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Fitness sharing is a well-known diversity mechanism inspired by the idea that individuals 
in the population that are close to each other have to share their fitnesses in a similar 
way to how species in nature occupying the same ecological environment have to share 
resources. Thus, by derating the fitness of close individuals one hopes to encourage the 
population to spread out more.

Previous runtime analyses of fitness sharing studied a variant where selection was 
based on populations instead of individuals. We study the conventional fitness sharing 
mechanism based on individuals and use runtime analysis to highlight its benefits and 
dangers on the well-known bimodal test problem TwoMax, where diversity is crucial 
for finding both optima. In contrast to population-based sharing, a (2+1) evolutionary 
algorithm (EA) with conventional fitness sharing does not guarantee to find both optima in 
polynomial time even when problem specific knowledge is used to estimate the distance 
between individuals; however, a (μ+1) EA with μ ≥ 3 always succeeds in expected 
polynomial time. We further show theoretically and empirically that large offspring 
populations in (μ+λ) EAs can be detrimental as creating too many offspring in one 
particular area of the search space can make all individuals in this area go extinct. We 
conclude the paper with an empirical study indicating that similar conclusions may be 
drawn when using the genotypic distance that has to be relied upon when no problem 
specific knowledge is available.

 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many real-world optimisation problems are multimodal by nature, i.e., they have a number of different local optima 
and may have more than one global optimum. Nature-inspired techniques have proven to be very popular and powerful to 
tackle these types of problems [2] and different optimisation goals have been discussed in the literature [3]. Taking a global 
perspective, one is for example interested in locating a single (local or global) optimum. However, in practice it is often 
more important to identify a multitude of different optima, either in a simultaneous or sequential fashion. Our analyses 

✩ An extended abstract of this work with parts of the results and without most of the proofs has been presented at Parallel Problem Solving from Nature 
(PPSN) in 2014 [1].
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therefore concentrates on the multi-local aspect of multimodal optimisation, i.e., where the goal is that the set of local 
optima is contained in the population by the end of the run.

In evolutionary computation, diversity mechanisms are commonly used to tackle multimodal optimisation prob-
lems [4–6], particularly in the context of a multi-local perspective. The main idea is to try and introduce niches in the 
population to prevent the algorithm from converging to a single solution such that different niches explore different peaks 
of the fitness landscape. Thus, in this context, niches are often understood as narrow, connected areas of the search space. 
In contrast to the numerous and widespread applications, the amount of theoretical research rigorously proving the ef-
fectiveness of diversity mechanisms is limited. Nevertheless, some previous theoretical work on diversity mechanisms for 
multimodal optimisation using nature-inspired techniques exists. Most notably, runtime analyses are available where the 
performance of diversity mechanisms is evaluated in terms of their optimisation time (i.e., the number of fitness function 
evaluations required to find the global optimum or a set of optima).

Friedrich et al. [7] showed that diversity mechanisms may be necessary by analysing population-based evolutionary algo-
rithms (EAs) for a bimodal function called TwoMax. TwoMax is a function of unitation, that is, the fitness only depends on 
the number of 1-bits |x| in the considered search point x. Hence, while the bit string x is the genotype, the number of ones 
|x| may be considered the corresponding phenotype, from which the fitness max{|x|, n − |x|} is then derived (where n is the 
length of the bit string). The function is easy from the perspective of localising the two local optima in a sequential fashion, 
for example, by using local search coupled with a restart strategy. On the other hand, the function is very challenging from 
a multi-local perspective, since the two local optima are as far away as possible from each other. Friedrich et al. [7] proved 
that a population-based EA with realistic population size (i.e., at most sublinear in the problem size) would fail at locating 
efficiently both optima of TwoMax if no diversity mechanism is used. They then showed that some diversity mechanisms 
make the algorithm efficient (i.e., fitness sharing, which we consider here in more detail, and deterministic crowding, where 
offspring compete for survival only with their parents) while others do not (i.e., avoiding genotype duplicates and avoiding 
duplicates of equal fitness). Recently, it has been proven that also the clearing mechanism, where resources are only assigned 
to the best individual of a subpopulation, makes population-based EAs efficient for the TwoMax function [8].

Diversity mechanisms have also been shown to enhance the capabilities of the recombination operator by favouring the 
emergence of dissimilar individuals. Fischer and Wegener [9] were the first to rigorously study this effect by analysing the 
performance of a genetic algorithm (GA) using fitness sharing on colouring problems inspired by the Ising model. They 
showed that the diversity mechanism helps the exploration of large plateaus and proved a speedup of order n over the 
simple (1+1) EA on one-dimensional Ising models with n nodes. Sudholt [10] further proved an exponential speedup for 
a GA for the Ising model on trees, using the fact that fitness sharing is powerful enough to allow the algorithm to tunnel 
through shallow fitness valleys. Recently, Dang et al. [11] showed that several diversity mechanisms allow an exponential 
speedup in the time required to escape from the local optima via recombination for the standard Jumpk benchmark function. 
Diversity mechanisms can also enhance the capabilities of the recombination operator for hillclimbing the OneMax function. 
A (2+1) GA with genotype diversity optimises the function in half the expected time (i.e., (e/2 + o(1))n logn) required by 
EAs only using standard bit mutation with fixed mutation rate [12], while GAs without diversity have been experimentally 
shown to be slower and the best upper bound on the expected runtime known is (3/4 + o(1))en logn [13]. It is also 
worth noting that an analysis for the Balance benchmark function has shown that diversity mechanisms allow the efficient 
optimisation of deceptive functions in the context of dynamic optimisation [14].

Fitness sharing [15,16] is amongst the best known diversity mechanisms. It is featured in many surveys [4–6] and used 
in many practical applications (see, e.g. [17–21], to name just a few). In this scheme niche formation is induced by using a 
sharing function that derates the fitness of an individual by an amount related to its ‘distance’ to the rest of the population. 
It is inspired by the idea that individuals in the same niche of the search space, i.e., individuals that are close to each other, 
have to share resources (their fitness)—similarly to how species in nature occupying the same ecological environment have 
to share resources. As a result individuals are encouraged to increase their distance from other individuals, thus spread out 
in the search space.

The effectiveness of fitness sharing may vary considerably according to which measure is used to define the distance 
between individuals. In particular, different fitness sharing functions are obtained according to how the distance between 
individuals is defined [4]. Fitness sharing can use distances defined on a genotypic or phenotypic level [4–6,16,22]. Genotypic 
sharing [4] uses genotypic distances like the Hamming distance to measure how close individuals of the population are to 
each other. Phenotypic sharing refers to distances in the decoded parameter space [22], which in turn depends on the 
encoding used. For example, if the genotype encodes a vector of real values, the phenotypic distance is commonly defined 
as the Euclidean distance between two such vectors [22]. In our case of functions of unitation, the phenotypes correspond 
to the number of ones in a search point, hence the number of ones may be used as distance measure to optimise the class 
of functions of unitation [23]. Note that when using phenotypic sharing in this way, we are in fact using problem-specific 
knowledge: we exploit the fact that we are dealing with a function of unitation. Such knowledge may not be available in a 
general black-box setting, and in this case only genotypic sharing may be used.

For the theoretical work presented in this paper we will use the phenotypic distance for three main reasons. The first is 
that this allows to highlight problems that may be encountered by using fitness sharing, even when problem knowledge is 
incorporated in the diversity mechanism. The second is that using phenotypic sharing allows for easier comparisons with 
previous results available in the literature, since they used this distance measure [7,8]. The third reason is that the analysis 
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Fig. 1. Sketch of the function TwoMax.

is considerably simplified compared to genotypic sharing but similar conclusions on algorithmic behaviour may be observed. 
This is indicated by the empirical analysis for genotypic sharing presented in Section 7.

