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Abstract 10 

Masonry arch bridges form a significant portion of the European transport infrastructure network. Many 11 
of these bridges are relatively old but still in service. Increasing vehicle loads and speeds have 12 
highlighted the need for reliable estimates of their service condition. Past research demonstrated that 13 
load-carrying capacity of a masonry arch bridge is a function of the soil response. However, today, the 14 
approaches used for the simulation of soil in masonry arch bridges are over-simplistic and most of them 15 
do not take into account the soil-structure interaction phenomena. This paper presents a novel modelling 16 
approach, based on the discrete element method, for the simulation of backfill material in masonry arch 17 
bridges. According to the method, bricks in the barrel vault are simulated as an assembly of distinct 18 
blocks separated by zero thickness interfaces at each mortar joint. Backfill is represented as an 19 
assemblage of densely packed discrete irregular deformable particles, here called “inner-backfill 20 
particles”. A series of computational models were developed and their results are compared against full-21 
scale experimental test results. A good agreement between the experimental and the numerical results 22 
was obtained which demonstrates the huge potential of this novel modelling approach. One of the major 23 
advantages of the proposed approach is its ability to simulate the initiation and propagation of cracking 24 
in the backfill and arch ring with the application of the external load. It is envisaged that the current 25 
modelling approach can be used by bridge assessment engineers for understanding soil pressures and 26 
load distribution on the backfill and arch ring and thus develop serviceability criteria for masonry arch 27 
bridges of their care.   28 
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 A novel approach to represent cracking in backfill of masonry arch bridges proposed 34 
 Backfill is considered as an assemblage of densely packed discrete irregular particles  35 
 A fair to good agreement between the experimental and the numerical results was obtained 36 
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 The approach can be used to better understand the load distribution in masonry arch bridges 38 
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1 Introduction 44 
Masonry arch bridges form an integral part of the European railway and highway bridge stock. Although 45 
most of the masonry arch bridges were constructed back in the 19th century, such structures are still 46 
standing and carrying today’s traffic loads. Weathering, demands of increasing load intensity and axle 47 
loads, as well as factors such as increased frequency of flood events brought about by climate change 48 
have introduced a poorly constrained uncertainty on the long term performance of such infrastructure 49 
assets. The cost of replacing masonry infrastructure in the UK alone would run into tens of billions of 50 
pounds, and their aesthetic and heritage value is significant (e.g. the Grade II-listed Hungerford Canal 51 
Bridge, in Berkshire, England). Moreover, failure of such infrastructure could lead to significant direct 52 
and indirect costs to the economy and society and could hamper rescue and recovery efforts. Therefore, 53 
there is a pressing need to accurately assess the performance of ageing masonry infrastructure and 54 
provide detailed and accurate data that will better inform maintenance programmes and asset 55 
management decisions. Without a strategic approach to caring for our ageing masonry infrastructure, 56 
we run the risk of over-investing in some areas while neglecting others that are in need of our attention, 57 
or indeed risk failing to address economic and societal need. 58 

Over the last thirty years, a significant amount of experimental work has been carried out in order to 59 
understand the effect of backfill into the serviceability and ultimate load bearing capacity of masonry 60 
arch bridges. In a series of tests to destruction, Davey [1] found that soil-structure interaction increased 61 
the load bearing capacity of a masonry arch bridges and therefore such effects should not be ignored 62 
when evaluating the strength of a masonry arch bridge. Later, experimental testing with a view to 63 
underspend the soil-structure interaction have been carried out by Harvey et al. [2] and Melbourne et 64 
al. [3]. In Harvey’s tests, soil pressures were relatively low, which according to [4], this might be due 65 
to the interface of the retaining walls which were built close behind the springing. In contrary, 66 
experimental tests carried out by Melbourne and Walker [5] revealed the development of relatively high 67 
soil pressure, even though pressure distribution was not recorded during testing. Moreover, with a view 68 
to investigate the distribution of the external load applied on an arch bridge, Fairfield [6] carried out 69 
several tests on semi-circular and segmental model arches with voussoirs made of timber. The backfill 70 
was uniformly graded dry sand and restrained by two glass walls. From the results analysis it was found 71 
that the collapse load increases with increased fill depth. Moreover, Hughes [7] constructed 1/6 scale 72 
models of a prototype masonry arch bridge containing backfill and carried out a series of centrifuge 73 
tests on it. They found that changing the fill type had a significant effect on the load bearing capacity. 74 
Similar observation about the effect of the backfill into the load carrying capacity of a masonry arch 75 
bridge have been observed by Gilbert et al. [8]. By testing a series of small-scale arch bridges with 76 
different fill materials, it was found that the load carrying capacity of masonry arch bridges with 77 
limestone as backfill is double compared to the one with clay backfill material. One the other hand, a 78 
significant number of experimental tests have been carried out on full-scale masonry arch bridges. For 79 
example, Melbourne et al. [9] performed a full-scale model test on a 6 m span multi-ring brickwork 80 
arch bridge in the TRRL Laboratory to identify the effect of the spandrel walls and the backfill material. 81 
Test results showed that failure was due to a four-hinge mechanism accompanied with ring separation. 82 
Also, it was observed that the backfill provided a significant lateral restraint to the deformation of the 83 
arch ring.  84 

