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Epigenetics and Reproductive Medicine 

 

1. Introduction 

 

In 1942, Conrad H Waddington introduced the term ͚epigenetics͛, to describe a biological process 

that takes place between the genotype and phenotype.1 Epigenetics was subsequently defined as 

͚the study of mitotically and meiotically heritable changes in gene function that cannot be 

explained by changes in DNA sequences͛.2 It is a gene-marking and gene-regulatory system that is 

essential for normal mammalian development. Examples of epigenetic marks include DNA 

methylation3 and covalent modifications that are positioned on the histone proteins, the ͚histone 

code͛, that act to regulate chromatin function.4 Of importance to the field of reproductive 

medicine, epigenetic marks are extensively reprogrammed during gametogenesis and 

preimplantation embryonic development. These epigenetic modifications, in addition to RNA-

based epigenetic mechanisms,5 are important in regulating gene expression.6 The appropriate 

regulation of epigenetic information is critical to normal development, since the disruption of 

epigenetic mechanisms can cause disease.7ʹ11 

 

2. Epigenetics in reproduction, development and reproductive medicine 

 

The natural periods during which developmental epigenetic reprogramming in gametes and 

preimplantation development occur coincide closely with the time during human assisted 

reproduction that the gametes and embryos are being handled in an in vitro environment. The 

best understood epigenetic reprogramming cycle is that of DNA methylation. The lifecycle of this 

epigenetic mark includes several key stages including: the erasure of epigenetic marks from 

primordial germ cells; the establishment of a new set of marks during gametogenesis; genome-

wide erasure of methylation during the preimplantation stages; and de novo establishment of 

marks during development and differentiation from around the blastocyst stage (that is day 5 of 

embryo development) onwards.12,13 Newly-identified processes that act to erase DNA methylation 

from primordial germ cells and during preimplantation development have been detected.14,15 

Currently, it is not possible to assess the epigenetic status of the human preimplantation embryo 

during routine assisted reproductive technology (ART). It is not at this time, therefore, possible to 

deduce: 

 

 whether epigenetic defects exist unequivocally in ART-derived embryos, and  

 what effects any putative ART-induced epigenetic changes will have upon the growth, 

development and health of the conceptus.  
 

This review will summarise current viewpoints on our understanding of epigenetics and the 

relevance of these findings to reproductive medicine. 

 

3. Genomic imprinting 

 

Genomic imprinting is a system of gene expression used in mammals, plants and insects that is 

controlled by epigenetic information16 and is limited to a restricted number of genes.17 It can be 

defined as the exclusive or predominant expression of one allele of a gene (from either the 

maternal or paternal allele, depending on the gene in question). For example, the insulin-like 

growth factor II gene is an imprinted gene expressed from the paternal allele, while the H19 gene 

is an imprinted gene expressed from the maternal allele. This monoallelic expression is regulated 
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by allele-specific epigenetic marks, such as DNA methylation, which are established in the 

germline and, importantly, are actively maintained during preimplantation development to allow 

continued marking and appropriate monoallelic expression of the correct parental allele of the 

imprinted gene. Imprinted genes are particularly important in the regulation of energy balance 

between the mother and the developing fetus via the placenta,18,19 and current hypotheses 

suggest that genomic imprinting may allow the exertion of parental epigenetic influences on the 

growth and development of the conceptus.20,21 Correct imprinted gene transcript dosage is critical 

for early development.22 Over 200 imprinted genes have been described to date in humans, with 

many imprinted genes locating to clusters on the chromosomes.23,24 In humans there are a number 

of congenital disorders, termed imprinting disorders (IDs), caused by the disruption of imprinted 

genes, including Beckwith-Wiedemann syndrome (BWS), Silver-Russell syndrome (SRS), and 

Angelman syndrome (AS).25 Of these, BWS and SRS appear to be associated with assisted 

reproduction.26ʹ28  

 

4. Disorders of genomic imprinting and human assisted reproduction 

 

A systematic review and meta-analysis of the literature has revealed that the risk of IDs is higher 

in children conceived through assisted reproduction (in vitro fertilisation [IVF] or intracytoplasmic 

sperm injection [ICSI]) than in those conceived naturally.29 Summarising data from eight 

epidemiologic studies of BWS and ART, Vermeiden and Bernardus30 reported a significant positive 

association between IVF/ICSI treatment and BWS, and described a relative risk of 5.2 (95% CI 1.6ʹ
7.4), indicating that one BWS child will be born for every 2700 IVF/ICSI births when using a 

population prevalence in the general population of 1:13 700. The same report concluded that 

there probably is a significant positive association between the incidences of SRS and IVF/ICSI 

treatment, but noted that the number of published cases is small (13 SRS children born after ART). 

