite direction as expected, suggesting a different relationship between 

the level of multimodality and CO2 emission for local trips, possibly related to low levels of 

car use in this distance range. Overall, this suggests that distance suppresses the relationship 

between multimodality and CO2 as distance is strongly positively associated with both MM 

and CO2. This is demonstrated by the fact that individuals in the top quintile of travelled 

distance emitted roughly 30 times the level of those in the lowest quintile. With the exception 

of the first quintile, we find similar associations across all distance categories. This suggests 

that our results are robust to the exclusion of individuals with long travel distances.  
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Table 5 - Spearman’s correlation coefficients between multimodality indices and CO2 
emissions, stratified by number of stages reported in travel week diary (including 
descriptive statistics for stratifying variable) 

   Pearson´s correlation coefficients N % Mean CO2 
emissions 
(a) (kgCO2) 

Mean CO2 
emissions (b) 
(kgCO2) 

   All sample Excluding 
unimodals 

   CO2 
(a) 

CO2 
(b) 

CO2 
(a) 

CO2 (b) 

1-10 
stages 
 

3 modes OM_PI 0.07 -0.01 -0.08 -0.11 2137 18.0 7.4 8.3 
HHI -0.07 0.01 0.09 0.12 

8 modes OM_PI 0.22 0.10 0.00 -0.05 
HHI -0.22 -0.1 0.01 0.06 

10-20 
stages 
 

3 modes OM_PI -0.22 -0.21 -0.07 -0.07 4413 37.4 22.9 22.6 
HHI 0.22 0.21 0.07 0.08 

8 modes OM_PI -0.14 -0.11 -0.05 -0.05 
HHI 0.15 0.11 0.06 0.06 

20-30 
stages 
 

3 modes OM_PI -0.28 -0.24 -0.14 -0.11 2876 23.8 30.7 27.9 
HHI 0.28 0.24 0.15 0.12 

8 modes OM_PI -0.24 -0.15 -0.14 -0.09 
HHI 0.25 0.16 0.17 0.11 

30 or 
more 
 

3 modes OM_PI -0.14 -0.05 0.04 0.11 2492 20.8 30.9 27.4 
HHI 0.11 0.04 -0.08 -0.13 

8 modes OM_PI 0.04 0.11 -0.01 0.09 
HHI -0.08 -0.13 -0.01 -0.1 

Total 11918 100.0 23.7 22.3 

In bold the coefficients with p<0.05 significance  

CO2 (a) is the calculation of individual CO2 emissions, in which all vehicle emissions are attributed to the 
driver, and none to passengers. CO2 (b) is the calculation of individual CO2 emissions, in which total vehicle 
emissions were divided by the total number of vehicle occupants (i.e. driver and passengers were allocated the 
same emissions). 

 

Table 6 - Spearman’s correlation coefficients between multimodality indices and CO2 
emissions, stratified by distance travelled in the diary week.  

    N % Mean CO2 
emissions 
(a) (kgCO2) 

Mean CO2 
emissions (b) 
(kgCO2) 

   All sample Excluding 
unimodals 

Distance 
quintiles 
(miles per 
week) 

  CO2 
(a) 

CO2 
(b) 

CO2 
(a) 

CO2 
(b) 

1st (0-35) 
 

3 modes OM_PI 0.15 0.11 0.16 0.20 2384 20.6 2.1 2.4 
HHI -0.15 -0.11 -0.17 -0.20 

8 modes OM_PI 0.24 0.18 0.21 0.21 
HHI -0.24 -0.18 -0.20 -0.21 

2nd (35-72) 
 

3 modes OM_PI -0.22 -0.23 -0.10 -0.03 2384 20.2 7.3 7.7 
HHI 0.21 0.22 0.08 0.01 

8 modes OM_PI -0.22 -0.22 -0.12 -0.11 
HHI 0.21 0.21 0.11 0.08 

3rd (72-126) 
 

3 modes OM_PI -0.30 -0.28 -0.14 -0.15 2383 19.7 15.8 15.2 
HHI 0.30 0.28 0.14 0.16 

8 modes OM_PI -0.37 -0.31 -0.26 -0.23 
HHI 0.37 0.31 0.27 0.23 

4th (126-
223) 
 

3 modes OM_PI -0.28 -0.31 -0.22 -0.23 2384 19.7 28.9 27.1 
HHI 0.28 0.31 0.21 0.22 

