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Abstract

This paper revisits the problem of adverse selection in the insurance market of Rothschild

and Stiglitz [35]. We extend the three-stage game in Hellwig [19] by allowing firms to endoge-

nously choose whether or not to pre-commit on their contractual offers (menus). We show

how this mechanism can deliver the Miyazaki-Wilson-Spence allocation as the unique perfect-

Bayesian equilibrium. This allocation is the unique incentive-efficient and individually-rational

maximizer of the utility of the most profitable type. In fact, given that the informed player

has only two types, it is the unique core allocation and thus the unique neutral optimum in the

sense of Myerson [29].
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1 Introduction

An old yet still open issue in applied micro-economic theory concerns the nature of competitive

equilibrium in insurance markets under adverse selection. This dates back at least to the seminal

study in Rothschild and Stiglitz [35], and has led to a significant body of research which exhibits

renewed momentum in the wake of the last financial crisis. Restricting attention to the insurance

market in Rothschild and Stiglitz [35] - what we will be referring to henceforth as the “canonical

insurance problem” - the present paper proposes a game-theoretic mechanism in which the con-

junction of Bertrand competition, on the one hand, and Nash-type strategic interaction, on the

other, delivers the strongest of results.

Namely, the Miyazaki-Wilson-Spence (MWS) allocation emerges as the unique perfect Bayesian

equilibrium (PBE) outcome. As is well-known, this allocation entails the separation of risk-types

across insurance contracts, may involve cross-subsidization, and is always interim incentive efficient

(IIE). Being in fact the most preferred point on the IIE frontier for the profitable risk-type, it is

the most desirable allocation with respect to core and neutral optimality (either notion in the sense

of Myerson [29] and to be described in the sequel).

More specifically, we consider the following extension of the three-stage game in Hellwig [19]. At

stage 1, the firms (insurers) simultaneously offer collections of insurance menus, specifying for each

menu in their collection whether or not they commit upon its delivery. At stage 2, having observed

which menus have been offered with commitment, the customers (insurees) choose amongst the

firms’ offers. At stage 3, after observing the offers of stage 1 (including whether or not a given

menu has been offered with commitment) but also whether or not a given menu has been chosen, the

firms that offered menus without commitment decide simultaneously whether or not to withdraw

them. We show that this mechanism can deliver the MWS menu (offered without commitment) as

the unique equilibrium allocation.

The key feature of our mechanism is endogenous commitment : firms can choose to publicly

commit at stage 1 to deliver a given menu (allocation) at stage 3, irrespectively of the history of

play at that point. Intuitively, the fact that a firm can publicly commit to deliver a given menu

means that the customers’ decision of whether or not to choose it depends only on preferences, not

on beliefs - for they need not worry about the possibility that the menu might be later withdrawn

(an action that would depend on the firm’s belief about the distribution of risk-types in its pool

of customers, which would in turn depend on the actions and beliefs of the other firms and the

customers, etc.). As a result, starting from any allocation that is not the MWS one but satisfies the

constraints for IIE optimality, it is always possible for a firm to offer with commitment a cream-

skimming menu that remains profitable even if it attracts both risk-types (see Lemma A.3). That

is, the combination of the firms’ ability to cross-subsidize and to commit publicly to a menu (off the

equilibrium path) leaves the MWS as the unique candidate equilibrium allocation (see Claim 3.1).

As there are no allocations that can cream-skim against the MWS menu and remain profitable when

attracting both risk-types, the threat of withdrawing the MWS menu fends off cream-skimming

deviations with commitment. Regarding cream-skimming deviations without commitment, the
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signalling nature of the subgame in stages 2-3 supports an equilibrium scenario in which the MWS

menu is never withdrawn at stage 3 (see Proposition 3.1).

It is noteworthy that the market dynamics described above lie within the realm of Bertrand

competition, embedding in fact the seminal studies in Rothschild and Stiglitz [35] and Hellwig [19].

The two models result directly from our mechanism if we restrict the firms to making offers at

stage 1, respectively, only with and only without commitment. That is, the models in Rothschild

and Stiglitz [35] and Hellwig [19] can be viewed, respectively, as examples of Bertrand competition

without exit and with exit but without the ability to publicly commit to not exit. As we show in

the sequel, this perspective sheds light in important aspects of Bertrand competition under adverse

selection that seem to have been ignored by the two papers, causing some confusion in the subse-

quent literature. Contrary to what seems to be a common belief in the literature, the restriction

either model imposed on competition under adverse selection went far beyond not allowing firms

to cross-subsidize between risk-types.

If firms can make offers only with commitment, the impossibility of exit forces them to consider

only menus that are safe in the sense of Holmstrom and Myerson [20]: in the current context,

separating menus that avoid losses on a contract-by-contract (i.e., type-by-type) basis; in fact,

on the equilibrium path they must break even on a contract-by-contract basis (see Lemma B.2).

Moreover, the conjunction of free-entry with the fact that firms can offer cross-subsidizing menus

only with commitment renders the MWS the unique candidate equilibrium allocation. Clearly, if

firms can cross-subsidize but not exit, the MWS menu is the unique equilibrium allocation when

it coincides though with the Rothschild-Stiglitz-Wilson (RSW) allocation (the unique candidate

equilibrium in Rothschild and Stiglitz [35]); equivalently, only if the RSW allocation is IIE (see

Claim 3.1 in the Online Appendix). Yet the impossibility of withdrawal renders the RSW allocation

vulnerable to cream-skimming deviations, leading to the issue of non-existence of equilibrium in

Rothschild and Stiglitz [35]. As it turns out, there are no profitable cream-skimming deviations if

the RSW allocation is IIE (see Claim 4.2).1

If, on the other hand, the firms can make offers only without commitment, any allocation that

is individually rational for the firms can be supported now as equilibrium (see Claim 4.1). The

multiplicity of equilibria arises because deviant menus can be offered only without commitment:

in the signalling subgame of stages 2-3, the possibility that the deviant menu is withdrawn renders

its expected profitability a function of the players’ beliefs about its profitability - and beliefs can

be arbitrary off the equilibrium path. Clearly, the real issue for Bertrand competition under

adverse selection in Rothschild and Stiglitz [35] has to do solely with the existence of equilibrium.

By contrast, the real issue in Hellwig [19] has to do solely with the efficiency of the equilibrium

allocation. By combining free entry and exit with cross-subsidization and endogenous commitment,

our approach addresses either issue simultaneously. And suggests that the real desideratum for

market competition under adverse selection ought to be enabling the firms not only to freely enter

and exit, but also to publicly commit to not exit.