Significant efforts have also been made towards the development of analytical and advanced 85 
computational methods of analysis for masonry arch bridges. Experience from such studies 86 
demonstrated that the structural assessment of masonry arch bridges is complex and requires the 87 
development of advanced numerical models of analysis that consider the geometric non-linearity 88 
between masonry units and account for the interaction between the arch ring, parapets and fill material. 89 
Today, the numerical techniques used for the assessment of masonry arch bridges can be grouped into 90 
those based on the macro-modelling approach in which masonry is considered as an anisotropic 91 
continuum and the micro/meso-modelling approach which considers masonry as an assemblage of 92 
masonry units connected together by mortar joints (such as mathematical programming techniques 93 
based on the limit analysis; the finite element method based on contact element; and the discrete element 94 
method [10]). Numerical methods of analysis, like the Finite Element Method (FEM) based on the 95 
macro-modelling approach (Lourenco [11]), have been applied to understand the three-dimensional 96 
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behaviour of masonry structures. However, in such cases, the description of the discontinuity which 97 
characterises ageing masonry infrastructure is limited since they consider masonry as an anisotropic 98 
continuum (Boothby [12]). Recent advances in the mathematical programming techniques based on 99 
limit analysis [13-17] highlighted that they are quick to construct the model and obtain the results. 100 
However, a limitation of the approach is that only the ultimate load bearing capacity and the 101 
corresponding failure mode can be determined. Moreover, the backfill is replaced with external loads 102 
on the extrados of the barrel, while the passive earth pressure was considered with non-linear spring 103 
elements [37]. On the other hand, the finite element models can implement complex material 104 
constitutive laws to consider the heterogeneous and anisotropic behaviour of masonry [18, 19]. 105 
Nevertheless, the description of discontinuity (e.g. voussoir to voussoir, voussoir to backfill) is difficult 106 
since they tend to consider masonry as a continuous material [19, 20]. Contrarily, the interaction of 107 
distinct blocks can be easily modelled in discrete element methods in which masonry can be considered 108 
as an assemblage of masonry units bonded together by zero thickness interfaces, which can open, close 109 
and slide according to stresses applied to them (Forgács et al. [21]; Sarhosis et al. [22]; Forgács et al. 110 
[23]). For an extensive discussion on the available experimental and numerical approaches for masonry 111 
arch bridges, the reader is directed to [24] and [25]. From the above, the presence of backfill has a 112 
significant influence on the behaviour of a masonry arch bridge. According to [13] & [26], for a 113 
numerical model to accurately predict the effects of backfill, it is essential that the model allows for:  114 

i) distribution of concentrated loads applied on the top surface of the bridge through the 115 
backfill of the barrel arch ring;  116 

ii)  dead load of the backfill material so that the voussoirs of the arch ring are in compression; 117 
and 118 

iii)  passive earth resistance i.e. restrain sway of the barrel arch ring by generating passive 119 
resistance pressure and prevention of destabilising effects of the bridge due to variable live 120 
loads.  121 

However, the quantification of the passive soil pressure is not a straightforward task. The classical 122 
approaches adopted for estimating passive soil pressure in soils cannot be directly used for the analysis 123 
of masonry arch bridges. This is because full passive pressures are not usually mobilised in the backfill, 124 
when external loads are applied in the masonry arch bridge. According to Fang et al. [27], the 125 
mobilization level will depend on the amount of movement of the barrel and the soil type. Therefore, 126 
accurate numerical models need to be developed for being able to model frictional backfill material 127 
directly, which will allow one to study the overall behaviour of the system.   128 

In this paper, a novel modelling approach for the simulation of backfill in masonry arch bridges has 129 
been proposed. The approach is based on the discrete element method of analysis which was originated 130 
from the word developed by Cundall in 1971 [28]. According to the method, bricks in the barrel vault 131 
are represented as an assembly of distinct blocks separated by zero thickness interfaces at each mortar 132 
joint while backfill is represented as an assemblage of densely packed discrete irregular deformable 133 
particles. In this way, the discrete nature of backfill can be represented. In addition, the initiation and 134 
propagation of cracks in backfill with the application of external load can be estimated. Since backfill 135 
is represented by irregular in shape particles, the mechanical behaviour of the backfill is influenced by 136 
the size and properties of the irregular soil particles and their contact properties. A series of 137 
computational models were developed and their results are compared against full-scale experimental 138 
results. The proposed approach is able to estimate the initiation and propagation of cracking in the 139 
backfill and arch ring with the application of the external load. It is envisaged that the current modelling 140 
approach can be used by bridge assessment engineers for understanding soil pressures and load 141 
distribution on the backfill and arch ring and thus develop serviceability criteria for masonry arch 142 
bridges of their care.   143 

2 An alternative approach to simulate the backfill material in masonry arch bridges 144 
The proposed model is based on a phenomenological approach, which aims to simulate both the backfill 145 
material and soil-structure interaction phenomena in masonry arch bridges when subjected to external 146 
load. The proposed model was developed in a discrete element framework, the two-dimensional code 147 
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UDEC [29]. However, the proposed methodology can be adapted to any discrete element software. The 148 
key features required to implement the proposed approach are described below. 149 

2.1 Representation of the elements  150 
In the presented DE model, masonry units and the backfill are represented by polygonal blocks that 151 
may take any arbitrary geometry. These elements are made deformable by subdivision into finite 152 
elements, commonly denoted as zones in DEM codes. Every discrete element is internally discretised 153 
into uniform strain simplexes (triangular elements in 2D). Inside every simplex, a linear translation field 154 
can be defined with the linear interpolation of the nodal translations. In this way, the unknowns of the 155 
model are the displacements at the nodes. Each internal zone responds according to a prescribed linear 156 
or non-linear stress-strain law, similarly to continuum elements in the finite element method (FEM).  157 

The discontinuous nature of backfill or soil is represented by a series of irregular in shape particles of 158 
polygonal or Voronoi shape (Mayya and Rajam [30]). Such fictitious irregular particles, here named 159 
“inner-backfill particles” are shown in Figure 1. Inner-backfill particles are also subdivided into simple 160 
triangular finite elements (Error! Reference source not found.), which give a detailed approximation 161 
of the strain field. These particles containing internal meshing can be either assumed to behave in an 162 
elastic or in an elasto-plastic manner. The appropriateness of each of these two assumptions to model 163 
backfill will be examined below. Also, the size and shape of the irregular inner-backfill particles will 164 
be investigated too, as these parameters will affect the mechanical behaviour of the backfill.  165 