It is important, therefore, to note that while cases of IDs are rare, it is necessary to understand 

how ART causes epigenetic disruption in case these outcomes are sentinel indicators of more 

widespread epigenetic disruption, which may include non-imprinted loci. 

 

5. Epigenetic changes attributed to assisted reproduction procedures 

 

In addition to experimental data from other mammals, there is evidence from human studies that 

a number of assisted reproduction procedures, including superovulation, micromanipulation, in 

vitro maturation of oocytes and embryo culture, can cause epigenetic disruption.31ʹ33 

Unfortunately, assisted reproduction procedures are performed at a time when dynamic, 

essential epigenetic reprogramming events are occurring in the gametes and embryos, yet the 

extent of these epigenetic changes and the relevance to human health and disease in assisted 

reproduction cohorts is only just beginning to be understood. It is important, therefore, that the 

use of assisted reproduction should be closely monitored.34 Two assisted reproduction procedures 

will be discussed in detail here as examples of how these may lead to epigenetic disturbance. 

 

5.1 In vitro culture of embryos 

 

A large number of publications have described the effects of in vitro culture (IVC) on gene 

expression in preimplantation embryos from several mammalian species.31,35,36 The expression 

and/or methylation of a number of imprinted genes are disrupted by IVC in some, but not all, 

types of culture media.37ʹ41 Arguably the most comprehensive assessment to date was reported 

by Schwarzer et al.,42 who demonstrated that culture media can induce a wide range of cellular, 

developmental and metabolic changes in mouse preimplantation embryos, including effects on 

metabolic pathways, a conclusion reinforced by Gad et al.43 Very few studies have investigated 

the effects of culture media in human preimplantation embryos. Kleijkers et al.44 reported that 
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genes from several pathways were differentially expressed in the two media tested (G5 medium 

and human tubal fluid medium). In a more recent study by Mantikou et al.45 174 genes were 

differentially expressed in human embryos cultured using these same two media. Given the 

current interest in developing embryo culture media that contain growth factors, it is also worth 

noting that Kimber et al.46 showed that single growth factors added to human embryos in culture 

caused unexpected changes in gene expression profiles. In contrast, a histological study in mice 

reported that the appearance of the placentas or fetuses derived from embryos cultured in 

different media did not differ, however, this study did not involve molecular analysis.47 A further 

example of the detrimental effects of IVC is illustrated by large offspring syndrome (LOS), which 

may be observed after IVC in ruminants and results in the fetus growing large in the uterus, 

bringing risks to the mother as well as the offspring.48 In a comprehensive genetic analysis using 

RNA sequencing, LOS was revealed to involve a multi-locus loss of imprinting syndrome.49 These 

studies highlight that in some circumstances, IVC has the potential for inflicting genome-wide 

changes in gene expression/methylation that can have developmental consequences. 

 

5.2 Evidence for the influence of in vitro culture on human birthweight 

 

Birthweight is an important metric as it is a useful, routinely collected surrogate for fetal growth 

and, along with early postnatal growth, a strong predictor of the long-term risk of cardiometabolic 

disease.50,51 In a comparative study of two commercially available media used for IVC of fresh 

embryos, Dumoulin et al.52 reported a significant difference in birthweight (3453 ± 53 g [sample 

error of the mean] versus 3208 ± 61 g, P = 0.003) and in birthweight adjusted for gestational age 

and gender. Similar findings were reported in a subsequent study from the same group53 

performed in a larger cohort. Furthermore, differences in postnatal weight were observed during 

the first 2 years of life.54 In another study, no significant differences in mean birthweight or mean 

birth length were reported comparing three other types of embryo culture media.55 Further 

studies56ʹ58 using a range of media also failed to reveal significant differences in birthweight. Other 

culture conditions that might affect birthweight are the age of the media,59 the length of the 

culture period (relevant to the extended culture periods used in blastocyst culture versus 

cleavage-stage transfer),60 and the protein source used in the media.61 These studies were 

summarised by Zandstra et al.,50 who concluded that of 11 media comparisons published, six 

showed differences in birthweight while five did not. The list of culture conditions presented is 

not necessarily complete and it is possible that other factors may be identified in the future. A 

working party of the European Society for Human Reproduction and Embryology has called for 

national assisted reproductive technology (ART) registries to track culture media used, to allow 

the long term assessment of health risk, and encourage full disclosure of media composition by 

commercial manufacturers.62 From this report, a number of recommendations were made 

including: 

 

1. A requirement for openness from manufacturers regarding any media formulation changes 

and the scientific rationale for any changes.  

2. The use of quality management systems by ART clinics to ensure that culture medium is stored 

and used correctly.  

3. Clinic follow-up of the health of the offspring as a quality control measure.  
4. A record of the type of culture medium used be recorded in the national register. 