1In Rothschild and Stiglitz [35], the fact that the space of menus (and thus also that of deviations) is further

restricted to not allow cross-subsidization relaxes slightly the issue of non-existence of equilibrium (see Claim 4.3).
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In terms of the fundamentals of cross-subsidization, our approach builds upon the insights in

Miyazaki [28] and Grossman [17]. The former paper was the first to introduce menus of contracts

as the objects of trade: to allow that is firms to offer menus of contracts but withdraw a given

contract only if they do so for the entire respective menu. The main idea in fact was to identify

a given firm by the menu it offers: menu withdrawals are interpreted as the corresponding firms

exiting the market entirely. By contrast, the latter paper suggested that, especially within the

context of insurance provision, one ought to imagine customers submitting applications and firms

deciding whether or not to approve the applications they receive.

Taking this as our interpretation of the last two stages in Hellwig’s game, we introduce two

additional elements in the applications’ process. Our firms may offer (finite) collections of menus,

and subsequently withdraw single menus from their collections. They may also choose to send their

customers “pre-approved” application forms. The former element means that “exit” may refer to

a given menu from a firm’s collection (a particular product from a firm’s line of products), not

necessarily to the firm closing down. The second element is an equally realistic insight on common

practice in the markets for standardized insurance or credit provision. It readily admits moreover a

game-theoretic interpretation, as a public action in the terminology of Myerson [29]: an enforceable

decision a player can publicly-commit to carry out, even if it may turn out ex-post to be harmful

to her or others.2

In terms of related studies, the underlying issue being so fundamental there is a large and

important literature on competitive equilibria under adverse selection. Its principal aim has been

to propose mechanisms, along with their implementing market structures, to ensure that always

some allocation will be supported as competitive equilibrium, under some associated notion of

competitive equilibrium. The respective models can be broadly classified into three categories,

based upon the extent to which the mechanism allows the players’ behavior to be strategic.

One class of models (see, amongst others, Prescott and Townsend [32]-[33], Rustichini and

Siconolfi [36], Dubey and Geanakoplos [12], Dubey et al. [13], and Guerrieri et al. [18]) has focused

on Walrasian mechanisms. The central message has been that general economies with adverse

selection do not always admit pure Walrasian equilibrium pricing systems, and when they do the

resulting allocations are not necessarily IIE. To guarantee existence of equilibrium some studies

have introduced rationing or suppressed the requirement that firms are profit-maximizing while

imposing at the same time quantity constraints on trade.3 Either of these approaches arrives at

2Many a reader will have at some point received in the mail application forms, especially from credit-card com-

panies, that name the recipient “pre-approved” for a particular product. Many a reader will have also filled in and

mailed back such a form, only to find out that the small print one typically misses renders the term “pre-approved”

devoid of any meaning other than “pre-selected as a marketing target.” In sharp contrast, our mechanism demands

explicitly that the term is legally binding. And prescribes implicitly the required supporting institutional substructure

as a sufficient condition for efficient insurance provision in the presence of adverse selection.
3A notable exception is Bisin and Gottardi [8] where, instead of being constrained, the Walrasian mechanism is

enhanced with the implicit presence of institutions that monitor trade appropriately. Restricting attention also to

the canonical insurance economy, this paper shows that the RSW allocation obtains always as the unique Walrasian

equilibrium if there are markets for contingent claims in which agents trade only incentive-compatible contracts. Yet,
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some equilibrium that is essentially unique and involves a separating allocation. Typically, however,

this is not IIE while uniqueness obtains by restricting the out-of-equilibrium actions and beliefs

often in strong ways.4

Another perspective has been to look at mechanisms in which competitive equilibrium is sup-

ported by strategic behavior, and this has produced two separate lines of approach (for a short

yet comprehensive review, see Mimra and Wambach [26]). In the early models (see Wilson [40],

Miyazaki [28], Grossman [17], Riley [34], but also Engers and Fernandez [14]), some of the play-

ers exhibit strategic behavior which is not of the Nash-type.5 Because of this, a most important

shortcoming of this strand of the literature is the absence of game-theoretic structure.6 In sharp

contrast, more recent studies (see Netzer and Scheuer [30], Picard [31], von Siemens and Kosfeld

[37]-[38], as well as Asheim and Nilssen [3]) rest upon the game-theoretic foundation in Hellwig [19]

(or its generalization in Maskin and Tirole [25]). As such, they are directly related to the present

paper and will be discussed in some detail in the sequel.

The balance of the paper is structured as follows. The next section introduces the canonical

insurance problem and recalls some useful results concerning the efficiency of the feasible allocations.

Section 3 describes the mechanism and explains intuitively its equilibrium dynamics. In Section

4, we interpret our mechanism through the prism of the directly-related results in the literature -

demonstrating in particular how our approach sheds light to the issues about competition under

adverse selection discussed above. Section 5 concludes, being followed by appendices that contain

the proofs of the results in the main text (supporting technical material and results are to be found

in the Online Appendix).

to ensure that incentive efficiency is attained even when the RSW allocation is not IIE, markets for consumption

rights are required. The ensuing Arrow-Lindahl equilibria internalize the consumption externality due to adverse

selection. By varying the endowment of consumption rights, the equilibrium set traces the entire IIE frontier but

for the MWS point. The latter can be obtained only at the limit of a sequence of economies as the distribution of

consumption rights varies accordingly.
4In its pure form, the Walrasian approach was initiated by Prescott and Townsend [32]-[33] and revisited recently

by Rustichini and Siconolfi [36]. Under rationing, the refinement criteria range from subgame perfection (see Guerrieri

et al. [18]) to the universal divinity of Banks and Sobel [6] (see Gale [15]) or the stability of Kohlberg and Mertens

[22] (see Gale [16]). The latter notion has been deployed also under quantity constraints (see Dubey and Geanakoplos

[12] or Dubey et al. [13]) but seems to be more binding in that environment - as shown in Martin [23], its weakening

to something akin to trembling-hand perfection leads to many additional equilibria.
5The sellers in Wilson [40], Miyazaki [28], Riley [34], Engers and Fernandez [14] but also the buyers in Grossman

[17] are able to foresee the unraveling of equilibrium Rothschild and Stiglitz [35] warned about and modify their plans

so as to prevent it.
6A notable exception here is Engers and Fernandez [14]. Allowing for cross-subsidization, this study extends the

notion of reactive equilibrium in Riley [34] to one that admits the RSW allocation as the unique outcome. The

authors present also a game, with an infinite number of moves, in which the RSW allocation is supported as SPNE.