8 modes OM_PI -0.39 -0.34 -0.31 -0.30 
HHI 0.40 0.34 0.32 0.30 

5th (223+) 
 

3 modes OM_PI -0.23 -0.20 -0.12 -0.12 2383 19.8 65.2 60.1 
HHI 0.22 0.20 0.11 0.11 

8 modes OM_PI -0.33 -0.24 -0.22 -0.16 
HHI 0.33 0.24 0.23 0.15 

Total 11918 100.0 23.7 22.3 

In bold the coefficients with p<0.05 significance  



22 
 

CO2 (a) is the calculation of individual CO2 emissions, in which all vehicle emissions are attributed to the 
driver, and none to passengers. CO2 (b) is the calculation of individual CO2 emissions, in which total vehicle 
emissions were divided by the total number of vehicle occupants (i.e. driver and passengers were allocated the 
same emissions). 

 

3.1.2 Multivariate analyses  

Tables 7 and 8 present the results of the multivariate analyses, with CO2(a) as the dependent 

variable (unless otherwise noted). In the unadjusted model, a higher level of multimodality 

was significantly associated with lower weekly CO2 emissions. In the maximally adjusted 

model (i.e. after adjusting for socio-economic and spatial characteristics), this association was 

attenuated, but remained statistically significant. Previous research (reviewed in Section 1) 

has shown that socio-economic and spatial characteristics are associated with both CO2 

emissions and multimodality, which corresponds with our findings. Further adjustment for 

other travel behaviour characteristics (i.e. the number of stages (as well as distance, but this 

variable is endogenous)), strengthened the relationship between multimodality and CO2 

emissions. In the maximally adjusted model, a change from 0 (being fully multimodal) to 1 

(unimodality) value on HHI increases CO2 emissions by 3.7 kg per week and approximately 

10 kg per week when controlling for travel intensity (i.e. distance (s1) and number of stages 

(s2)).  

Individual and spatial characteristics contribute to a larger extent to the predictive power 

of the model than multimodality does, increasing r2 from 0.01 to 0.19. The inclusion of 

number of stages increased the fit of the model even more, to an r2 of 0.22. Analysis on the 

eight-mode multimodality indicator, OM_PI indicator (both not reported) yielded fairly 

similar results, although not always statistically significant. When using the alternative 

calculation of CO2 (sharing emissions between passengers) (S3), the effect of multimodality 

on CO2 emissions attenuated and become insignificant.  
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Several socio-economic and spatial characteristics which appear in the models as control 

variables are also significantly associated with CO2 emissions. For example, women produce 

on average less CO2 emissions than men as a result of their travel. Higher emissions are 

observed for individuals who have one or two cars in the household (compared to none), and 

individuals that work at multiple locations (compared to only one location), individuals with 

children in the household (compared to none), and those living outside London (compared to 

London). In contrast, individuals that are not full-time employed and those that do not live in 

a detached house are more likely to have lower levels of CO2 emissions. 
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Table 7 OLS regression on CO2 emissions of travel per week 

    
M 1:Only 
MM 

M2: Incl 
SES 

M3: Max 
adjusted 

S1: Incl 
stages 

S2: Incl 
distance S3: CO2(b) 

Multimodality indicator (HHI, 3 modes) 8.306*** 5.086*** 3.710*** 9.987*** 11.371*** 1.208 
Age (ref: 30-65)       

 16-30  -7.861*** -7.404*** -6.101*** -4.366*** -4.704*** 

 65+  -0.024 -0.991 -0.403 2.399** -1.691 

Gender (ref: Male)       

 Female  -10.877*** -11.075*** -11.452*** -8.349*** -5.626*** 
Household income 
in quintile 1st       

 2nd  -7.111*** -7.006*** -6.198*** 1.801* -7.599*** 

 3rd  -7.716*** -7.625*** -7.374*** 0.111 -7.794*** 

 4th  -6.971*** -6.644*** -6.414*** 0.921 -6.810*** 

 (ref: 5th)  -3.945*** -3.893*** -3.881*** 0.735 -4.220*** 
Ethnicity (ref: White)       

 Non-white  -5.305*** -1.367 -1.244 0.062 -1.276 
Number of cars in 
household (ref: None)       

 1  7.086*** 5.988*** 5.151*** 0.025 4.275*** 

 2 or more  12.392*** 9.985*** 8.658*** -0.146 8.047*** 

Workplace location 
(ref: Always the same 
in office)       