 

The influence of media on pregnancy and perinatal outcome after IVF has also been considered 

in a randomised control trial, published in 2016.63 This study compared outcomes after embryo 

culture in either G5 or human tubal fluid media and reported that birthweight was significantly 

lower in the G5 group while the clinical pregnancy rate was significantly higher.  Although the 
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findings of this study were considered controversial by some sectors of industry, they were 

recently corroborated by an independent statistical analysis.  64 

 

 

5.3 Controlled ovarian hyperstimulation/superovulation 

 

Data from animal and human studies indicate that the process of ovarian stimulation may induce 

epigenetic errors in the oocyte, embryo and placenta. Controlled ovarian hyperstimulation 

(COH)/superovulation overrides the progressive, oocyte growth-dependent process of epigenetic 

maturation and imprint establishment,65,66 or may lead to the recruitment of poor quality oocytes 

that would not normally be selected to ovulate.67,68 COH in humans is associated with epigenetic 

changes at a small number of tested loci69,70 and was reported as the only common factor in the 

medical records of women who gave birth tochildren with BWS after ART.71 Mouse studies have 

identified transgenerational effects of superovulation,72 with epigenetic changes persisting in the 

sperm of the second generation offspring of superovulated mothers. Superovulation has also been 

reported to cause perturbed genomic imprinting of maternally- and paternally-expressed genes 

in the embryo and placenta,68,73 and is therefore likely to disrupt key oocyte/early embryo-specific 

factors important for imprint maintenance during preimplantation development.74ʹ76 

 

6. The evidence for epigenetic changes in human assisted reproductive technology embryos 

 

Epigenetic errors have been reported to be inherent in arrested human embryos.77 Several studies 

have indicated that imprinted genes such as SNRPN, H19, PEG1/MEST, KCNQ1OT1 and imprinted 

gene regulatory regions in some human preimplantation embryos may be susceptible to abnormal 

DNA methylation patterns or gene expression patterns.78ʹ81 Such studies include analysis of 

KvDMR1 1 , the DMR that is aberrantly methylated in ART-related BWS in humans, and is 

hypomethylated in LOS following assisted reproduction in bovine embryos.82ʹ86 However, the 

ŵĞƌŝƚƐ ŽĨ ĂƚƚĞŵƉƚŝŶŐ ƚŽ ŵĞĂƐƵƌĞ ͚ĞƉŝŐĞŶĞƚŝĐ ŚĞĂůƚŚ͛ ǁŝƚŚ ŵĞƚŚǇůĂƚŝŽŶ ĚĂƚĂ ŽďƚĂŝŶĞĚ ĨƌŽŵ such a 

restricted number of loci is currently limited, since there is insufficient knowledge of 

developmental epigenetic processes in humans to demonstrate conclusively whether any 

particular epigenetic defect detected in the preimplantation embryo will cause disease in the 

infant at birth or might be manifest later in development.  

 

7. Infertility and epigenetics 

 

In addition to effects induced by ART, it is important to consider cases of infertility in which 

gametogenesis itself is susceptible to epigenetic defects. Perturbed epigenetic signatures in sperm 

are observed in cases of male infertility,87,88 and epigenetic screening of sperm may be of potential 

use clinically.89ʹ91 There may be equivalent epigenetic defects in the female germline associated 

with female infertility. Kobayashi et al.92 indicated that in some cases epigenetic errors may be 

inherited from the sperm, but other studies suggest that epigenetic defects are due to the 

procedure itself rather than defects in the gametes.79,80,93 It remains possible that pre-existing 

gametic epigenetic defects could be exacerbated by suboptimal conditions in assisted 

reproduction. Other features of couples presenting for ART must also be considered, for example, 

advanced age, diet, body composition, environmental exposures and genetic/epigenetic variation 

which have all been shown to affect epigenetic programming in the mammalian germline.87,94ʹ98 

 

8. The evidence for epigenetic changes in human assisted reproduction cohorts 

 

                                                           
1 KvDMR1: An intronic CpG island within the KCNQ1 gene and KCNQ1OT1 gene. 



RCOG Scientific Impact Paper No. XX 5 of 13 © Royal College of Obstetricians and Gynaecologists 

The epigenetic profiles of ART cohorts appear to differ from those naturally conceived, as 

summarised by Batcheller et al.99 However, studies have been limited by the type of assay used, 

its coverage of the genome and the type of cell used for analysis. In more recent work, quantitative 

assessment of methylation indicated that use of ICSI was associated with a higher level of SNRPN 

methylation.100 In another study, Melamed et al.101 used a methylation array, which allows wider 

sampling of the genome, and revealed that hypomethylation was observed in the assisted 

reproduction group. It was concluded that ART may be associated with significantly higher 

variation in DNA methylation compared with natural conception, in agreement with other 

studies.27 

 

9. Adult cardiovascular and metabolic diseases: a partial legacy of assisted reproduction? 

 