Alas, so are a very large collection of other allocations within which not only the RSW allocation but also the IIE

frontier are subsets of negligible relative size.
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2 The Canonical Insurance Problem

Consider a continuum (of unit measure) of risk averse agents, each having the same wealth endow-

ment W ∈ R++ and facing the idiosyncratic risk of it being reduced by the amount d ∈ (0,W ).

The endowment risk is depicted by two states of nature, “no accident” and “accident” (denoted,

respectively, by s ∈ {0, 1}), with either state perfectly observable and verifiable while each agent

belongs to one of two risk classes, “low-risk” and “high-risk” (denoted, respectively, by h ∈ {L,H}).

The class of an agent (her “risk-type”) corresponds to the probability of having an accident (with

0 < pL < pH < 1). It is her own private information whereas the share λ ∈ (0, 1) of low-risk agents

in the population is common knowledge.7

An agent may insure herself against her endowment risk by accepting an insurance contract.

The space of admissible contracts is A = [−W0,W1] × [−W0,W1], for some constants (W0,W1) ∈

R+ × R++. The typical contract a = (a0, a1) ∈ A determines the premium a0 to be paid in

exchange for receiving the net indemnity a1 if an accident occurs. Letting the function w (a) =

(w0 (a0) , w1 (a1)) := (W − a0,W − d+ a1) depict the corresponding wealth vector gives a one-to-

one relation betweenA and the wealth spaceW = [W −W1,W +W0]×[W − d−W0,W − d+W1].

It entails thus only slight abuse of notation to take the agents’ preference relation over lotteries on

W, denoted by %h for risk-type h, as ordering also lotteries on A.

Regarding these preferences, partitioning the population into the low- and high-risk classes

is supposed to capture all the relevant information about the problem of adverse selection (i.e.,

the partition obtains after having inferred as much as possible from the agents’ observable char-

acteristics). As a result, apart from being of a particular risk-type, the agents are otherwise

identical. They all have von Neumann-Morgenstern preferences over wealth lotteries, the expected

utility of an agent of risk-type h being given by Uh (w (a)) = (1− ph)u (w0 (a0)) + phu (w1 (a1)).

The state- and type-independent Bernoulli utility function u :
[
W − d−W,W +W

]
→ R, where

W = max {W0,W1 − d}, will be taken to be everywhere strictly-increasing, strictly-concave, and

twice continuously-differentiable. And to abuse notation slightly further, we will often take Uh (·)

as being defined directly on A.

On the supply side of the market, insurance is provided by risk-neutral firms which maximize

expected profits. For the typical firm this is given by Πh (a) = (1− ph) a0−pha1 when the contract

is bought by a customer of risk-type h. To ensure competition, we will assume that the collection

of firms forms a finite set N with cardinality |N | ≥ 2. We will suppose also that the insurance

market in question admits free entry: the firms have adequate financial resources to be able to

deliver, following the realization of the accident state, any collection of contracts from A to any

subset of the population.

7The continuum hypothesis is standard in models of this kind. It facilitates the deployment of some version of the

law of large numbers to enable the assumption that exactly the shares pL [resp. pH ] of the low-risk [resp. high-risk]

agents and λpL + (1− λ) pH of the entire population will eventually have an accident. Of course, applying laws of

large numbers on a continuum of random variables is not without technical caveats - see the footnote 3 in Netzer and

Scheuer [30] for some references on the technical complications and the respective remedies.
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Feasibility and Efficiency

Given this data, we can determine the collection of contracts that are relevant for the problem at

hand under the standard assumption that the choice of contract by an agent is exclusive.8 Each

risk-type, that is, will be restricted to choose at most one contract from those available in the

market when she is called upon to act. Under this condition, since the population is partitioned

into two risk classes, the relevant collection of contracts is the space of douplets {aL,aH} (which

we will call insurance menus) where aL,aH ∈ A while the subscript indicates the risk-class the

respective contract is meant for. To ensure though that we remain within the realm of the direct

revelation principle, and that market participants are rational with an outside option available, we

will restrict the relevant space of insurance menus to those that are incentive compatible for either

risk-type and individually rational for all market participants.

The typical menu m = {aL,aH} meets the former requirement if it satisfies9

(ICh) : Uh (ah)− Uh (ah′) ≥ 0, h, h′ ∈ {L,H} , h′ 6= h

while it is individually-rational for risk-type h if it satisfies10

(IRh) : Uh (ah) ≥ uh ≡ Uh (0) , h ∈ {L,H}

As for the firms, they can guarantee themselves no losses simply by abstaining from market activity.

The menu is thus individually-rational for a firm if it avoids losses at least for some belief the firm

may have about the distribution of risk-types in its customer pool:

(IRF ) : ∃p ∈ [0, 1] : Π (m|p) := pΠL (aL) + (1− p)ΠH (aH) ≥ 0

The space of relevant menus is thus given by

M = {{aL,aH} : aL,aH ∈ A, (ICL) , (ICH) , (IRL) , (IRH) , (IRF )}

8Even though widely used in the literature, this is admittedly a strong requirement. Non-exclusive contracting in

the context of an insurance market under adverse selection has been considered in the literature only very recently.

With respect to the canonical insurance problem, Ales and Maziero [1] introduce a third risk-class of customers (the

medium-risk type), and conduct their study using free-entry arguments. Attar et al. [4] on the other hand allow

for more general risk-preferences for either risk-type, and proceed with a game-theoretic analysis. The differences

between the two models notwithstanding, the common key insight is that a pure-strategy equilibrium may fail to

exist; and when it does exist, insurance is provided only to the high-risk customers (in Attar et al. [4], it may also

require that the low-risk type becomes herself an insurer).
9This condition ensures that truthfully-revealing one’s risk-type is a Nash equilibrium amongst the customers: it

is in one’s best interest to report her type honestly given that everyone else does the same. A menu that is incentive

compatible for either risk-type can be either separating (if at least one of the (ICh) inequalities is strict) or pooling

(if either of the (ICh) constraints binds). The latter type of menus cannot but be of the form {a,a} for some a ∈ A