 166 

 167 

Figure 1 - Representation of backfill in a masonry arch as a series of polygonal particles herein called 168 
“inner-backfill particles” 169 

 170 

 171 

Figure 2 - Triangular zones in the “inner-backfill particles” 172 

2.2 Contact representation  173 
The discrete elements can interact with each other through zero-thickness interface elements. These 174 
interfaces can be viewed as locations where mechanical interactions between the blocks takes place and 175 
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their behaviour are governed by appropriate stress-displacement constitutive laws. These places could 176 
be potential fracture slip lines as well. This approach is similar to the 'simplified micro-modelling' 177 
option in finite element models of masonry [11]. However, the numerical treatment is different in DEM. 178 
At the interfaces, blocks (e.g. inner-backfill particles, masonry units, steel platen etc) are connected 179 
kinematically to each other by sets of point contacts, along the outside perimeter of the blocks, at 180 
locations where corners or edges meet [31]. The main advantages of the point-contact hypothesis 181 
method are its generality and its simplicity at being able to handle the various types of geometric 182 
interaction between the blocks. It can also consider large block movements, including cases of 183 
detachment and re-closure when external forces are applied to them, with no attempt to obtain a 184 
continuous stress distribution through the contact surface.  185 

In the proposed numerical approach, there are four different types of interfaces. These are shown in 186 
Figure 1 and include:  187 

a) Masonry unit to masonry unit interface;  188 

b) Masonry unit to backfill interface; 189 

c) Inner-backfill particles to inner backfill particles; and  190 

d) Soil platen to inner-backfill particle interface.  191 

In the code UDEC, blocks are characterised by rounded edges instead of sharp corners. Rounding affects 192 
only the detection and geometrical characterisation of the contacts between the blocks. Contact between 193 
sharp corners in blocks is difficult to treat numerically, and may lead to corner interlocking under large 194 
displacements. Block and zone geometries and properties are not affected by rounding. The rounding 195 
length can be defined by the user (default value is 0.5) and recommended to be at least 1% of the of the 196 
representative block edge length in the model. The rounding is determined by a termed called “rounding 197 
length” which gives the distance between the corner and between the point on the edge where the 198 
rounding arch touches the edge (Figure 3e) and is the same for all the blocks in a model. Rounding 199 
affects only the recognition and geometrical characteristics of contacts. Other characteristics such as 200 
the estimation of the stains in a block are based on the original geometry without rounding.  The nodes 201 
have two translational degrees of freedom. The displacement vector of node, n, consists of two scalar 202 
components:  203 

ሻݐሺ࢛ 204  ൌ    ሻ൨                                                            (1) 205ݐ௬ ሺݑሻݐ௫ሺݑ

And these are collected into the total displacement vector of the system containing altogether N nodes:  206 

 208 

ሻݐሺ࢛ ൌ  
ێێۏ
ێێێ
ۍ ۑۑےሻݐேሺݑሻǤǤǤǤݐଶ ሺݑሻݐଵሺݑ

ۑۑۑ
 207 (2)                               ې

 209 

Figure 3 shows the mechanical representation of the interfaces between adjacent blocks. From Figure 210 
3a, for each contact point, there are two spring connections. These can transfer either a normal force or 211 
a shear force from one block to the other (Figure 3b&c). The normal and the shear direction in case of 212 
a corner-to-corner and a corner-to-edge contacts are explained in Figure 3d&e, respectively. In the 213 
normal direction, the mechanical behaviour of the joints (i.e. the zero-thickness contact interface) is 214 
governed by the following equation:  215 
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οߪ ൌ ݇  οݑ                            (3) 216 

where ݇  is the normal stiffness of the contact and οݑ is the increment in normal contact displacement, 217 
i.e., the relative displacement between the blocks at the contact point. Similarly, in the shear direction, 218 
the mechanical behaviour is controlled by the constant shear stiffness ݇௦ using the following expression: 219 οɒ௦ ൌ ݇௦  οݑ௦                             (4) 220 

where ǻĲs is the change in shear stress, and ǻus is the increment in shear displacement. There is no 221 
integration of stresses on the contact surface as in FEM joint elements (Sarhosis [32]). However, an 222 
area is assigned to each contact point, and all the areas add up to the total contact surface. Therefore, 223 
contact stresses can be evaluated at each point contact, and the standard joint constitutive models, 224 
relating normal and shear stresses with contact displacements, can be employed. 225 

In the present research work, the contacts are assumed to follow the Mohr-Coulomb failure criterion, 226 
commonly used to represent shear failure in soils and rocks. The criterion has a limiting tensile strength, 227 
ft. If the contact normal stress exceeds the tensile strength, then the normal stress is set to zero and the 228 
interface opens. Alternatively, at those contacts undergoing compression, a small overlap will occur 229 
between block edges (Figure 3b). The amount of overlap is controlled by the normal stiffness. Similarly, 230 
in shear, in the elastic range, the response is controlled by contact shear stiffness (Figure 3c). In addition, 231 
in the shear direction, slippage between blocks occurs when the tangential or shear stress at a contact 232 
exceeds a critical value ߬௫ defined by:  233 ȁ߬௦ȁ ܿ  ߪ ݊ܽݐ ߮ ൌ ߬௫                                             (5) 234 

where ߤ ൌ tan ሺ߮ሻ is the friction coefficient and ߮ the angle of friction and c the cohesive strength. 235 
After slip takes place, the shear stress is reduced according to the Mohr-Coulomb criterion, but using 236 
residual values for cohesion (cres) and friction (ĳres), as shown in Figure 3c. Non-associative flow rule 237 
is applied therefore the dilation angle (ȥ) is set to zero. After a contact breaks or slips, forces are 238 
redistributed and it might cause adjacent contacts to break. During the process, the micro-properties at 239 
the inner-block interfaces control the mechanical response of the material and should be calibrated to 240 
represent the macro-behaviour. Cracks are initiated at the contact between interfaces. When the stress 241 
applied on the contact exceeds either the tensile or the shear strength, inner blocks can separate or slide. 242 
In this way, cracking at the brick, mortar and/or brick-to-mortar interface can be represented. 243 