 Different locations  9.608*** 9.824*** 10.441*** 4.029*** 8.465*** 

 Home  1,626 0.469 1,189 -1,232 -0.128 
Children in 
household (ref: No)       

 Yes  4.188*** 3.746*** 2.550*** 1.912*** -0.227 

Owning a bicycle (ref: No)       

 Yes  4.445*** 2.942*** 2.195*** 0.763 1.813** 
Having mobility 
difficulties (ref: No)       
 Yes  -4.639*** -4.918*** -3.241** -2.014* -3.541** 
Housing Tenure (ref: Owns home)       

 Rents  -4.115*** -2.653*** -2.255** -0.215 -2.654*** 

 Other  -4,667 -5,380 -6,190 -0.212 -4.512 
Holding a public 
transport season 
ticket (ref: No)       

 Yes  -0.420 0.061 -0.839 -4.053*** 0.224 
Working status (ref: Full-time)       

 Part time  -8.621*** -9.334*** -10.010*** -3.313*** -8.486*** 

 
Retired/permanently 
out of work  -11.213*** -12.714*** -11.563*** -4.947*** -11.222*** 

 Other non-work  -11.408*** -12.020*** -10.996*** -3.874*** -10.839*** 
Residential area (ref: Inner London)       
 Outer London built-up   3.896* 4.173** 1,285 4.113** 

 Metropolitan built-up   6.895*** 7.252*** 1,351 6.774*** 

 Other urban 100+   9.622*** 9.817*** 2.126* 9.565*** 

 Other urban   13.658*** 14.114*** 2.180* 12.905*** 

 Rural   17.908*** 18.344*** 4.056*** 17.195*** 
Housing type (ref: Detached)       

 
Semi-detached or 
terraced   -4.778*** -4.706*** -0.566 -4.383*** 

 Flat or other   -3.989** -4.118*** -0.265 -3.894*** 
Total number of 
stages     0.488***   
Total travel distance      0.171***  
Constant   18.477*** 29.889*** 25.877*** 11.641*** -3.221* 25.554*** 

N   11887 11887 11887 11887 11887 11887 

r2   0.006 0.175 0.195 0.221 0.617 0.175 

*p<0.05; **p<0.01; *** p<0.001  
Model 1(M1): only the multimodality indicator; Model 2 (M2): the multimodality indicator and socio-economic 
characteristics; Model 3 (M3): maximally adjusted—same as model 2 including spatial characteristics. 
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Sensitivity 1 (S1): maximally adjusted model including number of stages; S2: maximally adjusted model 
including distance travelled; S3: maximally adjusted model, using CO2(b) as dependent variable. 
 

Reported value is the coefficient.  
 
For interpretation of the coefficients, it must be kept in mind that HHI is a concentration index (with higher 
values corresponding to less multimodality).  
 

CO2 (a) is the calculation of individual CO2 emissions, in which all vehicle emissions are attributed to the 
driver, and none to passengers. CO2 (b) is the calculation of individual CO2 emissions, in which total vehicle 
emissions were divided by the total number of vehicle occupants (i.e. driver and passengers were allocated the 
same emissions). 

 

 
Given that driving is the main cause of CO2 emissions in our dataset, we stratified by 

whether car use was part of the modal mix (Table 8). For individuals who had used the car at 

least once, the models showed similar results and slightly stronger associations between 

multimodality and CO2 emissions. The models for individuals who did not use the car 

showed an association between multimodality and CO2 emissions that is not in the expected 

direction: higher values of HHI (i.e. higher concentration, lower multimodality) were 

associated with lower CO2 emissions. This association was significant in the unadjusted 

model (despite very low predictive power) and remained significant with all adjustments. A 

reason for this finding may be that increases in multimodality for individuals who do not 

drive, are likely due to more trips by public transport. These contribute to greater CO2 

emissions in comparison to walking and cycling. For car users, higher levels of multimodality 

may be more likely due to a higher proportion of trips not made by car, and hence lower 

contributions to CO2.  

The predictive power in the non-adjusted model remained very low. Models that 

adjusted for individual and spatial characteristic had higher predictive power (as in the non-

stratified model), but the increase in r2 was smaller. In the model for non-car users that 

adjusted for total weekly travel distance (not reported here), the direction of the association 

between multimodality and CO2 emissions changed and was not statistically significant. This 
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suggests that the importance of distance as a predictor of CO2 emissions vastly outweighs that 

of multimodality. In other words, the reason why multimodal non-car users emit more than 

monomodal non-car users is that they tend to cover longer distances—when distance is held 

constant, multimodal non-car users pollute less than monomodal non-car users.  