(see Lemma 1.8 in the Online Appendix).
10This condition reflects the very fact that each customer enters the insurance market while still in possession of

the endowment lottery. Technically, it suffices to assume a zeroth firm with a single plan of action: offering and

honoring just the menu {0,0} irrespectively of the history of play. Observe also that we may let uh > 0 with no loss

of generality: since Uh (0) = (1− ph)u (W )+phu (W − d), normalizing the customers’ outside option in the accident

state to u (W − d) = 0 gives Uh (0) = (1− ph)u (W ) > (1− ph)u (W − d) = 0.
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and within it the search for optimal menus will be based of course upon the Pareto criterion. Given

two menus m = {aL,aH} and m′ = {a′L,a
′
H}, the former Pareto-dominates the latter weakly if

Uh (ah) ≥ Uh (a
′
h) for either h, and strictly if at least one inequality is strict. As is well-known,

moreover, it suffices here to search for the incentive efficient (IE) allocations. These are the Pareto-

optimal amongst the allocations that satisfy (ICh) for either h and (IRF ) for p = λ. Formally, the

IE frontier consists of those menus that solve the IE(µ)-problem:11

max
{aL,aH}=m∈Mλ

µUL (aL) + (1− µ)UH (aH)

where µ ∈ [0, 1] and

Mλ = {m ∈ M : Π (m|λ) ≥ 0}

In what follows, we will be referring to an allocation as IE if it is the IE(µ)-optimum for some

µ ∈ [0, 1]. The respective menu will be denoted as mµ =
{
a
µ
L,a

µ
H

}
.

Our main focus though will be on two allocations that feature prominently in the literature.

The Rothschild-Stiglitz-Wilson (RSW) allocation is the only allocation that solves the RSW(µ)-

problem:

max
{aL,aH}=m∈Mλ

µUL (aL) + (1− µ)UH (aH) : Πh (ah) ≥ 0, h ∈ {L,H}

for every µ ∈ [0, 1]. This maximizes the utility of either risk-type while being also ex-post

individually-rational for the firms. Its importance lies in the latter characteristic, which renders it

a safe allocation in the terminology of Myerson [29]: one the uninformed party would continue to

view as individually-rational even if she knew the private information of the informed, whatever

this information might be. As is well-known, in the current setting the RSW allocation is given

by the separating menu m∗∗ = {a∗∗L ,a∗∗H }, which offers to the high-risk type her full-insurance

first-best allocation: a∗∗H = argmaxa∈A:ΠH(a)≥0 UH (a) (which is also such that a∗∗0H = d − a∗∗1H ,

UH (a∗∗L ) = UH (a∗∗H ), and Πh (a
∗∗
h ) = 0 for h ∈ {L,H}).12

11The appropriateness of the IE criterion stems from that there cannot be unanimous agreement to depart from

an IE allocation if individuals know just their own private information (see Theorem 1 and the subsequent discussion

in Holmstrom and Myerson [20]). Notice also that we may represent the Pareto-frontier via changing the parameter

µ in the objective of the IE(µ) problem as long as the feasible set is convex (see Proposition 16.E.2 in Mas-Colell

et al. [24]). And even though the profit constraint is trivially convex, the incentive-compatibility ones are not. It

is thus standard practice in the literature (see for instance Myerson [29] or Maskin and Tirole [25]) to assume that

allocations are assigned randomly. In the present setting, this refers to distributions on A × A and, letting v be a

typical one, makes the (ICh) constraint read
∫

A×A
[Uh (ah)− Uh (ah′)] dv (ah,ah′) ≥ 0; being linear, this is trivially

convex in v. As it turns out, the IE frontier consists here entirely of deterministic allocations so that this assumption

can be left in the background as a purely technical caveat.
12In the terminology of Maskin and Tirole [25], this is the RSW allocation relative to the endowment while the

IE optima are interim efficient (and, thus, also weakly interim efficient) relative to the prior belief {λ, 1− λ}. In the

present study, however, the prior and interim beliefs will always coincide: the uninformed party will always be the

one to make the proposals and thus no updating of beliefs will ever take place at the interim stage. This is why we

choose to ignore the term “interim” all together.
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Even more of interest in the sequel will be what is known as the Miyazaki-Wilson-Spence (MWS)

allocation, which solves the IE(1)-problem but for an additional restriction on the feasible set. The

restriction strengthens the individual-rationality of the high-risk type (whose presence is the very

cause of the adverse selection problem) by requiring that her participation in the insurance market

renders her at least as well off as if she were to reveal her type. Formally, letting her individual-

rationality constraint be now given by

(IRFB
H ) : UH (aH) ≥ UH (a∗∗H )

the MWS allocation solves what we will be referring to as the MWS problem:

max
{aL,aH}=m∈Mλ

UL (aL) :
(
IRFB

H

)

The MWS allocation is unique (see Lemma 2.1 in the Online Appendix), given by the IE(µ)-

optimum where µ = max
{
µ ∈ (λ, 1] : UH

(
a
µ
H

)
≥ UH (a∗∗H )

}
(see Lemma 2.6 in the Online Ap-

pendix). It will be denoted henceforth by m = {aL,aH}.

Remark 1. The importance of the MWS menu emerges when we combine the following facts: (i)

either type’s utility varies monotonically with µ on the IE frontier (see Lemma 1.5 in the Online

Appendix), and (ii) the low-risk [resp. high-risk] type is the profitable type on [0, µ] [resp. on

[0, 1] \ [0, µ]] (see Lemma 2.4 in the Online Appendix). The MWS allocation is the point on the IE

frontier that maximizes the utility of the profitable type.

Remark 2. Investigating the issue of allocative efficiency, the original definition of the IE(µ)-

problem does not actually require that the (IRh) constraints are met. When it comes though to

the issue of efficient insurance provision in a competitive market under free entry, these become

relevant conditions for the customers’ participation. Nevertheless, and in sharp contrast to most

of the recent literature on the canonical insurance problem (save for the models that result in

equilibrium sets consisting only of the IE allocations that Pareto-dominate the RSW one), this

discrepancy will be of no consequence for the subsequent analysis. Both in terms of supporting

the equilibrium scenario as well as of establishing its uniqueness, our arguments will deploy menus

that lie arbitrarily close to the MWS one. And such menus are guaranteed to satisfy either (IRh)

constraint (see Lemma 2.5 and Remark IV in the Online Appendix). They lie in fact in the space

M+
λ =

{
{aL,aH} = m ∈ M : Π (m|λ) > 0, ah∈{L,H} ∈ R

2
++

}

3 The Mechanism

Our mechanism operates as follows. At stage 1, the firms decide simultaneously on their offers. Each

firm must choose a finite collection from M and, at the same time, whether or not to pre-commit

upon the delivery of each menu in this collection.