Previous theoretical work on fitness sharing has concentrated on a somewhat unusual implementation of the sharing 
mechanism. Rather than selecting individuals based on their shared fitness f (x, P ), selection was done on a level of pop-
ulations, creating a population that maximises the overall shared fitness of the population [7,9–11,14]. While maximising 
the shared fitness of the population is indeed what is sought in fitness sharing, this approach has the drawback that the 
fitness of all the possible combinations of individuals needs to be examined. For large populations this is prohibitive as the 
number of populations that need to be examined is 

(μ+λ
λ

)

(see Section 2.1 for a detailed discussion).
In this paper we analyse the performance of the conventional fitness sharing approach based on individuals to match 

the approach taught in surveys and tutorials [4–6] and the way that fitness sharing is used in practice. As pointed out 
by Goldberg and Richardson [15], shared fitness values can be used with any selection mechanism. However, to allow 
for comparison with previous work on the effectiveness of fitness sharing for multimodal optimisation we use the same 
analytical framework, i.e., a standard (μ+λ) EA using the shared fitness values within the selection for replacement, and the 
same example function, i.e., the simple bimodal function TwoMax consisting of two different symmetric branches [7,24,25].

In the context of multimodal optimisation one crucial parameter of the algorithm is the population size, since this 
determines the number of local optima that can be found simultaneously. Lower bounds for the population size have been 
investigated in different settings [16,26] and this work further adds to the understanding of the influence of this parameter.

A (μ+1) EA using the unconventional approach (i.e., maximising the phenotypic shared fitness of the population) can 
efficiently optimise TwoMax for any population size μ ≥ 2 [7]. The reason is that, in any population, the individuals with 
the smallest and the largest number of ones are always accepted for the next generation. Our analysis shows that using the 
conventional (phenotypic) sharing approach leads to considerably different behaviours of evolutionary algorithms.

We first concentrate on the effects of the parent population in Section 4. A population of size μ = 2 is not sufficient to 
guarantee that the (μ+1) EA finds both optima in polynomial time. If the two individuals are initialised on the same branch, 
then there is a high probability that they will both find the same local optimum. Furthermore, there is a chance that the 
algorithm fails also when the two individuals are initialised on opposite branches. This leads to a worse failure probability 
than that of a simple crowding algorithm or that of a (1+1) EA that is restarted twice. On the other hand Section 5 shows 
that for μ ≥ 3, once the population is close enough to one optimum, individuals descending the branch heading towards 
the other optimum are accepted. This threshold, that allows successful runs with probability 1, lies further away from the 
local optimum as the population size increases.

Concerning the effects of the offspring population, in Section 6 we show that large values of λ can be detrimental. 
We rigorously prove that increasing the offspring population of a (μ+1) EA to a (μ+λ) EA, with μ = 2 and λ ≥ 2 a 
constant, results in an overcrowding that can make a (sub-)population go extinct. For the special case of λ = 2 we also prove 
an increased failure probability. We complement this result with an empirical analysis that suggests that the (μ+1) EA 
is successful if λ < ⌊μ/2⌋ and that it almost always fails for λ ≥ μ. We conclude the paper with an empirical analysis 
indicating that similar algorithmic behaviour to that proven theoretically also occurs if no problem specific knowledge is 
available and genotypic sharing is used. A preliminary version of this work with parts of the results and without most of 
the proofs can be found in [1].

2. Analytical framework

In our analyses, we consider a simple bimodal function consisting of two different symmetric branches (i.e., OneMax and 
ZeroMax) and we have defined both 0n and 1n to be global optima (see Fig. 1). Formally:

TwoMax(x) := max

{

n
∑

i=1

xi, n −
n

∑

i=1

xi

}

(1)

Moreover, we consider a standard (μ+λ) EA as shown in Algorithm 1 using standard bit mutation with mutation prob-
ability 1/n, uniform random selection of parents and truncation selection for selection for replacement. However, instead of 
the raw fitness, it uses the shared fitness value in the truncation selection.
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Algorithm 1 (μ+λ) EA with fitness sharing.
1: Let t = 0 and initialise P0 as a population of μ individuals chosen uniformly at random from {0, 1}n .
2: repeat

3: for each 1 ≤ i ≤ λ do

4: Select a parent x ∈ P uniformly at random from the population.
5: Let xi := x. Flip each bit in xi independently with probability 1/n.

6: end for

7: Create a new population Pt+1 by selecting the μ best individuals according to their shared fitness in Pt ∪
⋃λ

i=1{xi}, breaking ties towards favouring 
offspring over parents, breaking remaining ties uniformly at random.

8: Let t := t + 1.

9: until stopping criterion met

We consider fitness sharing as introduced by Goldberg and Richardson [15]. Throughout this work, |x| denotes the 
number of 1-bits in x. The shared fitness of an individual x ∈ P is

f (x, P ) :=
f (x)

∑

y∈P

sh(x, y)

and the sharing function is

sh(x, y) := max

{

0,1−
(

d(x, y)

σ

)α}

.

Here, d(x, y) is the distance between the two individuals x and y and σ is the sharing distance beyond which individuals 
do not share fitness. More precisely, if d(x, y) < σ then sh(x, y) > 0 and the shared fitness of x and y is lower than their 
true fitness. We say that then x and y share fitness. If d(x, y) ≥ σ then sh(x, y) = 0 and x and y do not share fitness. We 
consider fitness sharing with phenotypic sharing as in [7], where the distance between individuals is based on the number 
of ones: d(x, y) :=

∣

∣|x| − |y|
∣

∣. Note that d is a distance metric in phenotype space, that is, d(x, y) = 0 implies that x and y
have identical phenotypes, even though their genotypes might be very different. We use σ = n/2 (as in [7]) as this is the 
smallest distance that allows us to discriminate between the two branches. The parameter α is a constant, typically set to 1, 
that regulates the shape of the sharing function. We use the standard value α = 1 and obtain

f (x, P ) :=
f (x)

∑

y∈P

max
{

0,1 −
∣

∣|x|−|y|
∣

∣

n/2

}
.

For s := μ + λ, let P := {x1, x2, . . . , xs} denote the extended population of current search points and the new offspring, 
labelled such that

|x1| ≤ |x2| ≤ · · · ≤ |xs|.

Let

D j :=
s

∑

i=1

min
{

∣

∣|x j| − |xi |
∣

∣,
n

2

}

denote the sum of phenotypic distances of x j to all other members of the extended population. Individual distances are 
capped at the sharing distance n/2 so that the shared fitness can be written as

f (xi, P ) =
f (xi)

s − D i

n/2

=
f (xi)

s − 2D i/n
.

Since we are particularly interested in the multi-local perspective and aim at analysing the global exploration capabilities 
of the population-based EA, we call a run successful if it manages to find both optima of TwoMax (i.e., a population is 
reached that contains both 0n and 1n) efficiently. The expected number of generations for this to happen is called expected 
running time.

In the remainder we say that an event happens with overwhelming probability (w.o.p.) if it occurs with probability at least 
1 − 2−�(nε) for some constant ε > 0.

2.1. On the time complexity of implementing fitness sharing

Before analysing the optimisation time, we discuss the overhead from implementing fitness sharing in terms of the 
classical notion of computation time. To this end, we assume that fitness values f (x) are already known and accessible in 
time O (1).
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Computing sharing function values sh(x, y). In what follows we denote by T (n) the time to compute a sharing function 
sh(x, y). A naive implementation would give T (n) = �(n) for both phenotypic and genotypic distances. If the phenotype 
|x| is stored when computing f (x), the phenotypic sharing function can be computed in additional time O (1). Another 
approach that works for phenotypic and genotypic sharing is to update sh(x, y) according to the respective value of x’s 
parent and checking any bits flipped during mutation. Since in expectation only a constant number of bits have to be 
reconsidered, this leads to a constant expected time (and O (n) preprocessing time) for each value sh(x, y).

With both population-based and the conventional individual-based fitness sharing we need to compute or maintain 
sh(x, y) for all individuals x, y from the union of parents and offspring. These can be stored in a (μ + λ) × (μ + λ) matrix 
that takes time �((μ + λ)2T (n)) to compute initially, but can be updated in time �(λ(μ + λ)T (n)) in each generation as 
only distances between the λ offspring and the other μ + λ − 1 search points need to be computed.

Lemma 1. Let T (n) be the time to compute sh(x, y) for any two search points x, y. Then for a population P of μ parents and λ
offspring in a (μ+λ) EA a (μ + λ) × (μ + λ) matrix of all values sh(x, y) can be created in time �((μ + λ)2T (n)) and updated in 
each generation in time O (λ(μ + λ)T (n)).