 

Table 8 OLS Regression analyses on CO2 emissions of travel per week, stratified by 
whether the car is used.  

    Car in modal mix Car not in modal mix 

    Unadjusted 
Maximally 
adjusted 

S1:including 
distance 

Unadjusted 
Maximally 
adjusted 

S1:including 
distance 

Multimodality indicator (HHI, 3 modes) 11.984*** 6.524*** 12.898*** -5.550*** -4.756*** 1.389 
Age (ref: 30-65)         
 16-30   -7.749*** -4.863***  -0.244 -0.431 

 65+   -1.322 2.530*  -2.506* 0.113 
Gender (ref: Male)         

 
Female 

  
-
13.488*** -10.038***  

-0.665 
-0.095 

Household income in 
quintile 

1st 
  -7.477*** 1.916*  

-3.110** -0.954 

 2nd   -8.029*** -0.043  -3.216** -0.649 

 3rd   -7.009*** 1.120  -2.784* -0.995 

 4th   -3.926*** 0.880  -2.910* -1.648* 

 (ref: 5th)         
Ethnicity (ref: White)         
 Non-white   -1.235 0.465  0.060 -0.265 
Number of cars in 
household 

(ref: None) 
        

 1   3.190** -1.520  0.150 1.140* 

 2 or more   6.542*** -1.977*  -1.019 -0.757 

Workplace location 
(ref: Always the same in 
office)         

 Different locations   9.603*** 3.837***  1.043 -0.055 

 Home   0.942 -1.541  -2.924 -0.178 
Children in household (ref: No)         
 Yes   3.658*** 1.793**  -0.004 0.344 
Owning a bicycle (ref: No)         
 Yes   3.546*** 1.226*  -1.894** -1.691*** 
Having mobility 
difficulties 

(ref: No) 
        

 Yes   -6.218*** -2.846**  -0.496 0.196 
Housing Tenure (ref: Owns home)         
 Rents   -2.356* -0.340  -1.067 0.340 

 Other   -6.867 -0.450  -2.697 -1.195 
Holding a public 
transport season ticket 

(ref: No) 
        

 Yes   0.180 -4.478***  4.405*** 0.601 
Working status (ref: Full-time)         
 Part time   -9.661*** -3.318***  -2.296* -0.037 

 
Retired/permanently out of 
work   

-
13.818*** -5.773***  

-4.086*** 
0.274 
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Other non-work 

  
-
13.071*** -4.712***  

-3.317*** 
0.267 

Residential area (ref: Inner London)         
 Outer London built-up   5.519* 2.313  1.931* -0.668 

 Metropolitan built-up   7.755*** 1.236  1.992 1.511 

 Other urban 100+   10.927*** 2.189  2.007* 1.247 

 Other urban   14.758*** 2.195  3.385** 1.547* 

 Rural   18.911*** 4.180**  4.517** 0.791 
Housing type (ref: Detached)         
 Semi-detached or terraced   -4.144*** -0.410  -6.243*** -2.985** 

 Flat or other   -2.805 0.709  -5.937*** -3.188** 
Total travel distance     0.171***  

 0.122*** 
Constant  19.411*** 27.945*** -1.611 9.820*** 18.233*** 0.829 

N   10237 10237 10237 1650 1650 1650 
r2   0.01 0.18 0.608 0.02 0.10 0.562 
 

       
*p<0.05; **p<0.01; *** p<0.001  
Reported value is the coefficient. 
Model 1: only the multimodality indicator; Model 2: maximally adjusted— multimodality indicator, socio-
economic characteristics, and spatial characteristics. Sensitivity 1 (S1): maximally adjusted model including 
distance travelled. 
 
 
 
 

3.2 TRIP LEVEL 

Only a small share of trips in the NTS 2015 were multimodal: approximately 3% when 

considering three modes of transport and 4% when considering eight. In this section, we 

compare CO2 emissions for unimodal trips (i.e. a single mode of transport was used) and 

multimodal trips (i.e. more than one mode was used), for the entire analysis sample (Figure 

1), and stratifying by car use and distance (Figures 2 and 3). For all pairs of unimodal vs. 

multimodal comparisons reported in the dot plots (showing both means and medians), we 

tested means differences with two-sample t-test with unequal variances, at a p<0.05 

significance level (detailed results not reported for the sake of brevity). 