At stage 2, from the total set of contractual offers the firms have introduced at stage 1, the

customers choose simultaneously menus to apply for and contracts to receive out of these menus.
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Their decisions are made after observing whether or not a given menu has been offered with

commitment. Each risk-type can apply for up to one menu, and choose only one contract from that

menu. If a customer doesn’t apply for any menu, she is left to face her endowment lottery. If no

menu receives applications, the game ends. If a customer applies for a menu that has been offered

with commitment, she receives her chosen contract from that menu. If all the menus introduced

at stage 1 have been offered with commitment or all customers at stage 2 apply for menus offered

with commitment, the game ends; otherwise, it continues to the next stage.

At stage 3, after observing the offers of stage 1 - including whether or not a given menu has been

offered with commitment, - the firms that offered menus without commitment decide simultaneously

whether or not to withdraw them. They are allowed to withdraw single menus from their collection,

but not single contracts from menus. The firms make their decisions after observing whether or

not a given contract in a given menu has received applications. If the menu a customer had applied

for at stage 2 gets withdrawn at stage 3, she is left to face her endowment lottery; otherwise, she

receives her chosen contract from that menu. In either case, the game ends.

We will denote the above game by Γ =
(
SF , SA,Πh∈{L,H}, Uh∈{L,H}

)
. Pure-strategy profiles

for the firms will be denoted by s = (s1, . . . , sN ) ∈ SF with the typical strategy having three

components. The first two reflect the action of the typical firm n ∈ N at stage 1: the choice

Mn ∈ M :=
{
M ∈ 2M : |M | ∈ N

}
and, for each m ∈ Mn, the decision of whether or not to pre-

commit upon its delivery. This will be depicted by the function c : Mn → C ≡ {C,NC}. We will

let ∪m∈Mn
(m, c (m)) ≡ s1n ∈ S1

n ≡ ∪M∈MM × C. Abusing notation slightly, we will let also

s1n|M = Mn s1n|C =
{
m ∈ s1n|M : c (m) = C

}

The typical history to be observed at the beginning of stage 2 will be
(
s11, . . . , s

1
N

)
= s1 ∈ S1 =

∏
n∈N S1

n. This determines Γ
(
s1
)
, the (signalling) subgame of stages 2-3.13 The third component of

the typical firm’s strategy is given by a functional s2n : S1 → {W,NW}M (its image being the space

of functions M → {W,NW}). Specifically, s2n
(
s1
)
is a function s1

n|M → {W,NW} prescribing, for

each m ∈ Mn, whether or not to withdraw it. As there is no such decision, however, to be made

on menus that have been offered with commitment, we impose the restriction

s2n
(
m, s1−n

)
= NW ∀m ∈ s1n|C , ∀n ∈ N , ∀s1 ∈ S1

To complete defining the firms’ strategy space, let S2
n be the space of functionals S1 → {W,NW}M,

S2 =
∏

n∈N S2
n, and SF = S1 × S2.

13Recall that our firms do observe at stage 3 the applications their contractual offers receive by the customers at

stage 2. The very act of applying, therefore, for a given contract from a given menu institutes a signal a customer

(the informed party) sends to the firms (the uninformed party). To fix ideas more precisely, imagine that there are

two receivers in the well-known “beer-quiche” example from Cho and Kreps [9]. Suppose moreover that each receiver

is in fact a drinks’ vendor: one being the sole supplier of beer, while the other the sole supplier of quiche. To see

that this corresponds to the typical subgame of stages 2-3 in our mechanism, in Figures 3-6 below, let “beer” and

“quiche” stand, respectively, for the menu offered by the “entrant” and the “incumbent” (with “fight” and “acquiesce”

standing, respectively, for “honor” and “withdraw”).
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Regarding the strategy of the typical customer at the beginning of stage 2, for risk-type h, this

is given by a function αh : S1 → A which prescribes the contract to be chosen out of the available

set

M
(
s1
)
= ∪n∈N s1n|M

in the subgame Γ
(
s1
)
for each history s1 ∈ S1. By the very definition of our mechanism, the

contract in question is unique. Whenever it can be found in more than one menus, we will assume

that each of these menus receives the same share of the total applications made for this contract

by the risk-type h. For either risk-type, the strategy space is SA = AS1
.

Equilibrium

To make predictions, we will use the pure-strategies version of the PBE in Maskin and Tirole

[25]. This is basically a pure-strategies sequential equilibrium, but for the following caveat. The

firms’ contractual action space in stage 1 being infinite, the requirement for consistency of beliefs

between stages 1-2 is not well-defined. For this reason we seek instead a vector of (pure) strategies

(a profile of strategies for the firms and a strategy for each type of customer), and a vector of

beliefs at each information set of the typical subgame Γ
(
s1
)
such that (i) the strategies are optimal

under these beliefs (sequential rationality), and (ii) the belief at the beginning of Γ
(
s1
)
is the

prior {λ, 1− λ} while the subsequent beliefs are everywhere (fully) consistent with the strategies.14

Under this notion of equilibrium and using the expression “honoring a menu” to mean that it is not

withdrawn at stage 3, an equilibrium menu is such that (a) on the equilibrium path, it is honored

at stage 3 and chosen by at least one risk-class of customers, and (b) there is no other menu that,

if offered alongside the one in question, would expect strictly positive profits under some (fully)

consistent profile of beliefs.