As a block move during the course of the simulation, it is remapped and tested for contact with new 244 
neighbours. A triggering neighbourhood search is undertaken. This process is triggered by the 245 
accumulated movement of the block. A variable uacc, set to zero after each remap and is updated at every 246 
time-step:  247 

uacc = uacc + max {abs(du)}          (6) 248 

where du is the incremental displacement of a corner, and the max { } function is taken over all corners 249 
of the block. When uacc exceeds a quarter of the rounding length, remapping and contact testing is 250 
activated. The rounding length is also used to determine whether a contact is created or deleted. If two 251 
blocks are found to be separated by a gap that is equal to or less than the rounding length, a contact is 252 
created. This logic ensures that the data structure for all contacts is in place before physical contact 253 
takes place.  254 

 255 

 256 

 257 

 258 

 259 

 260 
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 261 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

                           262 
Figure 3. (a) Mechanical representation of the interfaces between adjacent Voronoi elements in the 263 

masonry arch bridge shown in Figure 1; (b) behaviour under uniaxial loading; and (c) shear 264 
behaviour, Mohr-Coulomb slip model; ; (d) corner-to-corner; (e) corner-to-edge type contact and 265 

rounding length representation  266 

2.3 Solution procedure  267 
In the present DEM model, a dynamic solution algorithm is applied. The model unknowns are the 268 
displacements at the nodes, which include the block boundary vertices and the internal zone nodes 269 
(Figure 2). The equations of motion of the nodes are solved by an explicit time stepping algorithm. The 270 
equations of motion for each node are 271 ݉ ௗ௨ሶ ௗ௧  ሶݑ ݉ ߙ  ൌ ݂,          (7) 272 

where ui is the nodal displacement vector of node, (i= {x,y}), m is the nodal mass, Į is the mass-273 
proportional viscous damping parameter. The nodal force vector is given by a sum of three terms 274 
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݂ ൌ ݂  ݂  ݂ ,          (8) 275 

where ݂ represents the contact forces, for nodes on the block boundaries, ݂ are the nodal forces 276 
obtained from the internal zone stresses, and ݂ are the external applied loads, including gravity. 277 

The time stepping algorithm employs the central-difference method (e.g. [33]). The finite-difference 278 
approximation of equation (4), centred at time t, allows the calculation of the velocity at time (t+ǻt/2) 279 
as 280 ݑపሶ ሺ௧ାοమ ሻ ൌ  ܦଵ ݑሶ ሺ௧ିοమ ሻ   οݐ൨  ଶ ,         (9) 281ܦ

where D1 =  (1-Įǻt/2), and D2 = 1/(1+Įǻt/2). Then, the new nodal displacements and locations at time 282 
(t+ǻt) can be evaluated as 283 ݑሺ௧ାο௧ሻ ൌ ሺ௧ሻݑ  ሶݑ ሺ௧ାοమ ሻο284 (10)         ,ݐ 

ሺ௧ାο௧ሻݔ ൌ ሺ௧ሻݔ  ሶݑ ሺ௧ାοమ ሻοݐǡ         (11) 285 

The new positions of the block nodes and edges allow the update of the location and orientation of the 286 
existing contacts between blocks, as well as the detection of possible new contacts in large displacement 287 
analysis [29]. Contact displacement increments are calculated from the relative movements of the 288 
interacting blocks. Contact forces and stresses are updated by invoking the contact constitutive 289 
equations, as described in the previous section. For the internal zones or elements, the new nodal 290 
displacements lead to the new strains, from which zone stresses ensue by applying the assumed material 291 
constitutive model. The assembled nodal forces, according to equation (8), allow the application of 292 
equation (7) for the next step. 293 

In the present work, this dynamic algorithm is also used to obtain static solutions, by means of dynamic 294 
relaxation. In this procedure, artificial damping is applied to reach the equilibrium state. In order to 295 
improve the convergence rate, an adaptive procedure is used to continuously update the damping 296 
parameter Į in equation (9) [29]. The convergence criterion is based on attaining, at all nodes, a very 297 
low value of the ratio of the nodal unbalanced force to the typical nodal force. The central difference 298 
method is only conditionally stable. To avoid numerical instabilities, a limiting time step is evaluated. 299 
In case of deformable blocks, the limiting time step is calculated, by analogy to a simple degree-of-300 
freedom linear elastic system, for each node as: 301 οݐ ൌ ʹ ோ݂  ቀ ಿቁǤହ

,          (12) 302 

where m is the nodal mass, KN is an upper-bound of the nodal stiffness, obtained by summing the 303 
stiffness of all the elements and contacts connected to the node. The user-defined factor  ݂ ோ may be used 304 
to reduce the time-step [29]. The time step adopted in the analysis is the minimum value of equation 305 
(12) for all the nodes. The main disadvantage of this solution procedure is that many steps may be 306 
required to reach equilibrium, or to attain a failure mechanism. On the other hand, the small time steps 307 
typically provide a robust solution method that follows closely the nonlinear response of the contacts, 308 
including the progressive changes in contact conditions. 309 

  310 
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3 Development of the computational models for soil-structure interaction in masonry 311 
arch bridges 312 

To demonstrate the effectiveness of the proposed computational modelling approach, this section 313 
presents the development and validation of the computational models used to investigate three different 314 
approaches to represent backfill and investigate soil-structure interaction phenomena in masonry arch 315 
bridges. Extensive information of the development of the computational models and comparisons with 316 
experimental results are presented below. 317 