Figure 1 shows that CO2 emissions were on average higher for multimodal trips. This 

finding was consistent for both measurements of multimodality, and CO2 calculations. This is 

apparent even when stratifying by car use (Figure 2). 
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Figure 1: Mean and median values of CO2 emissions for multimodal and unimodal trips  

 

Figure 2: Mean and median values of CO2 emissions for multimodal and unimodal 
trips, stratified by car use  
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These findings challenge the conventional wisdom: multimodality on a trip level does 

not correspond with lower CO2 emissions. A possible explanation for this finding is that 

multimodal trips tend to be over longer distances than unimodal trips. Thus, higher CO2 

emissions for multimodal trips may indicate that distance moderates this association. To test 

this, we stratified by distance quartiles to explore the relationship between multimodality and 

CO2, as displayed in Figure 3 for multimodality based on three modes (results for the eight-

modes measure are not reported here for the sake of brevity, but were comparable). For every 

distance quartile, the mean and median level of CO2 emissions of unimodal trips were higher 

than corresponding estimates for multimodal trips, regardless of the indicator of CO2 

considered. The only exception was the quartile with the smallest distance considering the 

first CO2 variable. In this case, both mean and median CO2 of unimodal and multimodal trips 

were (very close to) zero, which indicates that at least half of the trips are made by active 

travel. The same broad findings held if instead of quartiles, an alternative categorisation of 

distance was used: 0-5 miles (60% of trips), 5-10 miles (19% of trips), 10-50 miles (18% of 

trips), and 50 miles and above (3% of trips) (results not reported here for the sake of brevity). 

These results could be interpreted as follows: for a given range of travel distance, unimodal 

trips produce on average higher CO2 emissions than multimodal ones. However, multimodal 

trips tend to be longer and as such this relationship is reversed in the aggregate. Incidentally, 

these results also show that the relationship between multimodality and CO2 emissions is 

similar for trips above and below the long-distance threshold (which according to the NTS 

definition is 50 miles).  

Finally, we examined whether multimodal trips were associated with lower CO2 

emissions controlling for several covariates using an OLS regression (See Appendix 2—not 

reported in main text as OLS regression is not suitable given that the observations are not 

independent). The results were similar to the analyses reported above. We found that 
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multimodal trips had a significant positive association with CO2 emissions on a trip level, 

meaning that trips that were made with two or more modes emitted on average more CO2 

than unimodal trips. This finding was consistent for adjustments with one exception: if we 

controlled for distance, unimodal trips were more polluting.  

 

 

 
Figure 3: Mean and median values of CO2 emissions for multimodal and unimodal trips 
stratified by distance—multimodality based on three modes3  
 

4. Discussion 

This paper explored and tested the relationship between multimodality and CO2 emissions (1) 

on an individual level as well as (2) on a trip level. On an individual level, we found negative 

relationships between the multimodality levels and CO2 emissions. However the effects are 

weak, especially compared to the effect of travel distance. On a trip level, multimodality is 

                                                           
3 For correct interpretation note that the graphs in the four panels are not on the same scale on the y-axis 
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positively associated with CO2 emissions, but this is largely due to the fact that multimodal 

trips also have higher travel distances. 

 Travel distance is one of the main explanations for the level of CO2 emission. Our 

analyses revealed that distance may also explain some of the counterintuitive findings. Only 

when we stratified by distance correlation between multimodality and CO2 increases in 

strength on an individual level, and unimodal trips had higher levels of emissions than 

multimodal.  

In more detail, in our individual-level analyses, we found, that higher levels of 

multimodality were significantly associated with lower CO2 emissions resulting from travel. 

This association was stronger for individuals who had used the car at least once in the week 

of the travel diary survey. These findings are consistent with current efforts of policy makers 

to increase multimodality. This is especially true for the majority of the UK population (i.e. 

those that use a car on a regular basis). Increasing the level of multimodality in a population 

where car use dominates may simultaneously reduce car use, which reduces the total amount 

of CO2 emissions—although in the aggregate increases in multimodality do not necessarily 

go hand in hand with reductions in car use (Heinen & Mattioli, 2017).  

We did not find a positive association between multimodality and CO2 emissions for 

individuals who did not use the car in the week of the travel diary. In fact, higher levels of 

multimodality corresponded with higher levels of CO2 emissions. A reason for this finding 

may be that increases in multimodality for individuals who do not drive, are likely a result of 

a higher number of trips by public transport. In comparison to walking and cycling, public 

transport trips contribute to greater CO2 emissions.  