Computing shared fitness values f (x, P ). In order to compute a shared fitness f (x, P ) from f (x), we need to compute 
∑

y∈P sh(x, y). This sum can be computed from scratch in time �(|P |), assuming that the sharing values are available 
from a table with O (1) access time. It can further be computed more efficiently by using incremental steps. If we have 
stored 

∑

y∈P ′ sh(x, y) for a population P ′ with O (1) access time, we can compute

∑

y∈P

sh(x, y) =
∑

y∈P ′

sh(x, y) −
∑

y∈P ′\P
sh(x, y) +

∑

y∈P\P ′

sh(x, y) (2)

in time O (1 + |P ′ \ P | + |P \ P ′|). This is O (1) if P and P ′ only differ in one element, and O (λ) if they differ in at most λ

elements.

Time complexity of individual-based fitness sharing. The conventional individual-based fitness sharing computes f (x, P ) =
f (x)/ 

∑

y∈P sh(x, y) for the same population P of μ parents and λ offspring. Using (2) and the arguments from the previous 
paragraph, given a matrix of all sh(x, y) values, all μ + λ values f (x, P ) values can be computed incrementally in time 
O (λ(μ + λ)). The preprocessing time at the start of the run is O ((μ + λ)2). Along with Lemma 1, we obtain the following 
time bounds.

Theorem 2. Let T (n) be the time to compute sh(x, y) for any two search points x, y. Then the overhead from individual-based fitness 
sharing in one generation of the (μ+λ) EA is O (λ(μ + λ)T (n)), with an additional preprocessing time at the start of the run of 
�((μ + λ)2T (n)).

Time complexity of population-based fitness sharing. Given a population P of μ parents and λ offspring, population-based 
fitness sharing looks for a subpopulation P ′ ⊆ P of size |P ′| = μ that maximises the shared fitness of the population, 
f (P ′) =

∑

x∈P ′ f (x, P ′). Note that there are 
(μ+λ

μ

)

possibilities to choose P ′ and we are not aware of an efficient algorithm 

that is faster than computing all 
(μ+λ

μ

)

shared population fitnesses.
We describe the most efficient way we could find, based on computing f (P ′) values incrementally. We iterate over 

all possible population of size μ that can be formed from μ + λ parents and offspring. Chase’s Twiddle algorithm [27]

outputs a sequence P1, P2, . . . of all such size-μ populations in time O  
(

(μ+λ
μ

)

)

, and this sequence has the property that 

two subsequent populations only differ in one element.

Now consider two populations P i, P i+1 , both of size μ, such that P i+1 differs from P i in just element: P i+1 =
(P i \ {z}) ∪ {w}. Further assume 

∑

y∈P i
sh(x, y) are stored for all x ∈ P i with O (1) access time. Then for all x ∈ P i ∪ P i+1 , 

by (2)

∑

y∈P i+1

sh(x, y) =
∑

y∈P i

sh(x, y) − sh(x, z) + sh(x, w)

can be computed in time O (1).

So if f (P i) and all 
∑

y∈P i
sh(x, y) are known, f (P i+1) can be computed as

f (P i+1) =
∑

x∈P i∪P i+1

f (x, P i+1) + f (w, P i+1)

=
∑

x∈P i∪P i+1

f (x)
∑

y∈P i+1
sh(x, y)

+ f (w, P i+1)
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where the elements in the last sum can be computed in total time O (μ) and f (w, P i+1) can be computed in time O (μ) as 
well.

So we can compute shared population fitness values for all size-μ populations and find a best one in time 

O  
(

λ(μ + λ)T (n) +
(μ+λ

μ

)

μ
)

per generation and initial preprocessing time O ((μ + λ)2T (n)).

Theorem 3. Let T (n) be the time to compute sh(x, y) for any two search points x, y. Population-based fitness sharing in a (μ+λ) EA 
can be implemented in such a way that the overhead from fitness sharing is time O ((μ + λ)2T (n)) for preprocessing and time 

O
(

λ(μ + λ)T (n) +
(μ+λ

μ

)

μ
)

per generation.

3. General results

Phenotypic fitness sharing, along with the shape of the TwoMax function, implies that an individual with a better fitness 
than that of any other individual in the population will always survive, as it has a better fitness than the individual with 
the closest number of ones, and it has a larger phenotypic distance to other individuals. This means that in a (μ+1) EA the 
current best fitness never decreases; this also holds if multiple individuals have the same current best fitness, as only one 
individual is removed by selection.

Lemma 4. Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs|. If f (x1) > f (x2) then f (x1, P ) > f (x2, P ). Likewise, if f (xs−1) < f (xs) then 
f (xs−1, P ) < f (xs, P ).

As a result, the (μ+1) EA never decreases its current best fitness and finds at least one optimum in expected time O (μn logn).

Proof. We prove the first statement. The second statement will follow by symmetry, swapping the meaning of zeros and 
ones. By definition of phenotypic fitness sharing,

f (x1, P ) =
f (x1)

μ + 1− D1
n/2

and f (x2, P ) =
f (x2)

μ + 1− D2
n/2

Since f (x1) > f (x2), it is sufficient to show that D1 > D2 to prove the statement. This follows by definition of D j since, 
according to how the individuals are labelled, for all 3 ≤ i ≤ μ + 1 if x1 shares fitness with xi then x2 also shares fitness 
with xi . It further holds that 

∣

∣|x1| − |xi |
∣

∣ >
∣

∣|x2| − |xi |
∣

∣ as |x1| < |x2| while 
∣

∣|x1| − |x1|
∣

∣ =
∣

∣|x2| − |x2|
∣

∣ = 0 and 
∣

∣|x2| − |x1|
∣

∣ =
∣

∣|x1| − |x2|
∣

∣.

The time bound follows from standard fitness level arguments: For an individual x with f (x) = i, n/2 ≤ i ≤ n − 1, 
we have either |x| = i (if |x| ≥ n/2) or |x| = n − i (if |x| ≤ n/2); see (1). We consider the case |x| = i: To improve the 
fitness it suffices to flip one of the remaining i 1-bits and leave all other bits unchanged. The probability for this event is 
(

i
1

)

·1/n ·(1 −1/n)n−1 ≥ i/(en). Since the probability of selecting x as parent is 1/μ, the probability for a fitness improvement 
during a generation is at least i/(eμn). Since the waiting times are geometrically distributed, we get an upper bound of

eμn

n−1
∑

i=n/2

1

i
= O (μn logn)

for the expected number of fitness evaluations to increase the fitness from n/2 to n. The case |x| = n − i is proven by 
considering the remaining i 0-bits in the very same way. �

The symmetry between f (x1, P ) vs. f (x2, P ) and f (xs−1, P ) vs. f (xs, P ) follows from swapping the meaning of zeros 
and ones. This also applies to further statements, where for simplicity we omit symmetric statements.

The following Main Lemma gives sufficient and necessary conditions on when the shared fitness of one individual is 
better than another.

Lemma 5 (Main Lemma). Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs| and fix 1 ≤ i ≤ s − 1. If f (xi) − f (xi+1) = |xi+1| − |xi | > 0 and 
|xs| − |x1| ≤ n/2,

f (xi+1, P ) ≥ f (xi, P ) ⇔ f (xi) · (2i − s) + D i ≥ s · n/2

⇔ f (xi+1) · (2i − s) + D i+1 ≥ s · n/2.

The same holds if all inequalities “≥” are replaced by strict inequalities “>”. Moreover, for i = s − 1

f (xs, P ) > f (xs−1, P ) ⇔ |xs| >
s−1
∑

i=1

|xi | −
n

2
· (s − 4).
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Proof. Note that |xs| − |x1| ≤ n/2 implies that all pairs of individuals do share fitness. We have

f (xi, P ) =
f (xi)

s − D i

n/2

.

Comparing D i and D i+1 , for the latter the distance to x1, . . . , xi−1 is higher by |xi+1| −|xi |, and the distance to xi+2, . . . , xs
is lower by |xi+1| − |xi |:

D i+1 = D i + (i − 1) · (|xi+1| − |xi |) + (s − i − 1) · (|xi | − |xi+1|)

= D i + (2i − s) · (|xi+1| − |xi |).

Using the shorthand h := |xi+1| − |xi |,

f (xi+1, P ) =
f (xi+1)

s − D i+1

n/2

=
f (xi) − h

s − D i+(2i−s)h
n/2

.