3.1 Experimental test setup 318 
The suitability of each of the computational modelling approaches were compared to full-scale 319 
experimental tests carried out on the Prestwood Bridge, located in Staffordshire, UK. Prestwood Bridge 320 
has a span of 6.550 m and a rise of 1.428 m. The vault barrel, which is a single ring of bricks laid as 321 
headers, has a thickness of 0.220 m. The width of the bridge is 3.8 m. The backfill depth at the crown 322 
is 0.165 m. According to [34], the backfill material presents a small amount of ‘‘reddish-brown sand 323 
with a little clay’’. Material tests of the fill showed 7 kPa cohesion and 37° as internal frictional angle. 324 
The density of the brickwork was 2,000 kg/m3, while the measured secant modulus of the brickwork 325 
was 4.14 GPa, (Ȟ=0.3). A line load was applied at quarter span across the width of the bridge using a 326 
300 mm wide loading element. This was to avoid the effect of a concentrated load and premature failure 327 
of the fill. Hydraulic jacks were used to apply the load at increments until the bridge was not able to 328 
carry further load and ultimately collapsed. At each loading increment, displacements were measured 329 
remotely using total stations. The maximum load applied to the bridge before collapse was 228 kN, 330 
with the first visible evidence of damage appearing at a load of 173 kN. Failure was due to the formation 331 
of a four-hinge mechanism as shown in Figure 4. The failure mechanism was developed with minimal 332 
or negligible material crushing. Further details of the execution of the experimental test and results 333 
carried out by the Transport and Road Research Laboratory (TRRL) can be found in [34].  334 
 335 

 336 

Figure 4 - Collapse mechanism of the Prestwood Bridge test (Page [34]) 337 

  338 
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3.2 Development of the computational model 339 
Geometric models to represent the geometry of the Prestwood Bridge were created in the computational 340 
model. The geometrical characteristics of the bridge were taken from [34] and can be seen in Figure 5. 341 
The numerical model contains 40 courses of voussoirs. All of the discrete elements in the model were 342 
made from linear elastic elements. Mortar joints between bricks were represented as zero thickness 343 
interface elements behaving according to the Coulomb failure criterion, which limits shear stresses 344 
along joints. 345 

 346 
Figure 5 - Typical geometry developed using the DEM model 347 

The material properties of the Prestwood bridge were obtained from the original experimental test report 348 
[34] and are summarized in Chapter 3.1. The Young’s modulus of the discrete elements representing 349 
the voussoirs is set equal to elastic modulus of brickwork (i.e. brick and mortar). Hence, the mechanical 350 
role of the normal stiffness of the brick-brick interface element is only to avoid the interpenetration 351 
between the discrete blocks. Therefore, the normal stiffness of these interfaces is set to a sufficiently 352 
high value (see Table 1). The shear stiffness of brick-brick interface was chosen to represent the 1:2:9 353 
mortar behaviour described in [35]. Since properties of the brick and mortar were not measured during 354 
the experiment, they were obtained from the literature, where other researchers tried to model the 355 
bridge. Thus, the friction between the bricks was set to 30°, while the cohesion and the tensile strength 356 
of the mortar was set to a low value, which can represent the behaviour of a 1:2:9 mortar. The mortar 357 
properties used for the development of the computational model are shown in Table 1.  358 
On the extrados of the arch, a brick-to-soil interface was assigned in the numerical model. According 359 
to [36], the friction angle of the brick to soil interface depends on the roughness of the surface of the 360 
masonry units and the type of the backfill material. In the current study, material calibration undertaken 361 
and the friction angle of the brick-to-soil interface was assumed to be equal to 2/3 of the internal friction 362 
of the backfill.  363 

Table 1 - Material properties of the interfaces 364 

 
kn 

[GPa/m] 
ks 

[GPa/m] 
ĳ 
[°] 

c 
[M Pa] 

f t 

[MPa] 
ȥ 
[°] 

Mortar joint interface 35.0 7.0 30.0 0.05 0.05 0.0 
Arch ring-backfill 

interface  
35.0 7.0 25.0 0.00 0.00 0.0 

 365 
With the aim to select the appropriate size of meshing, convergence studies were carried out. From the 366 
outcomes of the convergent studies it was found that the size of finite element mesh should be equal or 367 
less than 10 cm for the bricks and 10 cm for the backfill. The mesh assigned to the masonry arch bridge 368 
model is shown in Figure 6. 369 
 370 
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 371 
Figure 6 – Triangular finite element mesh of bricks, backfill and loading plate as obtained from the 372 

numerical model (Figure 2 shows part of the masonry arch bridge) 373 

The developed 2D numerical model simulates plain strain conditions. Similar to the numerical model 374 
developed by Cavicchi and Gambarotta [17], the base of the masonry arch bridge, as well as the left 375 
and right hand sides of the backfill were fixed in all directions. According to these authors, the capacity 376 
of the soil due to the cohesion of the backfill should be enough to avoid plastic lateral flow of the 377 
backfill [17]. In addition, self-weight effects were assigned as gravitational load. Gravitational forces 378 
give rise to compressive forces within the voussoirs of the arch and result in its stabilisation.  379 

Initially, the model was brought into a state of equilibrium under its own self-weight by ensuring that 380 
the maximum out-of-balance force was less than 0.001% of the total weight of the structure. Then, a 381 
constant vertical velocity equal to 0.001 m/s applied to the load spreader plate at the top of the bridge 382 
at quarter span of the arch. In order to maintain the analysis in a static manner and avoid that the 383 
structure has a dynamic response, the velocity applied to the loading element had to be closely examined 384 
and selected. To ensure a quasi-static behaviour of the masonry arch bridge, during simulations different 385 
magnitude velocities were applied in the bridge model and a converge test was carried out.   386 

A FISH function (internal programming language of UDEC) that was able to record the reaction forces 387 
from the fixed velocity grid-points acting on the spreader plate (or platen) at each time step was written. 388 
Such conditions were selected to replicate the real conditions of the experimental loading test carried 389 
out by TRRL. Histories of displacements at the intrados of the arch have been recorded at all times (See 390 
Figure 7- coloured in red and green and marked as -4…0…4; 5). 391 