It is noteworthy that when testing the correlation between multimodality and CO2 

emissions, the magnitude of the association was weak. It remained weak when stratified by 

income, but when stratified by number of stages or by total distance travelled, the correlation 
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between multimodality and CO2 increases in strength, was in the expected direction and was 

statistically significant. These findings suggest that the association between multimodality 

and CO2 is to some extent confounded by levels of travel activity (especially distance), and 

that these have a much greater bearing on emission levels than the multimodality of 

individual travel behaviour.  

In our trip-level analyses, we found that CO2 emissions were on average higher for 

multimodal trips. This finding calls into questions the validity of a one-to-one substitution 

perspective. While in theory, for a given trip, CO2 emissions may be reduced by combining 

car use with other modes of transport, in practice, it appears that trips were more than one 

more mode is combined tend to be more polluting. A likely explanation for this finding is that 

multimodal trips tend to be over longer distances than unimodal trips. Here again, distance is 

the most important factor in explaining CO2 emissions, and confounds the relationship 

between multimodality and CO2 emissions. When we stratify the analyses by distance 

quartile, the mean level of CO2 emissions of unimodal trips was on average higher than 

emissions for multimodal trips. This implies that distance moderates this association. As a 

consequence, it can be concluded that stimulating multimodal trips would still be likely 

reduce CO2 emissions for trips of comparable distance. On the other hand, if the development 

of multimodal travel habits is associated with an increase in travelled distances, it is less than 

certain that the overall result would be a reduction in emissions.  

 

4.1 Implications 

This paper started with the question whether multimodality should be stimulated with the aim 

to reduce transport emissions. On the one hand, our findings show that multimodality, 

especially if car use was involved, is on average associated with lower levels of CO2 

emissions. As such, the current focus on increasing multimodality may have the desired 
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results. On the other hand, our findings show that distance is a more important predictor, and 

an important effect modifier of the relationship between multimodality and CO2 emissions. 

This implies that policy efforts to increase multimodality would have larger effects if 

focussed on travel intensity.  

Distance is associated with both CO2 emissions and multimodality. The positive 

relationship between distance and multimodality may be regarded as beneficial for 

sustainable transport, as it suggests that longer trips are more likely to be multimodal, and 

thereby less polluting than unimodal car trips over the same distance. However, we need to 

be careful that current aims to increase multimodality do not simultaneously increase travel 

distance. An increase in travel distance for an individual as well as for one trip will without 

doubt increase CO2 emissions. The only exception to this rule is found in trips solely made by 

bicycle or on foot. However, the decision to walk or cycle is also heavily affected by trip 

distance (Van Wee et al., 2006; Heinen et al., 2010). Therefore, reducing the need to travel 

over longer distances will likely have the largest contribution to reducing CO2 emissions.    

Nevertheless, at the moment, the causal structure is unknown: are people more 

multimodal as they have more trips/longer distances, or vice versa? Additional research, 

possibly adopting a longitudinal approach, is necessary to disentangle this relationship and 

how it may be moderated or mediated by other factors.  

 

4.2. Strengths & Limitations 

The NTS is a high-quality data set that allows a fairly accurate calculation of CO2 emissions 

and multimodality. Nevertheless, the NTS has several shortcomings. The most important in 

relation to our research aim may be that the NTS only reports trips within England, meaning 

that most flights are unrecorded. Therefore, we have excluded air travel from our analysis. 

Existing research shows that for some individuals, particularly in urban areas, low levels of 
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GHG emissions for everyday travel are more than compensated by high GHG emissions for 

long distance travel (notably flights) (Czepkiewicz et al., 2018; Holz-Rau et al., 2014; Ottelin 

et al., 2014; Reichert et al., 2016). There is also initial evidence of an association between 

multimodality and high emissions for long distance travel, mostly by plane (Reichert and 

Holz-Rau, 2018). This suggests that the negative association that we have found between 

multimodality and emission levels could be reversed, were air travel to be accounted for 

properly. Indeed, the results of the sensitivity tests conducted for this study suggest that 

including even a very small number of plane trips tends to reduce (and potentially reverse) 

the already weak association between greater multimodality and lower CO2.  