Now f (xi+1, P ) ≥ f (xi, P ) is equivalent to

f (xi) − h

s − D i+(2i−s)h
n/2

≥
f (xi)

s − D i

n/2

⇔
f (xi) − h

sn/2 − D i − (2i − s)h
≥

f (xi)

sn/2 − D i

⇔ ( f (xi) − h) · (sn/2 − D i) ≥ f (xi) · (sn/2 − D i − (2i − s)h)

⇔ f (xi) · (2i − s)h + h · D i ≥ h · sn/2

⇔ f (xi) · (2i − s) + D i ≥ sn/2.

In the last step we used h > 0. The same calculations hold if “≥” is replaced by “>” throughout. The second equivalence 
from the statement follows from

f (xi) · (2i − s) + D i = ( f (xi+1) + h) · (2i − s) + D i+1 − h(2i − s)

= f (xi+1) · (2i − s) + D i+1.

The second statement follows by simply applying the first statement:

f (xs, P ) > f (xs−1, P )

⇔ f (xs)(2(s − 1) − s) + Ds > s · (n/2)

⇔ f (xs)(s − 2) + (s − 1)|xs| −
s−1
∑

i=1

|xi| > s ·
n

2

⇔ (n − |xs|)(s − 2) + (s − 1)|xs| −
s−1
∑

i=1

|xi | > s ·
n

2

⇔ n(s − 2) + |xs| −
s−1
∑

i=1

|xi | > s ·
n

2

⇔ |xs| >
s−1
∑

i=1

|xi | −
n

2
· (s − 4). �

Lemma 5 implies the following structural insight: If the population is located on one branch and the shared fitness 
values of two neighbouring (in the number of 1-bits) search points compare favourably for the higher search point, then 
the shared fitness strictly increases for all search points further up the branch. More precisely, Lemma 5 gives a condition 
for the individual of lowest raw fitness (i.e., xs) to be accepted by selection. Concerning the (μ+1) EA, the condition clearly 
shows that for μ = 2 at least n/2 bits have to flip (i.e., |x3| − |x2| ≥ n/2). On the other hand, for μ ≥ 3 offspring with lower 
fitness values are accepted once the population is close enough to the optimum 0n . This threshold is further away from the 
optimum as the population size increases. If mutation was only allowed to flip one bit and μ = 3, then it is necessary that 
both x1 and x2 reach the local optimum before decreasing moves are accepted (i.e., |x1| + |x2| = 0). For μ = 4 the sum of 
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1-bits in the first 4 individuals can be up to |x1| + |x2| + |x3| + |x4| ≤ n/2 for any decreasing move to be accepted by the 
(μ+1) EA.

In general, the conditions from Lemma 5 are true for xs−1 and xs if |xs−1| < n/2 and two individuals are in the opti-
mum 0n as then

f (xs−1)(s − 2) + Ds−1 ≥ (n − |xs−1|)(s − 2) + (s − 2)|xs−1| −
s−2
∑

i=1

|xi |

≥ n(s − 2) − (s − 4)|xs−1|

> n(s − 2) − (s − 4)n/2 = sn/2.

Lemma 6. If P = {x1, . . . xs}, |x1| ≤ · · · ≤ |xs|, with |xs−1| < n/2 and |x1| = |x2| = 0 then f (xs−1, P )(s − 2) + Ds−1 > sn/2.

4. Population size µ = 2 is not enough

We first investigate the case of the (2+1) EA, showing that a population size of μ = 2 is not sufficient to guarantee 
finding both optima. The following lemma gives sufficient and necessary conditions for a single individual on a branch to 
survive.

Lemma 7. Let μ = 2 and P = {x1, x2, x3} with |x1| < n/2 < |x2| ≤ |x3| and |x3| − |x1| ≤ n/2. Let d1 := n/2 − |x1| and d2 :=
|x2| − n/2, then

f (x1, P ) > f (x2, P ) ⇔

d2 <

(

3

2
+

7d1

n + 6|x1|

)

· d1 +
(|x3| + |x2|)( f (x2) − f (x1))

n/2 + 3|x1|
.

For |x3| = |x2| the statement implies that x1 survives if the distance from n/2 to x2 is less than around 3/2 times the 
distance from n/2 to x1 . The condition for survival sharpens when |x3| > |x2|; however, as x2 and x3 are likely to result 
from a mutation of one another, |x3| − |x2| is bounded from above by the number of bits flipped in that mutation.

Proof of Lemma 7. We use the shorthand xi for |xi |. The claim follows from Lemma 4 if f (x1) > f (x2), hence we assume 
in the following that f (x1) ≤ f (x2). Then

f (x2, P ) < f (x1, P )

⇔
x2

3− 2D2/n
<

n − x1

3 − 2D1/n

⇔ x2(3n/2 − D1) < (n − x1)(3n/2 − D2)

⇔ x2(3n/2 − (x2 − x1 + x3 − x1)) < (n − x1)(3n/2 − (x2 − x1 + x3 − x2))

⇔ x2(3n/2 + 2x1 − x2 − x3) < (n − x1)(3n/2 + x1 − x3)

⇔ x2(3n/2 + 2x1 − x2) < (n − x1)(3n/2 + x1) − x3(n − x1 − x2)

⇔ x2(n/2 + 3x1) < (n − x1)(3n/2 + x1) − (x3 + x2)(n − x1 − x2)

⇔ x2(n/2 + 3x1) < (n − x1)(3n/2 + x1) + (x3 + x2)( f (x2) − f (x1))

and this is equivalent to

x2 <
(n − x1)(3n/2 + x1)

n/2+ 3x1
+

(x3 + x2)( f (x2) − f (x1))

n/2 + 3x1
.

The right-hand side terms can be simplified as follows.

(n − x1)(3n/2 + x1)

n/2+ 3x1
=

3n2 − x1n − 2x21
n + 6x1

=
n

2
+

5n2/2− 4x1n − 2x21
n + 6x1

=
n

2
+

6n(n/2 − x1) − 2(n/2 − x1)
2

n + 6x1
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=
n

2
+

(n

2
− x1

)

·
5n + 2x1

n + 6x1

=
n

2
+

(n

2
− x1

)

·
(

3

2
+

7(n/2 − x1)

n + 6x1

)

.

Together, f (x1, P ) > f (x2, P ) is equivalent to

x2 −
n

2
<

(

3

2
+

7(n/2 − x1)

n + 6x1

)

·
(n

2
− x1

)

+
(x3 + x2)( f (x2) − f (x1))

n/2 + 3x1
. �

The following theorem states that with a probability greater than 1/2, the (2+1) EA will end up with both individuals in 
the same optimum, leading to an exponential running time from there. We remark that two independent runs of a (1+1) EA 
as well as a (2+1) EA with deterministic crowding are more efficient as they both find both optima with probability exactly 
1/2, leading to expected runtimes of O (n logn) [7].

Theorem 8. The (2+1) EA with fitness sharing with probability 1/2 + �(1) will reach a population with both members in the same 
optimum, and then the expected time for finding both optima from there is �(nn/2).

Proof. Using that 2−n
(

n
i

)

≤ 2−n
(

n
n/2

)

= �(1/
√
n) for any 0 ≤ i ≤ n, it is easy to show that with probability 1 − O (n1/3/

√
n) =

1 − o(1) for both initial search points x1, x2 we have |x1|, |x2| /∈ [n/2 − n1/3, n/2 + n1/3]. By symmetry, with probability 
1/2 − o(1), x1 and x2 are on the same branch. Since at least n1/3 bits would have to be flipped in one mutation, the 
probability of a mutation jumping from one branch to the other is then at most 1/(n1/3!) = 2−�(n1/3 log n) , and the probability 
of this happening in expected polynomial time is still of the same order. This implies that w.o.p. no individuals on the 
opposite branch will be created in polynomial time as long as no offspring of decreasing fitness are ever accepted on the 
current branch. In the following we prove by contradiction that such offspring are always rejected.