 392 

Figure 7 – Locations where vertical displacements were recorded during the numerical simulation 393 

 394 
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To model the behaviour of the backfill material, three main type of numerical models were developed 395 
and their suitability to represent the mechanical behaviour of real masonry arch bridges was 396 
investigated. In particular, the backfill of the masonry arch bridge was represented as: 397 

(i) a single block behaving in an elasto-plastic manner;  398 
(ii)  a series of inner-backfill particles behaving in an elasto-plastic manner.  399 
(iii)  a series of inner-backfill particles behaving in an elastic manner; 400 

 401 
For case (i) and when the backfill was represented as a single discrete block, the backfill was discretized 402 
into triangular finite element meshes. The constitutive law was allowed to represent the mechanical 403 
behaviour of the backfill material was chosen to behave according to the Mohr-Coulomb failure criteria. 404 
This approach to model the backfill is almost identical to that proposed by common models based on 405 
the finite element method (FEM). The material properties of the backfill are summarized in Table 2. 406 
Also, in the proposed model, it was assumed that crushing failure at the bricks does not occur. This is 407 
what has been observed from the experimental study as well (Page [34]). 408 
 409 

Table 2 - Material properties of the backfill 410 

ȡ E Ȟ ĳ c f t 
[kg/m3] [GPa] [-] [°] [kPa] [kPa] 

2000  0.3  0.3 37.0 7.0  7.0  
 411 
An alternative approach to model the backfill of the masonry arch bridge was proposed in cases (ii) and 412 
(iii) in which the backfill material was represented as an assemblage of the so-called Voronoi-cells or 413 
inner-backfill particles. To create these cells, “seeds” were generated randomly within the boundary of 414 
the backfill domain, and for each seed, a corresponding region consisting of all points closer to that 415 
seed was determined. In this way, inner backfill particles consisting of convex elements were created. 416 
Inner-backfill particles could behave either in linear elasto-plastic (ii) or elastic (iii) manner. One of the 417 
major advantages of this approach is its potential to predict cracking in the backfill due to the application 418 
of the external load. Further details about the development of the novel approach are presented below. 419 
The numerical model which contains inner-backfill particles is shown in Figure 8.  420 
 421 

 422 
Figure 8 – Numerical model with inner-backfill particles (average inner-backfill particles element 423 

length is 10 cm). 424 

To represent the discrete nature of the backfill, a series of irregular in shape Voronoi elements (inner-425 
backfill particles) were introduced. These inner-backfill particles are densely packed; i.e. there is no 426 
gap between them. These particles were modelled as deformable blocks and were subdivided into 427 
triangular finite element zones. The average edge length of the finite element mesh assigned in each 428 
inner-soil element was 10 cm (independently from the size of the inner-backfill particles). In the 429 
numerical model, inner-backfill particles were separated by a zero-thickness interface. Such interfaces 430 
possess finite stiffness, which means, if the number of Voronoi-cells increases (i.e. the size of the inner-431 
backfill particles is decreasing) the structural behaviour will be softer. To avoid this effect, the stiffness 432 
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of these interfaces was chosen inversely proportional to the average size of the Voronoi-cells ( lv ). In 433 

the case of the elasto-plastic inner-backfill particles, the elastic properties of the backfill were 434 
incorporated into the elastic material properties, hence the role of the interface’s normal stiffness is to 435 
avoid the interpenetration of the elements. In the case (iii), the inner-backfill particles simulated as 436 
linear elastic, isotropic material while their interaction with each other was controlled by Coulomb 437 
friction law. In this situation, the plastic behaviour of the backfill was incorporated into the interface 438 
elements between the inner-backfill particles. The internal friction angle, the cohesion and the tensile 439 
strength of these interfaces were chosen according to Table 4. In the case of purely elastic inner backfill 440 
elements, the stiffness of interfaces has to be decreased in order to avoid interlocking of the densely 441 
packed Voronoi-cells. A calibration procedure is presented below. The material properties for the 442 
interfaces of the inner-backfill particles are summarized in Table 3. In the model, the zoning properties, 443 
boundary conditions and loading remained unchanged to before.  444 
 445 

Table 3 - Properties of interfaces between Voronoi-cells (or inner-backfill particles) 446 

 kn 
[Pa/m] 

ks 
[Pa/m] 

ĳ 
[°] 

c 
[kPa] 

f t 
[kPa] 

ȥ 
[°] 

Interfaces between  
elasto-plastic 
Voronoi-cells 

200MPa

l
v

 100MPa

l
v

 37.0 7.0 7.0 0.0 

Interfaces between  
linear elastic 
Voronoi cells 

20MPa

l
v

 10MPa

l
v

 37.0 7.0 7.0 0.0 

 447 

4 Results and Discussion 448 

4.1 Backfill as a single elasto-plastic block 449 
The load against quarter-span displacement relationship obtained from the numerical model was 450 
compared to the maximum load carrying capacity of the masonry arch bridge obtained from the 451 
experiment (Figure 9). The experimental collapse load of the Prestwood Bridge was 228 kN (Page [34]), 452 
while the ultimate load bearing capacity obtained from this discrete element numerical model using 453 
UDEC was 219 kN. From the above, the error percentage for the maximum load from the numerical 454 
model against the experimental result is 4%. 455 

 456 
Figure 9 - Load-displacement curve. Backfill represented by a single elastic-plastic block model 457 

Verification on the suitability of the numerical model to capture the failure mode has also been 458 
undertaken. The collapse mechanism obtained from the numerical model was compared to the failure 459 
mechanism observed during the experiment. From Figure 10b, the four-hinge mechanism in the arch 460 
ring is evident. Moreover, it is appreciated how the backfill under the applied load moved downwards, 461 
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while the backfill to the left side of the bridge moved upwards i.e. the typical sway mechanism. Slight 462 
difference can be found at the second hinge position. It should be noted, that the left abutment of the 463 
bridge was 8 cm higher compared to the right one. This imperfection can cause small differences in the 464 
failure mechanism. 465 