Several studies have indicated that ARTs are associated with fetal growth restriction (FGR), 

prematurity, low birthweight for gestational age, and slightly increased risk of cardiovascular 

malformations and other defects.102,103 A long term follow-up study suggested a potential increase 

in the incidence of elevated blood pressure and fasting glucose, and increased total body fat in 

IVF offspring (reviewed in Hart and Norman104). Systemic and pulmonary vascular dysfunction105 

and right ventricular dysfunction106 have been observed in children and adolescents conceived 

through ART. Assisted reproduction may also lead to cardiac and vascular remodelling that persists 

in human fetal and postnatal development.107 Cardiovascular and metabolic effects are also seen 

in mouse studies where there is evidence for an epigenetic origin for these problems.108 Thus, in 

mice conceived by IVF epigenetic changes were observed at imprinted genes, alongside 

methylation and expression of the endothelial nitric oxide synthase gene and arterial function in 

the aorta. Other studies support this growing body of evidence that there may be increased risks 

for metabolic and cardiovascular diseases following ART.109ʹ114 

 

It is possible that these outcomes are a result of the alteration/adaptation of metabolic pathways 

in mammalian embryos exposed to suboptimal culture media and/or environments.42ʹ44 Indeed, 

many enzymes involved in epigenetic gene regulation in eukaryotic cells make use of co-substrates 

and co-factors generated by cellular metabolism, thereby providing a direct link between culture 

environment and gene regulation.115 Examples include cellular fluctuations in acetyl coenzyme A 

and histone acetylation, nicotinamide adenine dinucleotide and sirtuin deacetylase activity, and 

S-adenosylmethionine and histone/DNA methylation. Of these metabolic intermediaries, 

disturbances to S-adenosylmethionine-mediated epigenetic regulation during embryonic 

development has been the most comprehensively studied, influenced as it is by inputs into 1-

carbon metabolic pathways.116 These inputs include a diverse range of B vitamins (e.g. B12, folate 

[B9] and B6) and elements such as sulphur, zinc and cobalt. These in turn are influenced by lifestyle 

factors including obesity, cigarette smoking, alcohol and caffeine consumption,117 which can lead 

to epigenetic dysregulation of gene expression in fetal tissues during early pregnancy.118 The 

accumulating evidence indicates that a more holistic approach is required when offering guidance 

to couples undergoing fertility treatment that extends to dietary advice and lifestyle choices 

although clearly, further research is required. Strategies that avoid excessive use of ART should be 

considered. 

 

10. Long-term effects of assisted reproduction on placental function 

 

Assisted reproduction pregnancies have been associated with larger placentas and higher 

placental weight/birthweight ratios119 in addition to modified imprinted gene expression and/or 

methylation in the placenta120 and cord blood.121 Such findings are likely to be important since 

imprinted genes are highly expressed and play a pivotal role in placental function.122 In mouse 

experiments, ART can lead to multiple detrimental effects in the placenta39,123ʹ126 which 
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collectively provide molecular evidence that assisted reproduction can adversely affect placental 

function, with the potential to influence long term health.127 

 

11. Opinion 

 

 At least two disorders of genomic imprinting, BWS and SRS appear to be associated with 

ARTs, however the occurrence of these disorders is very rare. 

 Evidence from a large number of animal studies reveals that ARTs including embryo culture, 

superovulation, in vitro maturation of oocytes, micromanipulation and embryo transfer have 

the potential to produce epigenetic changes that can cause dysfunction in the conceptus or 

placenta. 

 A small number of human studies show that although ARTs, such as superovulation and cell 

culture, can induce epigenetic changes in the gametes and/or preimplantation embryo, the 

developmental effects of these changes and their involvement in disease process are 

currently unknown.  

 Whether epigenetic disturbance is caused by ARTs or an epigenetic error in the gametes is 

unclear, but it is possible that in some cases assisted reproduction exacerbates pre-existing 

defects in the gametes.  

 Further studies are required on whether the use of different culture media can affect 

birthweight in humans and on the possible effects of extended embryo culture. In agreement 

with the opinion of others,63 and in view of the findings from the first randomised controlled 

trial on the effects of culture media on pregnancy and perinatal outcome,64 greater 

transparency is essential with respect to the composition of embryo culture media.  

 There is evidence for epigenetic differences and gene expression changes in ART cohorts 

when compared with those naturally conceived, although genome-wide studies are required 

to confirm this. 

 Emerging data indicate that long-term consequences of ARTs may include cardiovascular and 

metabolic disorders, which may be due to compromised placental function.  

 More research is required to ascertain the impact of ARTs and infertility on epigenetic 

programming on the human conceptus and any short-term and/or long-term developmental 

consequences that follow.  
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must be made by the doctor or other attendant in the light of clinical data presented by the patient 

and the diagnostic and treatment options available. 
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