Formally, consider a given strategic profile (s, αL, αH) ∈ SF×SA×SA. We first define the payoffs

for the stage-2 subgame Γ
(
s1
)
. Depicting the contract in the typical menu that is meant for the

typical risk-type by the function ah : M → A with ah = ah (m) for m = {aL,aH}, optimality

requires that her best response is given by the function αh : 2M → A where15

αh (M) ∈

{
argmaxa∈∪m∈M{ah(m)} Uh (a) if ∃m ∈ M : Uh (ah (m)) ≥ uh

{0} otherwise
(1)

14The latter part of the statement in (ii) entails the existence of strategic profiles that are arbitrarily close to the

equilibrium one and assign positive probability to every move on the game tree, such that the belief vectors that

satisfy Bayes’ rule for these strictly-positive strategic profiles are arbitrarily close to the equilibrium beliefs. In Maskin

and Tirole [25] (see in particular their footnote 13), the requirement for consistency of beliefs between stages 1-2 is

replaced by that of updating the prior to an interim belief via Bayes rule. In the present mechanism, the uninformed

party being the one to make the proposals, no updating of beliefs takes place at the interim stage.
15Recall that we restrict attention to incentive-compatible menus while we let each risk-type choose at most one

contract from the available set. There is no loss of generality thus in assuming that, out of a given menu m, the

risk-type h chooses the contract ah (m) - the one that is intended for her type. Notice also that no customer will ever

choose any contract from a menu if she believes that the latter will be withdrawn. Under our normalization of the

function u (recall footnote 10) any such menu is strictly dominated by the endowment lottery.
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We will let also

Mh (M) := {m ∈ M : ah (m) = αh (M)} , M ∈ 2M

Turning next to the firms’ payoff, observe that Γ
(
s1
)
is a signalling subgame in which the

customers send signals to the firms by choosing a menu. For each n ∈ N and s1n ∈ S1
n, let

λn : s1
n|M × {L,H} → [0, 1] be a belief function; {λLn (m) , λHn (m)} is the risk-type probability

distribution the nth firm assigns to the pool of applicants for the menu m at stage 2. We need to

distinguish of course between two kinds of information sets within Γ
(
s1
)
. The first corresponds

to offers that have been made with commitment, the respective information sets being singletons

(see Figures 2-3 and the left panel of Figure 4). The second refers to offers that have been made

without commitment, the respective information sets being non-singletons (see Figures 2, 4, and

the right panel of Figure 3). At the typical information set, the firm’s beliefs are given by

λhn (m) =
λhσhn (m)∑

h∈{L,H} λhσhn (m)
h ∈ {L,H} (2)

for some function σhn : s1
n|M → R+ and where λL = λ = 1− λH ; with the following restriction at

the singleton information sets

σhn (m) = 1 ∀h ∈ {L,H} ∀m ∈ s1n|C , ∀s1n ∈ S1
n, ∀n ∈ N (3)

Suppose now that the nth firm is offering the collection Mn ∈ 2M while the typical from the other

firms is honoring some Mn′ ∈ 2M. Letting

Nh (∪n∈NMn) = {n ∈ N : Mn ∩Mh (∪n∈NMn) 6= ∅}

the payoff of the nth firm is given then by16

ΠW
n (Mn,∪n∈NMn, α) = 0

ΠNW
n (Mn,∪n∈NMn, α) =

∑

h∈{L,H}

∑

m∈Mn

λhn (m)Πh (ah (m))1m∈Mh(∪n∈NMn)

|Mn ∩Mh (∪n∈NMn) ||Nh (∪n∈NMn) |

if it withdraws and honors, respectively, each menu in Mn. Let now

M (sn) =
{
m ∈ s1n|M : s2n (m) = NW

}

M (s) = ∪n∈NM (sn) M (s−n) = ∪n′∈N\{n}M (sn′)

ΠNC
n

(
s1n|M \Mn, s−n, α

)
= max

M ′
n∈2

s1
n|M

\Mn

ΠNW
n

(
M ′

n,M (s−n) ∪Mn, α
)

16The quantity |Nh (∪n∈NMn) | in the denominator of the typical term in the summation giving

ΠNW
n (Mn,∪n∈NMn, α) ensures that the total profits/losses from a given risk-type are shared equally across those

firms that honor her optimal contract. The quantity |Mn ∩Mh (∪n∈NMn) | ensures that, for each of these firms, the

gain from offering this contract via multiple menus is not an accounting but a strategic one (in the sense of fending

off or creating profitable deviations).
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With respect to the decision of which menus to honor at the subgame Γ
(
s1
)
(out of the collections

of menus on which it has not already committed at stage 1), the firm’s best response function

s2∗n : S1
n × S−n × SA → 2

s1
n|M is given by

s2∗n

(
s1n|M \M, s−n, α

)
∈

{
argΠn

(
s1
n|M \M, s−n, α

)
if Πn

(
s1
n|M \M, s−n, α

)
≥ 0

{∅} otherwise

for M ∈ 2
s1
n|M with s2∗n (m) = NW for each m ∈ s2∗n

(
s1
n|M \M, s−n, α

)
.

Regarding the choice of menus on which to commit at stage 1, let

ΠC
n

(
M |s1n|M, s−n, α

)
=

∑

h∈{L,H}

|M ∩Mh

(
M (s−n) ∪M ∪ s2∗n

(
s1n|M \M, s−n, α

))
|−1

×
∑

m∈M

λhΠh (ah (m))1
m∈Mh

(
M(s−n)∪M∪s2∗n

(
s1
n|M

\M,s−n,α
))

|Nh

(
M (s−n) ∪M ∪ s2∗n

(
s1
n|M \M, s−n, α

))
|

again for M ∈ 2
s1
n|M (and where 1X is the indicator function of the set X). The firm’s best response

is given then by the functions s1∗
n|C : s1

n|M × S−n × SA → 2
s1
n|M with

s1∗n|C

(
s1n|M, s−n, α

)
∈





argmax
M∈2

s1
n|M

ΠC
n

(
M |s1

n|M, s−n, α
)

if ΠC
n

(
M |s1

n|M, s−n, α
)
≥ 0

{∅} otherwise

Letting finally

Πn

(
s1n|M, s−n, α

)
= max





ΠC
n

(
s1∗
n|C

(
s1
n|M, s−n, α

)
|s1

n|M, s−n, α
)
,

ΠNC
n

(
s1
n|M \ s1∗

n|C

(
s1
n|M, s−n, α

)
, s−n, α

)





Πn

(
s1∗, s−n, α

)
= max

s1
n|M

∈M
Πn

(
s1n|M, s−n, α

)

we are in position to define the equilibrium of Γ.