 466 
(a) 467 

 468 
(b) 469 

Figure 10 – Failure mechanisms: (a) experiment; (b) numerical simulation 470 

The thrust line within the arch barrel can be observed with the help of principal stress trajectories (see 471 
Figure 11). In the location of plastic hinges, the adjacent voussoirs contacted with each other on a very 472 
narrow surface able to cause stress concentrations within the elements. 473 

 474 

Figure 11 – Principal stress trajectories in the arch barrel 475 

The stresses and the plastic state of the backfill was measured during the numerical simulation and can 476 
be seen in Figure 12. Initially, the external load is negligible compared to the self-weight of the 477 
structure. Therefore, the contour of compressive principal stresses is nearly symmetric (Figure 12b). As 478 
the intensity of the external load is increasing at quarter span, firstly, the active earth pressure was 479 
activated below the loading element and later, with the application of further external load on some 480 
passive earth pressure was mobilized at the left part of the structure (Figure 12d, e, f). 481 

  482 

Load 
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  483 

a.) Self-weight 484 

  485 

b.) 40 kN 486 

  487 

c.) 90 kN 488 

  489 

d.) 130 kN 490 

  491 

e.) 170 kN 492 

  493 

f.) Failure load: 216 kN 494 

                                         495 

Figure 12 - Failure mechanism of the masonry arch bridge as obtained from the numerical model – 496 
Backfill simulated as a single elastic-plastic block 497 

  498 
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4.2 Backfill represented as inner-backfill particles (or Voronoi-cells) 499 
In the following section, the results of the alternative approach to simulate backfill materials are 500 
presented. The effect of different Voronoi-sizes and interface stiffnesses on the mechanical behaviour 501 
is discussed. The forthcoming questions are addressed in this section: 502 

- How the adequate average Voronoi-cell size should be chosen to ensure accurate estimation of 503 
the load bearing capacity of the arch bridge? 504 

- What is the mechanical role of the inner backfill interfaces and how to choose their contact 505 
stiffnesses? 506 

To answer the first question, masonry arch bridges having different in size Voronoi-cells to represent 507 
the backfill material were investigated. The size of the Voronoi-cell sizes ranged from 0.05m to 0.75m 508 
(see Figure 13). To answer the second question, various bridge models were undertaken in which 509 
Voronoi cells were allowed to behave according to: a) an elasto-plastic; and b) elastic manner. Results 510 
and discussion of the simulations undertaken are presented below. 511 

        512 

a.) 5 cm b.) 10 cm 513 

  514 

b.) 20 cm d.) 30 cm 515 

 516 

 e.) 50 cm f.) 75 cm 517 

Figure 13 – Numerical models with different Voronoi cell sizes 518 

 519 

4.2.1 Backfill represented as Voronoi-cells with elasto-plastic behaviour 520 
In case of elasto-plastic inner-backfill particles, the ultimate load bearing capacity was not affected by 521 
the size of the Voronoi-cells (Figure 14). Plastic deformations can occur within the Voronoi cells, so 522 
even for the case of larger Voronoi cells the load bearing capacity does not vary significantly. The 523 
stiffness of the model was found to be lower when compared to the bridge model with the backfill 524 
represented by a single elasto-plastic element.  This is because the bridge model with backfill as a series 525 
of Voronoi elements contains additional interfaces between the inner-backfill particles, which possess 526 
finite stiffness. Considering different Voronoi-cell sizes, there are no differences between the stiffness 527 
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either, because the applied inner-backfill interface stiffness is inversely proportional to the Voronoi 528 
size. The load bearing capacity of this model was approximately 10% lower compared to the 529 
experimental results, and ~7% lower compared to the single elasto-plastic model. The difference 530 
between the two numerical approaches can be explained as follows. In the case of the single block 531 
model, after a finite element reaches the failure surface of the Mohr-Coulomb criteria, the cohesion and 532 
the tensile strength does not drop to zero. The residual value of these strength parameters is equal to the 533 
original value, while in case of Voronoi model, after an interface is slipped or cracked, the cohesion 534 
and the tensile strength of that surfaces are set to zero. 535 

  536 
Figure 14 – Load-displacement curves for elasto-plastic Voronoi models 537 

Although both numerical approaches (i.e. Voronoi vs single e-p block) can capture the experimental 538 
ultimate load capacity, the superiority of the approach is the fact that initiation and propagation of 539 
cracking can be obtained. In particular, regarding the failure mechanism (Figure 15), the masonry arch 540 
with elasto-plastic Voronoi backfill model failed by a four-hinge mechanism. The location of hinge 541 
positions matches exactly with the model, which contains a single elasto-plastic block as backfill 542 
(Figure 10b). The biggest tensile crack was developed almost vertically above the right abutment. 543 
Smaller tensile cracks appeared below the loading element, above the crown. There were some slipped 544 
Voronoi elements in the vicinity of the passive earth pressure. 545 

 546 

Figure 15 – Failure mechanism of elasto-plastic Voronoi model (average element length is 10 cm) 547 
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4.2.2 Backfill represented as Voronoi-cells with elastic behaviour 549 
The following results are connected to the numerical models, which contain elastic Voronoi cells, which 550 
represent the inner backfill particles. In these models, the plastic behaviour of the backfill was 551 
incorporated into the inter-backfill interfaces.  552 

Firstly, the stiffness of the inner backfill interfaces was calibrated. In Figure 16, load displacements 553 
curves of the numerical model with a fixed, 10 cm Voronoi cells are presented. With the increasing 554 
contact stiffness, both stiffness and load bearing capacity of the structure are increasing. In case of lower 555 
stiffness, the interpenetration of the Voronoi cells is larger, which enables the development of the failure 556 
mechanism. In case of high contact stiffnesses interlocking between the Voronoi cells occurs, which 557 
numerically increases the load bearing capacity of the structure. The contact stiffness depends on the 558 
chosen tessellation, on the shape of the elements. In addition, from Figure 16, it is evident that for all 559 
arche bridge models investigated, the maximum load that the arch can carry was observed when the 560 
quarter span displacement was around 1.5 to 2 cm.  561 