Another limitation is that the NTS collects a travel diary for one week only. Although 

for the purpose of this study this provides very good data, especially compared to the shorter 

diaries found in other national surveys, it does not sufficiently capture less regular trips, such 

as weekends away or holidays, which may contribute substantially to the overall CO2 

emissions. Finally, as is the case with any questionnaire, there is a risk of non-selection and 

non-response bias, as well as incorrect reporting. However, the size, design, and effort in data 

collection of NTS and the availability of weights may limit the bias compared to other 

surveys.  

In this paper we assessed individual-level multimodality based on mode choice in 

each stage (i.e. we did not exclude any stages or trips). As a result, we did not differentiate by 

distance or other characteristics of a trip (e.g. trip purpose). This non-discriminatory approach 

is useful to understand the level of variability in the full modal mix. Nevertheless, this 

approach also may increase bias. For example, long-distance trips will contribute 

disproportionately to CO2 emissions but not to the level of multimodality, and short-distance 

trips potentially vice versa.  
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This paper investigated the relationship between CO2 emission and multimodality. 

However, transport emissions are not limited to CO2. The exact level of pollutants differs by 

mode of transport and by vehicle type. Although our findings may have a similar pattern 

compared to other pollutants in relation to multimodality, the exact associations and strength 

are unknown and further research will be necessary to determine these.  

 

5. Conclusion 

This paper explored and tested the relationship between multimodality and CO2 emissions 

using English National Travel Survey of 2015. We found that individuals who were more 

multimodal, when controlling for individual characteristics, had less polluting travel 

behaviours on average compared to individuals with lower levels of multimodality—although 

the association was weaker and more uncertain than one would expect given the current 

policy emphasis on this policy goal.  We also found that multimodal trips, when controlled 

for distance, were on average less polluting than unimodal trips.  

A key finding of our analyses was that distance appeared the most important factor, 

and it confounded the relationship between multimodality and CO2 emissions. Our analyses 

therefore suggest that a focus on increasing multimodality will likely contribute to reducing 

CO2 emissions, but reducing total distances travelled will contribute much more to reaching 

current climate targets. More broadly, they suggest that the assumption of a one-to-one 

substitution between unimodal car travel patterns and multimodal travel patterns should be 

avoided as real-world data suggests that multimodality is associated with longer travel 

distances, both at the individual and trip level.  

The current emphasis of multimodality is consistent with popular ‘behaviour change’ 

and ‘citizen–consumer’ approaches to sustainable transport policy (Barr et al., 2011; Barr & 

Prillwitz, 2014; Shove, 2010). As such, it is attractive to policy-makers, since it frames their 
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role as one of expanding the choice-set available to individuals—increasing their freedom—

rather than introducing regulatory or pricing measures that could be perceived as restrictions. 

However, our findings suggest that policy strategies that focus uniquely (or primarily) on 

greater multimodality are unlikely to bring about change at the required scale and speed, 

given the extremely rapid reductions in transport-related CO2 emissions required (IPCC, 

2018), and a discussion on distance and travel intensity is necessary.  
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Appendix 1 – Multimodality indices formulae 
 
 
 

 The number of modes used (Heinen and Mattioli, 2017); 

 

σ n       equation (1) 

In which n is each unique mode used in a stage. 
 

 The difference in percentage of use between primary and secondary modes (Heinen and 

Chatterjee 2015); 

 Ψ݉݁݀ͳ െ Ψ݉݁݀ʹ    equation (2) 

In which mode1, is the mode most frequently used in one week on a stage level, and mode2 the second 
most frequently used mode in one week on a stage level 

 

 The Herfindahl–Hirschman index (HHI) as applied by Heinen and Chatterjee (2015), 

and a variant, HHm, based on Diana and Pirra (2016);   

 

The HHI (H* in equation 1) is calculated for each individual as the sum of the squared values of the 
share of each mode option of the total number of stages. Equation 2 shows the normalisation of the 
index. 

 H ൌכ σ s୧ଶ୧ୀଵ       equation (3) HHI ൌ ሺୌି భొሻሺଵିଵȀሻ     equation (4) 

In which S is the made share of each mode, and N is the total number of modes considered.  