This is a profile of strategies (s∗, α∗) and belief functions {λLn, λHn}n∈N such that α∗
(
M

(
s1∗

))
=

α (M (s∗)) while for each n ∈ N we have s∗
n|M ∈ argΠn

(
s∗−n, α

∗
)
if Πn

(
s∗−n, α

∗
)
≥ 0, with c∗n (m) =

C [resp. c∗n (m) = NC] if m ∈ s∗
n|C

(
s∗
n|M, s∗−n, α

∗
)
[resp. m 6∈ s∗

n|C

(
s∗
n|M, s∗−n, α

∗
)
] and s2∗n (m) =

NW [resp. s2∗n (m) = W ] if m ∈ s2∗n

(
s∗
n|M \ s∗

n|C , s
∗
−n, α

∗
)
[resp. m 6∈ s2∗n

(
s∗
n|M \ s∗

n|C , s
∗
−n, α

∗
)
]

while

∀h ∈ {L,H} , ∀m ∈ s∗1n|M, σhn (m) = 1 if m ∈ Mh (M (s∗)) (4)

If Πn

(
s∗−n, α

∗
)
< 0, we can take any s∗

n|M ∈ M with c∗n (m) = NC and s2∗n (m) = NW for

all m ∈ s∗
n|M; or let s∗

n|M consist of only the trivial menu m0 = {0,0} with c∗n (m0) = C and

s2∗n (m0) = NW .

Observe that the payoff of the typical firm on the equilibrium path is given by

Πn (s
∗, α∗) =

λΠL (aL (mL))

|NL (M (s∗)) |
1mL∈ML(M(s∗)) +

(1− λ)ΠL (aH (mH))

|NH (M (s∗)) |
1mH∈MH(M(s∗)) (5)

for some (mL,mH) ∈ ML (M (s∗n))×MH (M (s∗n)).
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Efficient Insurance Provision

To obtain the MWS as the unique equilibrium allocation of our mechanism, we proceed in the

following steps. We establish first that, in any candidate equilibrium of our mechanism, out of the

set of menus offered at stage 1 on the equilibrium path, the most preferred one for the low-risk

type must lie in the set {m ∈ M : aL (m) = aL,aH (m) % a∗∗H } (see Lemma A.1 in Appendix A

and Claim 3.1 below). Of course, given free entry (see Lemma A.2 in Appendix A) and the fact

that the MWS allocation solves uniquely the MWS problem, no such menu can end up being the

equilibrium outcome unless it coincides with the MWS menu.

Next, we show that the MWS menu can be supported as equilibrium outcome (see Proposition

3.1 below). This leaves but the possibility for equilibrium scenarios in which menus from the

set above are offered at stage 1 only to be withdrawn at stage 3 on the equilibrium path. That

is, for equilibrium scenarios in which such menus are deployed as “latent” contractual offers: to

be honoured in some off-equilibrium contingency, but never on the equilibrium path.17 Yet such

scenarios do not survive the following equilibrium-selection criterion.

Definition Let (s∗, α∗) ∈ SF × SA × SA be an equilibrium profile for Γ. It is said to survive

commitment-irrelevance on the equilibrium path if

αL (M (s∗)) ∼L αL

(
M

(
s1∗

))
(6)

Under this criterion, the MWS allocation is the unique equilibrium outcome of our mechanism (see

Corollary 3.1 below).

With respect to the first step above, any equilibrium outcomem∗ = {αL (M (s∗)) , αH (M (s∗))}

must lie in Mλ (recall again Lemma A.2). Given this, if aL (m∗) 6= aL, we can find m̂ ∈ M+
λ which

constitutes a welfare improvement for the low-risk [resp. high-risk] type whenever aL ≻L aL (m∗)

[resp. aL (m∗) %L aL], and makes strictly-positive profits on the risk-type it attracts away from

m∗ (see Lemma A.3).

To see intuitively why such a menu exists, observe that we cannot have aL (m∗) %L aL unless

µ < 1. Recall also that, whenever µ = 1 [resp. µ < 1], taking µ ∈ (λ, 1] [resp. µ ∈ (µ, 1]] means that

the low-risk [resp. high-risk] type is the profitable type at the IE(µ)-optimum while her welfare is

strictly-increasing [resp. strictly-decreasing] in µ (see Lemmas 1.5 and 2.4 in the Online Appendix).

Consequently, whenever aL ≻L aL (m∗) [resp. aL (m∗) %L aL], letting µ approach µ from below

[resp. from above] guarantees in either case that the corresponding IE(µ)-optimum constitutes a

welfare increase from m∗ for the profitable type. To construct then m̂ it suffices to replace the

contract aµL [resp. aµH ] by some âL ∈ A [resp. âH ∈ A] such that
{
âL,a

µ
H

}
[resp.

{
a
µ
L, âH

}
] lies in

the space M+
λ (see Figure 1 for examples of this construction when the hypothetical equilibrium

m∗ is IE).

17Indeed, using the MWS menu itself as latent threat, the strategic scenario outlined in Proposition 3.1 supports

as equilibrium outcome any allocation in Mλ that is weakly dominated by the MWS one for the low-risk type (see

Corollary A.1 in Appendix A).
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Figure 1: Deviations m̂ = {âL, âH} ∈ M+
λ against IE(µ)-optimal menus when µ 6= µ: w (âL) lies

in the shaded area while w (âH) = w
µ
H = w

(
a
µ
H

)
; this gives ΠH (âH) < 0 when µ < µ [left panel]

and ΠL (âL) < 0 when µ > µ [right panel]. Note: FOE
h = {w (a) ∈ W : a ∈ A,Πh (a) = 0} is the

iso-profit line through the endowment point E=(W,W − d) that breaks even against risk-type h.

Letting aµ ∈ A given by (1− ph)
(
aµ0h − aµ0

)
= ph

(
aµ1h − aµ1

)
for h ∈ {L,H} (see Lemma 2.7 in the

Online Appendix), FOµ
h = {w (a) ∈ W : a ∈ A,Πh (a) = Πh (a

µ)} is the iso-profit line through the

point w (aµ) that breaks even against risk-type h.

Notice now that, if no menu has been introduced at stage 1 that includes aL, there are no menus

on offer that could be used as threats (even latent ones) against m̂. It follows, therefore, that a

profitable deviation against m∗ consists of offering m̂ with commitment. Being guaranteed then a

strictly-better outcome, the profitable risk-type will choose m̂ at stage 2. Equally importantly, the

latter remains strictly profitable even if the non-profitable type chooses it as well; hence, irrespective

of the other firms’ responses at stage 3.

Claim 3.1 (s∗, α∗) ∈ SF × SA × SA is an equilibrium profile for Γ only if αL

(
M

(
s1∗

))
= aL.

Proof. See Appendix A.