 562 

Figure 16 – Load-displacement curves of elastic Voronoi model with different inner-backfill interface 563 
stiffness, kn [N/m3] (average cell size: 10 cm) 564 

The effect of the size of the Voronoi elements (or inner soil particles) was investigated in Figure 17. 565 
From Figure 17, as the average size of the Voronoi elements decreases, the ultimate load bearing 566 
capacity of the structure converges to a constant value, which in this case is close to the ultimate load 567 
carrying capacity obtained from the experimental study. Also, the smaller the size of the Voronoi, the 568 
less stiff the masonry arch bridge.  569 
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  570 
Figure 17 -Load displacement curves of elastic Voronoi model, with different size of Voronoi elements 571 

Figure 18 compares the ultimate load against the average size of the inner backfill particle (or Voronoi 572 
element). According to Figure 18, the difference between the load bearing capacity of the 5cm and 573 
30cm model was around 6%. Considering the average size of the numerical model (~8m x 2m), it is 574 
suggested that the applied Voronoi cell size should be less than the 3% of the greatest model dimension. 575 

 576 

Figure 18 – Convergence of the ultimate load in case of different Voronoi cell size 577 

Compared to the elasto-plastic Voronoi case, the size and the number of cracks was bigger. During the 578 
loading procedure, in order to develop the failure mechanism within the backfill, the densely packed 579 
Voronoi cells needed to separate or slide upon each other. Thus, the deformation of the backfill appeared 580 
in the form of cracks, and sliding movements. In Figure 19, the crack propagation can be seen in the 581 
case of 5 cm Voronoi cells. The biggest crack appeared above the right abutment, similarly to the elasto-582 
plastic Voronoi cells (Figure 15).  583 
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 584 

Figure 19 – Crack propagation within the soil – average Voronoi-cell size: 5 cm. 585 

Figure 20 shows the vertical displacements at ultimate load bearing capacity along the length of the 586 
arch barrel for the different models developed (note point ID 2 is where the load applied, see also Figure 587 
7). From Figure 20, the displacements are the same for the model in which backfill was considered as 588 
a single elastic-plastic block as well as for the model where the backfill is considered as a series of 589 
Voronoi elements behaving in an elastic-plastic manner. On the contrary, for the model in which backfill 590 
was represented as a series of Voronoi elements behaving in an elastic manner, the displacements are 591 
higher. This may be due to the interfaces between inner-backfill particles, which can move and rotate 592 
freely as well as due to the hinging mechanism of the backfill particles. 593 

 594 

 595 

Figure 20 – Vertical displacements of the arch barrel for the different ID points shown in Figure 7 596 
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5 Conclusions 597 
Many masonry arch bridges still in service are relatively old but subject to increasing vehicle loads. 598 
Past research demonstrated that load-carrying capacity of a masonry arch bridge is significantly affected 599 
not only by the backfill material, but also by the backfill to arch ring interaction. These interaction 600 
phenomena are not taken into account by many over-simplified approaches commonly used.  601 

A novel modelling approach for the simulation of backfill in masonry arch bridges, based on the discrete 602 
element method, has been proposed. Bricks in the barrel vault are represented as an assembly of distinct 603 
blocks separated by zero thickness interfaces at each mortar joint, while backfill is represented as an 604 
assemblage of densely packed discrete irregular deformable particles. The mechanical behaviour of the 605 
backfill is influenced by the size and properties of the irregular soil particles and contacts. A series of 606 
computational models were developed, and their results compared against full-scale experimental 607 
results. A good agreement between the experimental and the numerical results was obtained 608 
demonstrating the significant potential of the proposed approach. The major findings of the proposed 609 
approach are summarized below:  610 

 The four-hinge failure mechanism obtained with the three numerical models developed (the 611 
single block elasto-plastic soil, the elastic Voronoi, and the elasto-plastic Voronoi) is in good 612 
agreement with the experimental failure mode. 613 

 The Voronoi models have the advantage of naturally modelling crack initiation and propagation 614 
as real discontinuity between soil particles. In particular, failure surfaces developing from the 615 
extrados hinges into the soil can be clearly represented. The randomness of the Voronoi patterns 616 
minimizes the possible mesh effects on fill behaviour. 617 

 The three computational models developed herein were able to provide a good approximation 618 
of the experimental failure load. However, in the model with elastic Voronoi, the ultimate load 619 
bearing capacity was influenced by the properties (and in particular the stiffness properties) of 620 
the soil-to-soil particles, which have to be calibrated. Therefore, the elasto-plastic Voronoi 621 
model appears more robust.  622 

 Crack location and propagation in the backfill and the overall structure is more accurate for 623 
smaller size Voronoi elements. Larger size Voronoi elements lead to higher load carrying 624 
capacity of the bridge, but failure mode remains a four-hinge mechanism.  625 

Although the authors understand that arch and the backfill system constitute a 3D domain having finite 626 
thickness, the present work aims at assessing the suitability of the Voronoi/inner soil particles model, 627 
which is more efficiently performed using two dimensional models. Also, as part of this study, the effect 628 
of the spandrel is ignored, since it is impossible to model them in a 2D model (plane strain). In the 629 
future, further research is going to be carried to include the three-dimensional effects of the Voronoi 630 
particles as well as investigate methodologies used for the calibration of the interface material properties 631 
between inner soil elements and how such micro-parameters affect the global behaviour of the bridge. 632 
In addition, the suitability of the approach to masonry arch bridges subjected to geometric irregularities 633 
as well as mechanical behaviour under earthquake load conditions will be evaluated.  634 
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