 An index based on the Shannon entropy, based on Diana and Pirra (2016) OM_PI; 

ܫ̴ܲܯܱ ൌ  σ ሾ σ ೕೕసభୀଵ ݈݊ ൬σ ೕೕసభ ൰ ଵ୪୬ ሿ  equation (5) 

In which I is the intensity of use of ith mode and n the total number of modes.  
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 The Dalton index, based on Diana and Pirra (2016) DALm. Following Diana and Pirra 

(2016), we set İ at 0.5 in order to maximise the sensitivity of the index (p.785); 

݉ܮܣܦ ൌ ͳ െ భ σ ൫భషഄିଵ൯సభሺ భ σ ሻసభ  భషഄିଵ     equation (6) 

In which n is the number of different modes, fi is the intensity of use of each mode. We only 
considered the values different from zeros. 

 

 The multimodal indicator (MM), based on Streit et al. (2015). ܯܯ ൌ ୫ୟ୶         equation (7) 

In which n is the number of modes, and fi is the frequency of use of mode i. 
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Appendix 2 - Multivariate analyses on CO2 emissions (CO2(a)) of a trip  
    Model 1 Model 2 Model 3 S1 S2 S3 

Multimodality indicator (HHI, 3 modes) 0.858*** 0.778*** 0.913*** -1.442*** 1.048*** 1.001*** 
Age    -0.019 0.177*** 0.218*** 0.059*** 0.184*** 
Gender (ref: Male)       
 Female  -0.924*** -0.757*** -0.574*** -0.414*** -0.757*** 
Household income in 
quintile 

(ref:1st) 
      

 2nd  0.102*** -0.084*** -0.102*** -0.047* -0.087*** 

 3rd  0.380*** -0.03 -0.054** 0.012 -0.035 

 4th  0.637*** 0.108*** -0.034 0.143*** 0.104*** 

 5th  0.847*** 0.274*** -0.066** 0.320*** 0.267*** 
Ethnicity (ref: White)       
 Non-white  -0.220*** -0.013 -0.003 -0.007 -0.023 
Number of cars in 
household 

(ref: None) 
      

 1   0.253*** 0.103*** 0.111*** 0.267*** 

 2 or more   0.393*** 0.148*** 0.239*** 0.411*** 

Workplace location 
(ref: Always the same 
in office)       

 Different locations   0.186** -0.003 0.135** 0.189** 

 Home   0.717*** 0.358*** 0.609*** 0.714*** 
Children in household (ref: no)       
 Yes   0.045* 0.078*** -0.180*** 0.048* 
Owning a bicycle (ref: no)       
 Yes   -0.017 0.012 -0.066*** -0.013 
Having mobility 
difficulties 

(ref: No) 
      

 Yes   -0.156*** -0.142*** -0.046 -0.152*** 
Housing Tenure (ref: Owns home)       
 Rents   -0.064** -0.011 -0.068*** -0.063** 

 Other   -0.251** -0.066 -0.177** -0.245** 
Holding a public 
transport season ticket 

(ref: No) 
      

 Yes   -0.153*** -0.257*** -0.112*** -0.174*** 
Working status (ref: Full-time)       
 Part time   -0.598*** -0.286*** -0.532*** -0.595*** 

 
Retired/permanently 
out of work    -0.735*** -0.464*** -0.598*** -0.721*** 

 Other non-work   -0.632*** -0.387*** -0.537*** -0.622*** 
Residential area (ref: Inner London)       
 Outer London built-up   0.343*** 0.181*** 0.359*** 0.366*** 

 Metropolitan built-up   0.423*** 0.191*** 0.421*** 0.474*** 

 Other urban 100+   0.513*** 0.225*** 0.523*** 0.565*** 

 Other urban   0.845*** 0.320*** 0.805*** 0.895*** 

 Rural   1.075*** 0.456*** 1.031*** 1.126*** 
Housing type (ref: Detached)       

 
Semi-detached or 
terraced   -0.185*** -0.063*** -0.167*** -0.186*** 

 Flat or other   -0.141*** -0.039 -0.139*** -0.139*** 
Total number of stages    0.135***   
Constant   1.413*** 0.493 -0.265 -0.381 0.272 -0.351 

N   187696 187519 186784 186784 186784 186784 

r2   0.002 0.025 0.046 0.495 0.042 0.047 

 
 
 



43 
 

*p<0.05; **p<0.01; *** p<0.001  
Model 1: only the multimodality indicator; Model 2: the multimodality indicator and socio-economic 
characteristics; Model 3: maximally adjusted—same as model 2 including spatial characteristics. Sensitivity 1 
(S1): maximally adjusted model including distance travelled; S2: maximally adjusted model, using CO2(b) as 
dependent variable; S3: maximally adjusted model with HHI indicator based on 8 modes. 
 
 

 
 
 