Assuming both search points and the offspring are all on the same branch, w.l.o.g. the left branch, and labelling them by 
x1, x2, x3 with |x1| ≤ |x2| ≤ |x3|, by Lemma 5

f (x3, P ) ≥ f (x2, P ) ⇔ f (x2) + D2 ≥ 3 ·
n

2
(3)

where D2 = (|x2| − |x1|) + (|x3| − |x2|) = |x3| − |x1|. Then f (x2) + D2 = n − |x2| + |x3| − |x1| ≤ n + |x3| − |x2|. This implies 
that (3) only holds if |x3| − |x2| ≥ n/2, which is a contradiction since there are no points on the left branch differing in 
more than n/2 one-bits. Hence, the claim that no offspring on the left branch of worse fitness than x2 are ever accepted, is 
proved. By Lemma 4, 0n will be reached in expected time O (n logn). In a further expected 2 · (1 −1/n)n = O (1) generations, 
the extended population will contain a clone of 0n , and from then on any offspring x3 with 0 < |x3| ≤ n/2 will be rejected. 
Then the expected time to create an individual on the other branch is �(nn/2) since at least n/2 bits need to flip.

The claimed probability 1/2 + �(1) follows from considering the following additional event, which is disjoint from the 
above. The algorithm also fails if, using the notation from Lemma 7, 3

√
n/4 ≤ d2 ≤

√
n (probability at least 0.02) and √

n/3 ≥ d1 ≥ 0 (probability at least 0.21). If then in the first generation a clone of x2 is generated (probability at least 
1/2 · (1 − 1/n)n > 1/8), we have

(

3

2
+

7d1

n + 6|x1|

)

· d1 +
(x3 + x2)( f (x2) − f (x1))

n/2 + 3x1
≤

√
n

3
·
3

2
+ O (1) <

3
√
n

4
≤ d2

if n is large enough. Now Lemma 7 implies f (x1, P ) < f (x2, P ) = f (x3, P ), hence, x1 will be removed. Then we are in the 
same situation as when initialising two individuals on the same branch. �

However, there is still a constant probability that the (2+1) EA finds both optima in polynomial expected time. This 
holds if the EA is initialised with its two search points on different branches, and if these two search points maintain 
similar fitness values throughout the run.

Theorem 9. The (2+1) EA with fitness sharing with probability �(1) will find both optima in time O (n logn).

Since the proof of Theorem 9 is quite long, we first provide a sketch of the proof. Let x1, x2 be the two initial search 
points and d1 := n/2 −|x1| and d2 := |x2| −n/2. With probability �(1), x1 and x2 are on opposite branches and have similar 
fitness: (3/4)

√
n ≤ d1, d2 ≤

√
n.

Now, assume w.l.o.g. that when a new offspring is created and the population contains x1, x2, x3 in order of their num-

bers of ones, that x2 and x3 are on the same branch. If f (x1) > f (x2), Lemma 4 implies that f (x1, P ) > f (x2, P ) and 
f (x2, P ) < f (x3, P ) if |x3| > |x2|. Then x1 is guaranteed to survive.
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Now assume f (x1) ≤ f (x2). It is easy to derive from Lemma 7 and further arguments using |x3| − |x1| > n/2 that 
f (x1, P ) > f (x2, P ) follows if d1 ≥ (2/3) · d2 . Intuitively, this means that if x1 and x2 have a similar fitness—d1 and d2
being within a factor of 2/3—then x1 is guaranteed to survive.

We then define a potential function that indicates a distance to a population where the lower-fitness individual is at risk 
of dying. For a current population P = {x1, x2} define

g(P ) := min{d1,d2} − (2/3) ·max{d1,d2}.

This ensures that g(P ) ≥ 0 ⇒ f (x1, P ) > f (x2, P ). The potential of the initial population P0 is comfortably large: g(P0) ≥√
n/12. If d1 ≤ d2 −k for some k ∈ N, the potential increases by k if d1 increases by k. However, the potential only decreases 

by (2/3)k if d2 increases by k. Moreover, increasing d1 is easier than increasing d2 as the former contains more “incorrect” 
bits (cf. Lemma 13 in [28]). This shows that, whenever the potential changes, it increases in expectation by 1/3.

A straightforward application of the simplified drift theorem [29,30] shows that with overwhelming probability the 
potential never decreases below 

√
n/24 in 2�(

√
n) steps. So, with overwhelming probability x1 survives until both optima 

are reached.
These arguments are made rigorous in the following proof.

Proof of Theorem 9. Let x1, x2 be the two initial search points and define d1 := n/2 − |x1| and d2 := |x2| − n/2. Assume for 
simplicity that 

√
n is a multiple of 4. We claim that with probability �(1) we have

3

4

√
n ≤ d1,d2 ≤

√
n, (4)

i.e., x1 and x2 are on opposite branches and have similar fitness. The probability of these inequalities holding for x1 is

2−n

√
n

∑

d=3/4·
√
n

(

n

n/2 − d

)

≥
√
n

4 · 2n
·
(

n

n/2 −
√
n

)

= �(1)

where the last step follows from bounding the binomial coefficient from below by �(2n/
√
n) [31, Lemma 8]. By symmetry, 

the same holds for d2 and hence the probability of (4) is �(1) · �(1) = �(1).

Now, assume w.l.o.g. that when a new offspring is created and the population contains x1, x2, x3 in order of their num-

bers of ones, that x2 and x3 are on the same branch. The case where x1 and x2 are on the same branch is symmetric.

If f (x1) > f (x2), Lemma 4 implies that f (x1, P ) > f (x2, P ) and f (x2, P ) < f (x3, P ) if |x3| > |x2|. Then x1 is guaranteed 
to survive.

In the following we assume f (x1) ≤ f (x2). The probability of flipping at least 
√
n/6 bits in one mutation is at most 

1/(
√
n/(6))! = 2−�(

√
n log n) and the probability that this happens in expected polynomial time is still of the same order. So 

in the following we work under the assumption that such a mutation does not happen.
For |x3| − |x1| ≤ n/2 we know from Lemma 7 that f (x1, P ) > f (x2, P ) follows if

d2 <

(

3

2
+

7d1

n + 6|x1|

)

· d1 +
(|x3| + |x2|)( f (x2) − f (x1))

n/2 + 3|x1|

which is implied by

d2 ≤
3

2
· d1

or, equivalently,

d1 ≥
2

3
· d2. (5)

The same holds for |x3| − |x1| > n/2 as then d1 + d2 +
√
n/6 > n/2, along with d1 ≥ 2

3
· d2 , implies

d1 =
2

5
· d1 +

3

5
· d1 ≥

2

5
· d1 +

2

5
· d2 >

2

5
·
(

n

2
−

√
n

6

)

,

hence f (x1) = n/2 + d1 = 7/10 · n − O (
√
n). The shared fitness of x1 is thus, using D1 = n/2 + |x2| − |x1| ≥ n −

√
n/6,

f (x1, P ) =
f (x1)

3− n−
√
n/6

n/2

=
f (x1)

1+ 1
3
√
n

=
7

10
· n − O (

√
n).

The shared fitness of x2 is smaller, for n large enough, even in the best case where x2 does not share with x1 and |x3| = n:
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f (x2, P ) ≤
f (x2)

3− n/2+n−|x2|
n/2

=
f (x2)

2− n−|x2|
n/2

=
n

2
< f (x1, P ).

This establishes (5) as sufficient condition for the survival of x1 , regardless of whether |x3| − |x1| ≤ n/2.

For a current population P = {x1, x2} define a potential

g(P ) := min{d1,d2} −
2

3
·max{d1,d2}. (6)

Intuitively, the potential indicates a distance to a population where the lower-fitness individual is at risk of dying. For 
d1 ≤ d2 we have

g(P ) ≥ 0 ⇔ d1 ≥
2

3
· d2 ⇒ f (x1, P ) > f (x2, P ),

using Lemma 7. Now we show that the potential with high probability never decreases to 0, which implies that x1 survives 
until both optima are reached eventually.

For the initial population P0 we have g(P0) ≥ (3/4)
√
n − (2/3)

√
n ≥

√
n/12.

Assume again w.l.o.g. that d1 ≤ d2 . We claim that while g(P ) ≤
√
n/12, there is a positive drift towards higher potential 

values. Note that g(P ) ≤
√
n/12 implies

d2 − d1 ≥
d2

3
−

√
n

12
≥

3
√
n

12
−

√
n

12
=

√
n

6
.

As we do not allow jumps of this length, if d1 < d2 then the same will hold for the distances in the next generation. In 
other words, the roles of d1 and d2 in the min and max terms of (6) do not change.

If Pt is the current population at generation t , and P t+1 = {x′
1, x

′
2} then

E (g(Pt+1) − g(Pt) | Pt)

=
∞
∑

d=1

d · Prob
(

|x′
1| = |x1| − d

)

−
∞
∑

d=1

2d

3
· Prob

(

|x′
2| = |x2| + d

)

.

Finding an improvement by d is easier for x1 than for x2 as the former contains more ‘incorrect’ bits. Formally, Lemma 13 
in [28] along with the symmetry of TwoMax implies that

Prob
(

|x′
1| = |x1| − d

)

≥ Prob
(

|x′
2| = |x2| + d

)

.

So we get

E (g(Pt+1) − g(Pt) | Pt)

≥
∞
∑

d=1

d · Prob
(

|x′
1| = |x1| − d

)

−
∞
∑

d=1

2d

3
· Prob

(

|x′
1| = |x1| − d

)

=
1

3
· Prob

(

|x′
1| < |x1|

)

≥
(1/3) · |x1|

2en

as the probability of selecting x1 as parent and increasing its number of zeros is at least |x1|/(2en). Now, if |x1| ≤ n/6 then 
d1 ≥ (2/3) · n/2 and (5) is always true. Hence, we can assume |x1| ≥ n/6 and get

E (g(Pt+1) − g(Pt) | Pt) ≥
1

36e
.

Using the simplified drift theorem [29,30], we see that for a :=
√
n/24 and b :=

√
n/12 the first condition is satisfied for 

ε := 1/6. The second condition on jump lengths follows by standard arguments: for all d ∈ N

Prob
(

|x′
2| = |x2| + d

)

≤ Prob
(

|x′
1| = |x1| − d

)

≤
1

d!
≤

2

2d
.

This shows that with probability 2−�(
√
n) the potential never decreases below 

√
n/24 in 2�(

√
n) steps.

If individuals on both branches survive, by standard arguments (cf. Theorem 4 in [7]) both optima will be reached in 
expected time cn logn for some constant c > 0. By Markov’s inequality, the probability of not having done so after c′ · cn logn
generations is at most 1/c′ . Choosing c′ large enough and taking into account all failure probabilities, the (2+1) EA finds 
both optima in time O (n logn) with probability �(1). �
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5. Population size µ ≥ 3 always finds both optima

A population of size μ = 2 may fail, but we show that a (μ+1) EA with fitness sharing and μ ≥ 3 always finds both 
optima in expected time O (μn logn).

The following lemma is an extension of the Main Lemma (Lemma 5) to the case where an individual xμ+1 is on the 
other branch compared to the rest of the population. In particular, a stronger condition is given such that xμ+1 will survive 
selection when f (xμ) > f (xμ+1). The proof is similar to the one for the Main Lemma.

Lemma 10. Let |xμ| < n/2, |xμ+1| > n/2 and f (xμ) > f (xμ+1). Also let dμ := n/2 − |xμ| and dμ+1 := |xμ+1| − n/2. Then

f (xμ) · (μ − 1) ·
dμ

dμ − dμ+1
+ Dμ ≥ (μ + 1) ·

n

2
⇒ f (xμ+1, P ) ≥ f (xμ, P ).

Proof. By considering that, for all 1 ≤ i ≤ μ − 1, the summands of Dμ+1 are bounded as

min(
∣

∣|xμ+1| − |xi |
∣

∣,n/2) ≥ min(
∣

∣n/2 − |xi |
∣

∣,n/2)

= n/2 − |xi |

= dμ + |xμ| − |xi|

= dμ +min(
∣

∣|xμ| − |xi|
∣

∣,n/2)

we bound Dμ+1 as follows:

Dμ+1 ≥ Dμ + (μ − 1) · dμ

Hence, given that f (xμ+1) = f (xμ) − dμ + dμ+1 , we get

f (xμ+1, P ) =
f (xμ+1)

μ + 1− Dμ+1

n/2

≥
f (xμ) − dμ + dμ+1

(μ + 1) − Dμ+(μ−1)(|xμ+1|−|xμ|)−(μ−1)dμ+1

n/2

Now f (xμ+1, P ) ≥ f (xμ, P ) is implied by

f (xμ) − dμ + dμ+1

(μ + 1) − Dμ+(μ−1)(|xμ+1|−|xμ|)−(μ−1)dμ+1

n/2

≥
f (xμ)

μ + 1− Dμ

n/2

.

This is equivalent to

(

f (xμ) − dμ + dμ+1

)(

(n/2)(μ + 1) − Dμ

)

≥ f (xμ)
(

(n/2)(μ + 1) − Dμ − (μ − 1)(|xμ+1| − |xμ|) + (μ − 1)dμ+1

)

⇔ f (xμ)(μ − 1)((|xμ+1| − |xμ|) − dμ+1) ≥ (dμ − dμ+1)
(

(μ + 1)(n/2) − Dμ

)

⇔ f (xμ)(μ − 1)dμ + (dμ − dμ+1)Dμ ≥ (dμ − dμ+1)(μ + 1)(n/2).

In the last equivalence we used that |xμ+1| − |xμ| = dμ+1 + dμ .

Since dμ > dμ+1 , the inequality is equivalent to

f (xμ)(μ − 1)
dμ

dμ − dμ+1
+ Dμ ≥

(μ + 1) · n
2

. �

The following lemma states that if there is a bounded number r of individuals in one optimum then they will have 
better shared fitness than the next sub-optimal individual. This implies that r such individuals survive in the (μ+1) EA; the 
same holds if there are more than r such individuals in the extended population as only one individual is being removed.

Lemma 11. Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs|. Assume |x1| = · · · = |xr | = 0 < |xr+1| and |xs| < n. If r ≤ 2 or if both |xr+1| ≥
n/2 and r ≤ s/2, then for all 1 ≤ i ≤ r we have f (x1, P ) = · · · = f (xr, P ) > f (xr+1, P ). In particular, if the current population of the 
(μ+1) EA contains at least two individuals 0n , two such individuals always survive.

Proof. As f (x1, P ) = · · · = f (xr, P ), we only need to show the claim for i = 1.

If |xr+1| < n/2, we assume pessimistically that xr+1 shares fitness with the same individuals as x1, . . . , xr , namely 
x1, . . . , xℓ for some ℓ ≥ r + 1. Then we have
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D1 = |xr+1| +
ℓ

∑

j=r+2

(|x j| − |x1|) + (s − ℓ) ·
n

2
(7)

hence

Dr+1 = r|xr+1| +
ℓ

∑

j=r+2

(|x j| − |xr+1|) + (s − ℓ) ·
n

2

= D1 + |xr+1|(2r − ℓ).

Now the claim follows from

n(sn/2 − Dr+1) > (n − |xr+1|)(sn/2 − D1)

⇐ n(sn/2 − D1 − |xr+1|(2r − ℓ)) > (n − |xr+1|)(sn/2 − D1)

⇔ n|xr+1|(2r − ℓ) < |xr+1|(sn/2 − D1)

⇔ n(2r − ℓ) + D1 < sn/2.

From (7) we see that D1 − nℓ is largest for ℓ = r + 1, in which case

n(2r − ℓ) + D1 = n(r − 1) + |xr+1| + (s − r − 1) · n/2

< nr/2− n + sn/2 ≤ sn/2

if r ≤ 2. If |xr+1| ≥ n/2 we have f (x1, P ) = n/r and

Dr+1 ≤ rn/2 + (s − r − 1) · (n − |xr+1|),

leading to

f (xr+1, P ) ≤
xr+1

s − r − (s − r − 1) · (n − |xr+1|) · 2/n
.

The above term is strictly increasing with xr+1 , hence along with xr+1 < n we have

f (xr+1, P ) <
n

s − r
≤

n

r
= f (x1, P ). �

With these lemmas we are ready to prove the main result of this section.

Theorem 12. Let μ ≥ 3. The (μ + 1) EA with fitness sharing will find both optima of TwoMax with probability 1 in expected time 
O (μn logn).

Proof. By Lemma 4, in expected time O (μn logn) one of the two optima is found. W.l.o.g. we assume the 0n optimum is 
found. In expected time O (μ) a clone of 0n is created (i.e., |x2| = 0) and by Lemma 11 x1 and x2 (or clones thereof) will 
survive for the rest of the run.

We show that then the individual with the largest number of ones, xμ+1 (or a clone thereof), will always survive. 
If |xμ| = |xμ+1| then xμ+1 or a clone survive. If n/2 ≤ |xμ| < |xμ+1| then f (xμ+1) > f (xμ) and the claim follows from 
Lemma 4. If |xμ| < n/2 then Lemma 6 implies f (xs−1)(s − 2) + Ds−1 > sn/2 (where s = μ + 1). If |xμ+1| ≤ n/2, by the Main 
Lemma this condition is equivalent to f (xμ+1, P ) > f (xμ, P ). Otherwise, the same conclusion follows from Lemma 10 as 
dμ/(dμ − dμ+1) > 1. So, in all cases xμ+1 survives.

The expected time for xμ+1 reaching 1n is again O (μn logn) and can be proven in the same way we proved the time 
bound in Lemma 4. �

Our analysis has revealed two very different behaviours. It is possible that the whole population climbs up one branch. 
But once a sufficiently large overall fitness value has been obtained – at the latest when two individuals have found an 
optimum – then the population expands towards lower fitness values as then the individuals with the smallest and the 
largest numbers of 1-bits always survive.
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6. Too large offspring population sizes

Fitness sharing works for the (μ+1) EA, but for larger offspring populations it can have undesirable effects: if a cluster 
of individuals creates too many offspring, sharing decreases the shared fitness of all individuals in the cluster, and the 
cluster may go extinct. We consider this problem of overpopulation for μ = 2 and λ ≥ μ with λ = O (1). In this setting we 
cannot guarantee convergence to populations with both optima any more, i.e., depending on λ we can lose one or even 
both optima.

Assume that all individuals are in the same optimum. With probability �(1), we create λ − 1 copies and one point with 
distance 1 to the optimum. Then, f (x1, P ) = . . . = f (xλ+1, P ) = n/((λ +2) −2/n) and f (xλ+2, P ) = (n −1)/((λ +2) − (λ +1) ·
2/n). We see that f (xi, P ) < f (xλ+2, P ) for all i ∈ {1, . . . , λ +1} and λ ≥ 2. Thus, selection picks xλ+2 and one of the optimal 
points.

Following the same argumentation, we lose both optima if λ ≥ 6: If mutation creates λ − 2 copies and two points with 
distance 1 to the optimum (also with probability �(1)), we have

f (x1, P ) = . . . = f (xλ, P ) =
n

λ + 2− 2 · 2/n

<
n − 1

λ + 2− λ · 2/n
= f (xλ+1, P ) = f (xλ+2, P )

for λ ≥ 6.

In exactly the same way we show that both optima are lost with probability �(1) if λ ≥ 6 even if they are on different 
branches, i.e., we create ⌊λ/2⌋ offspring on the left branch and ⌈λ/2⌉ on the right branch where exactly one offspring on 
each branch has distance 1 to the optimum and the remaining offspring are copies.

Offspring populations can also decrease diversity in the following way.

Lemma 13. With probability 1 − o(1), the (2 + λ) EA with fitness sharing, λ ≥ 2 and λ = O (1) will, at some point of time before an 
optimum is reached, obtain a population with both members on the same branch.

The following proof mainly uses that in a single iteration with probability �(1) only copies of x1 and x2 are created. We 
then show that if f (x1) �= f (x2) and if we have a surplus of offspring on the branch with smaller fitness (also probability 
�(1)), this branch goes extinct. If f (x1) = f (x2) in iteration t we have f (x1) �= f (x2) in iteration t +1 with probability �(1)

and if f (x1) �= f (x2) in iteration t we still have f (x1) �= f (x2) in iteration t +1 with probability �(1). Thus, with probability 
1 − 2−�(n) there are �(n) iterations with f (x1) �= f (x2) before an optimum is reached and consequently, with probability 
1 − 2−�(n) , one branch will take over the whole population before an optimum is reached.

Proof. Let x1, x2 be the individuals of the current population. As in Theorem 8 with probability 1 − o(1) we have 
|x1|, |x2| /∈ [n/2 − n1/3, n/2 + n1/3] after initialisation and thus, the probability to create an offspring on the other branch is 
2−�(n1/3 logn) = o(1).

Furthermore, with probability 1 − 2−�(n) , f (x1), f (x2) ≤ (1/2 + ε)n, 0 < ε < 1/2 constant, holds for the first �(n) many 
iterations: After initialisation we have f (x1), f (x2) ≤ (1/2 + ε′)n, 0 < ε′ < ε a sufficiently small constant, with probability 
1 − 2−�(n) . In order to gain a progress of (ε − ε′) · n at least (ε − ε′) · n many bits have to flip. Due to Chernoff bounds, the 
probability to achieve this in o(n) many iterations is 2−�(n) .

Assuming that we have two individuals on different branches after initialisation (otherwise there is nothing to prove), 
we now show that with probability 1 − 2−�(n) we will lose the individual on one of the two branches before an optimum 
is reached.

We use that with probability �(1) only copies of x1 and x2 are created in an iteration. Thus, all individuals on the same 
branch have the same fitness value. Let xL, xR denote an individual on the left and right branch, and δL , δR the number of 
offspring on the left and right branch, respectively. Let di, j = min{n/2, 

∣

∣|xi | − |x j |
∣

∣}. We observe that dL,R is the same for all 
pairs of xL and xR and dL,L = dR,R = 0. Moreover, D L = δR · dL,R and DR = δL · dL,R .

We observe that δL = δR = λ/2 holds with probability �(1) if λ is even. If λ is odd, we have δL = ⌊λ/2⌋ and δR = ⌈λ/2⌉
with probability �(1).

We first consider the case f (xL) �= f (xR), w.l.o.g. f (xL) > f (xR). If λ is even, the above observation implies D L = DR and 
thus, f (xL, P ) > f (xR , P ). For odd λ we conclude D L > DR and thus, f (xL, P ) > f (xR , P ). Hence, only individuals on the left 
branch survive with probability �(1) since μ ≤ δL + 1.

Now consider f (x1) = f (x2) = k. For odd λ we use exactly the same argument as above: the branch with ⌈λ/2⌉ offspring 
has lower shared fitness and thus, only individuals on the other (i.e., the left) branch survive. For even λ we need to be 
more careful since from the above argumentation we can only conclude f (xL, P ) = f (xR , P ) and we pessimistically assume 
that we select individuals on two different branches in this case. However, we see that a successful mutation occurs with 
probability at least 

(

n−k
1

)

· (1/n) · (1 − 1/n)n−1 ≥ (n − k)/(en). This is �(1) as long as k = �(n). Thus, with probability �(1)

we create λ − 1 copies and one improved offspring. Since the offspring has larger shared fitness, we have f (xL) �= f (xR) in 
the next iteration.
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Table 1

Success rates as percentages of the (μ+λ) EA with phenotypic fitness sharing on TwoMax in 1000 runs, 
stopped after 100000 generations, and once both optima were found.

μ \ λ 1 2 3 4 5 6 7 8 9 10 11 12

2 23 0 0 0 0 0 0 0 0 0 0 0

3 100 27.7 0 0 0 0 0 0 0 0 0 0

4 100 60.2 32 0 0 0 0 0 0 0 0 0

5 100 79.3 64.4 2.5 0 0 0 0 0 0 0 0

6 100 100 82.4 68.7 26.1 0 0 0 0 0 0 0

7 100 100 93.6 86.1 76.8 15.6 0 0 0 0 0 0

8 100 100 100 92.6 87.4 81.6 6.4 0 0 0 0 0

9 100 100 100 99.6 95.7 89.4 82.8 3.9 0 0 0 0

10 100 100 100 100 97.2 95.7 91.8 84.3 3.2 0 0 0

11 100 100 100 100 100 98 94.5 92.9 80.5 2 0.1 0

12 100 100 100 100 100 99 97.8 97.2 94.5 73.8 2.9 0

In summary: If f (x1) = f (x2) in iteration t we have f (x1) �= f (x2) in iteration t + 1 with probability �(1). If f (x1) �=
f (x2) in iteration t we still have f (x1) �= f (x2) in iteration t +1 with probability �(1) (since it suffices to only create copies 
of x1 and x2). We conclude that with probability 1 −2−�(n) there are �(n) iterations with f (x1) �= f (x2) before an optimum 
is reached. Since in this situation with probability �(1) one branch will take over the whole population, this happens with 
probability 1 − 2−�(n) before an optimum is reached. �

In order to show that the (2 +λ) EA also reaches a population with both members in the same optimum we additionally 
need to show that the population will not be stuck somewhere on the branch and that individuals cannot traverse back to 
the other branch. We consider this for the special case of λ = 2.

Theorem 14. With probability 1 − o(1), the (2 + 2) EA with fitness sharing will, at some point of time, reach a population with both 
members in the same optimum. The expected time for finding both optima from there is �

(

nn/2
)

.

Proof. Assume that both individuals are on the same branch. This happens with probability 1 − o(1) before an optimum is 
reached (see Lemma 13).

The extended population of the (2 + 2) EA has 4 individuals. We apply Lemma 5 and see that f (x3, P ) ≥ f (x2, P ) ⇔
D2 ≥ 2n where D2 = d2,1 + d2,3 + d2,4 since d2,2 = 0. Since all individuals are on the same branch di, j ≤ n/2. This implies 
that D2 ≤ 3n/2 and thus, f (x3, P ) < f (x2, P ).

We first show that a current best individual is never lost. If there is a single best individual in the population, this will 
never be lost since f (x1, P ) > f (x2, P ) > f (x3, P ) (Lemma 4 and 5 as discussed above). If there are 3 or 4 best individuals, 
we are guaranteed to select at least one of them for the next generation since μ = 2. In case there are 2 best individuals, 
we again use the above argumentation to prove that f (x3, P ) < f (x2, P ). Thus, we are guaranteed to select at least one of 
the two best individuals for the next generation.

Since due to the above argumentation we never lose a single best individual, a single improved offspring of a best 
individual will always be accepted. Thus, we will reach a population with both members in the same optimum.

The claim about the expected time to find both optima follows as in Theorem 8. �

7. Experiments for phenotypic and genotypic fitness sharing

We first present a set of experiments, shown in Table 1, where we ran (μ+λ) EAs for n = 100 bits and varying values 
of 2 ≤ μ ≤ 12 and 1 ≤ λ ≤ 12. We recorded the success rate as the number of runs where both optima were found within 
100000 generations. The table shows a clear distinction between efficient and inefficient behaviour: for λ < ⌊μ/2⌋ runs 
were always successful, whereas runs for λ ≥ μ always failed (except for one run with λ = μ = 11).

We further ran experiments to test the performance of genotypic fitness sharing, that is, repeating the above experiments 
but using Hamming distance as distance measure in the (μ+λ) EAs. Table 2 shows the resulting success rates with sharing 
radius σ = n/2 to match the setting from Table 1. Apart from the (2+1) EA, (3+1) EA, and (4+1) EA, all algorithms were 
unable to find both peaks. The reason could be that the sharing radius needs to be chosen differently. With σ = n/2, since 
two uniform random individuals will have Hamming distance n/2 in expectation, this means that any two initial individuals 
will either not share fitness, or share so little that the effect of fitness sharing is negligible.

Table 3 shows success rates when repeating the experiment with a sharing radius of σ = n, where all individuals always 
share fitness. One can see that the success rates show a similar pattern compared to Table 1 for phenotypic sharing, albeit 
numbers are generally smaller. For the (μ+1) EA success rates seem to converge to 1 with increasing μ, but a few runs 
still fail. We suspect that this is due to few runs that are initialised with all individuals on one branch.

To test this, we also ran experiments for a modified, favourable initialisation where we drew μ individuals independently 
and uniformly at random, and then checked whether the population contains at least one individual with n/2 +

√
n ones 

and at least one individual with at least n/2 +
√
n zeros. If this was not the case, the population was discarded and μ new 
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Table 2

Success rates as percentages of the (μ+λ) EA with genotypic fitness sharing and σ = n/2 on 
TwoMax in 100 runs, stopped after 100000 generations, and once both optima were found.

μ \ λ 1 2 3 4 5 6 7 8 9 10 11 12

2 56 0 0 0 0 0 0 0 0 0 0 0

3 76 0 0 0 0 0 0 0 0 0 0 0

4 5 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0

Table 3

Success rates as percentages of the (μ+λ) EA with genotypic fitness sharing and σ = n on TwoMax

in 100 runs, stopped after 100000 generations, and once both optima were found.

μ \ λ 1 2 3 4 5 6 7 8 9 10 11 12

2 48 0 0 0 0 0 0 0 0 0 0 0

3 71 38 0 0 0 0 0 0 0 0 0 0

4 81 50 28 0 0 0 0 0 0 0 0 0

5 90 65 48 21 0 0 0 0 0 0 0 0

6 95 67 64 47 18 0 0 0 0 0 0 0

7 94 78 63 53 34 21 0 0 0 0 0 0

8 97 83 69 63 60 40 20 0 0 0 0 0

9 95 86 80 79 63 44 41 20 1 0 0 0

10 100 92 77 69 52 54 49 40 19 5 0 0

11 98 93 88 83 73 68 60 49 31 12 3 0

12 99 98 97 87 85 64 62 64 45 38 18 5

Table 4

Success rates as percentages of the (μ+λ) EA with genotypic fitness sharing and σ = n on TwoMax

in 100 runs, stopped after 100000 generations, and once both optima were found. Here all runs 
were initialised using rejection sampling that the initial population contains at least one individual 
with at least n/2 +

√
n ones and at least one individual with at least n/2 +

√
n zeros.

μ \ λ 1 2 3 4 5 6 7 8 9 10 11 12

2 100 0 0 0 0 0 0 0 0 0 0 0

3 100 89 0 0 0 0 0 0 0 0 0 0

4 100 99 67 0 0 0 0 0 0 0 0 0

5 100 96 85 55 0 0 0 0 0 0 0 0

6 100 100 94 78 43 0 0 0 0 0 0 0

7 100 100 98 89 73 35 0 0 0 0 0 0

8 100 100 99 92 83 63 31 0 0 0 0 0

9 100 100 100 99 89 8 54 24 2 0 0 0

10 100 100 100 99 94 79 68 57 35 0 0 0

11 100 100 100 99 96 86 8 67 46 27 3 0

12 100 100 100 100 98 93 88 75 66 48 41 2

individuals were drawn independently and uniformly at random. The term n/2 +
√
n was chosen such that two individuals 

are firmly placed on their respective branches, from which mutations to the other branch are unlikely. We note without 
giving a formal proof that the probability of having at least n/2 +

√
n ones is bounded from below by a positive constant 

c > 0 and hence the probability of initialising a population as described is at least 1 −2(1 −c)λ = 1 −2−�(λ) . This means that 
for λ not too small, only a small fraction of initial populations is discarded. Table 4 shows that when unlucky initialisations 
are excluded, success rates of 100% are achieved for small λ.

8. Conclusions

This work sheds light on advantages and disadvantages of fitness sharing in multimodal optimisation, particularly in 
the context of a multi-local perspective where we are interested in locating different global or local optima. To allow for 
easy comparison with previous work, we used a common analytical framework (i.e., (μ+λ) EA) and example problem (i.e., 
TwoMax).

Our main contribution is the rigorous theoretical analysis of the conventional fitness sharing mechanism which selects 
individuals based on their shared fitness (rather than performing selection on a level of populations as done in previous 
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theoretical work) when phenotypic sharing is used. We concentrated on the influence of the population sizes μ and λ as 
crucial parameters. Regarding the parent population, our analyses show that a population size μ of at least 3 is required 
to guarantee finding both optima of TwoMax in polynomial time. We also prove that large offspring population sizes λ can 
cause overpopulation which results in the extinction of whole clusters of search points. The latter results are accompanied 
by experiments suggesting that the (μ+1) EA is successful if λ < ⌊μ/2⌋ and that it almost always fails for λ ≥ μ. These 
findings highlight the risks of using fitness sharing with inappropriate parameters and highlight the need for a better 
understanding of algorithm parameters. We concluded the paper with an empirical analysis of the genotypic sharing that 
has to be used when no problem specific knowledge is available. The experiments indicate that similar conclusions on 
algorithmic performance may be made when the Hamming distance is used. We leave rigorous theoretical proofs of this as 
an open problem for future work.

In the future it would also be interesting to extend the analyses of fitness sharing and other diversity mechanisms to 
problems beyond TwoMax. Promising candidates for such work are the set of theory-affine multimodal benchmark functions 
introduced in [32] or dynamic problems.
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