We show next that the MWS allocation m = {aL,aH} can be supported as equilibrium. To this

end, observe first that m must be offered without commitment when it differs from the RSW alloca-

tion. For withdrawal is the only way to fend off cream-skimming deviations (m̂ ∈ M: aL (m̂) %L aL,

aH ≻H aH (m̂)) with commitment (see Figure 3). Indeed, since the MWS and RSW allocations

differ only if µ = 1, the deviation cannot attract the low-risk type unless Π (m̂|λ) < 0. And as the

deviation is offered with commitment, the withdrawal of m means that either risk-type will cer-

tainly choose the deviant menu, rendering the latter loss-making as it ends up attracting the entire

population of customers (see the left panel of Figure 4). When the MWS and RSW allocations

coincide on the other hand, which embeds the case µ < 1, whether or not the MWS menu is offered

with commitment does not matter: any offering firm is indifferent between honoring or withdrawing
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Incumbent

Entrant

C NC

C NC NCC

N.1 N.2 N.3 N.4

Figure 2: The opening stage (stage 1) of the game when attention is restricted to two firms, a

deviant (the entrant) and one which offers the equilibrium menu (the incumbent). The nodes

N.1-N.4 are the starting nodes for the signalling subgames of stages 2-3 (see Figures 3-4)

m. Our strategic scenario has m honoured in this case against all deviations.18 Without loss of

generality, therefore, we may take the MWS menu to be offered without commitment in either case.

To account for cream-skimming deviations without commitment, we will illustrate the intu-

ition behind our sequential equilibrium scenario restricting attention to deviations entailing single

menus.19 For this, we must introduce some more notation. We will consider sequences of trembles

{ǫkL, ǫkH}k∈N ∈ (0, 1)×(0, 1) with limk→∞ (ǫkL, ǫkH) = (0, 0). These describe the firms’ beliefs that

risk-type h applies for m and m̂ with probability σkh (m) = 1− ǫkh and σkh (m̂) = ǫkh. Given (2),

the conditional beliefs are given by λhn (m) = limk→∞ λk
hn (m) where (n,m) ∈ {(n∗,m) , (n̂, m̂)}

and

λk
Ln (m) =

λk
nλ

λk
nλ+ 1− λ

= 1− λk
Hn (m) , λk

n =

{
ǫkL
ǫkH

if n = n̂
1−ǫkL
1−ǫkH

if n = n∗
h ∈ {L,H} (7)

Moreover, for any menu m ∈ M and any belief {p, 1− p} in the simplex ∆ ([0, 1]), we will view

the expected profits

Π (m|p) = pΠL (aL (m)) + (1− p)ΠH (aH (m))

as a function of p, and define the solution

p (m) ∈ [0, 1] : Π (m|p (m)) = 0

The relation

Π (m|p)−Π(m|p (m)) = [p− p (m)] [ΠL (aL (m))−ΠH (aH (m))]

18Recall Remark 1 in the preceding section and Figure 1 above. Letting h, h′ ∈ {L,H} with h 6= h′, cream-

skimming deviations refer to menus m̂ ∈ M: ah (m̂) %h ah, ah′ ≻h′ ah′ (m̂) where h = L [resp. h = H] when µ = 1

[resp. µ < 1].
19As we have but two risk-types, the complete argument (see the proof of Proposition 3.1 in Appendix A) accounts

for deviations entailing honoring up to two menus: mL and mH such that m̂ = {aL (mL) ,aH (mH)} satisfies (ICh)

for either h. For this case replace the sequences {ǫkh}, {εkh} above by {ǫ′kh}, {ε
′
kh} for m̂ = mL and by {ǫ′′kh}, {ε

′′
kh}

for m̂ = mH . Replace also λk
n∗ = (1− ǫkL) / (1− ǫkH) in (7) with λk

n∗ = (1− ǫ′kL − ǫ′′kL) / (1− ǫ′kH − ǫ′′kH).
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Figure 3: If offered with commitment, the MWS menu cannot fend off cream-skimming deviations

that attract away the low-risk type. Let λ = 1/2, UL (aL) = 1 = UH (aH), 2 = UL (âL) = 4UH (âH),

and ΠL (aL) = 1 = −ΠH (aH) = −ΠH (âH) = 2ΠL (âL). The unique PBE has the low-risk [resp.

high-risk] type applying for the deviant [resp. MWS] menu (λLE (m̂) = 1 = 1 − λLI (m)) and the

deviant menu being honored, irrespective of whether it has been offered with [left panel] or without

[right panel] commitment.

gives then the range of beliefs according to which the menu avoids losses:

P (m) =





[0, 1] if ΠL (aL (m)) = ΠH (aH (m))

[p (m) , 1] if ΠL (aL (m)) > ΠH (aH (m))

[0, p (m)] otherwise

Remark 3. We have Π (m|λ) = 0 while ΠL (aL) ≥ ΠH (aH) with equality if and only if the RSW

allocation is IE (see Lemma 2.4 in the Online Appendix). Thus, if the MWS and RSW allocations

coincide, we have P (m) = [0, 1]; otherwise, we have P (m) = [λ, 1]. Yet, λ ∈ P (m) in either case.

Observe now that, if µ = 1, then it must be Π (m̂|λ) < 0 and thus λ 6∈ P (m̂). There are then

two cases to consider: P (m̂) = [p (m̂) , 1] ⊂ (λ, 1] and P (m̂) = [0, p (m̂)] ⊂ [0, λ). In either case we

can support the scenario in which m̂ gets withdrawn while m is not, and either risk-type chooses

the latter menu. If P (m̂) ⊂ (λ, 1] (see the right panel of Figure 4 where p (m̂) = 2/3 > 1/2 = λ),

to ensure that m̂ is withdrawn let limk→∞ ǫkL/ǫkH = 0; in the limit, the deviant firm believes that

its pool of applicants consists entirely of high-risk customers. If P (m̂) ⊂ [0, λ), let ǫkL/ǫkH = 1;

the deviant believes that the proportion of low-risk customers in its pool of applicants is exactly

λ. In either case, moreover, we have ǫkL ≤ ǫkH (at least along a subsequence); that is, λk
n∗ ≥ 1 so

that λk
Ln∗ (m) > λ and λk

Hn∗ (m) < 1− λ. As the trembles vanish, λk
Ln∗ (m) /λk

Hn∗ (m) approaches

λ/ (1− λ) from above; in the limit, it becomes optimal to not withdraw m - recall that [λ, 1] ⊆

P (m).

If µ < 1, on the other hand, then the MWS and RSW allocations coincide. In addition, since

aL (m̂) ≻L a∗∗L ≻L a∗∗H ≻H aH (m̂) %L aL (m̂), the menu {aL (m̂) ,a∗∗H } is separating. Clearly, the

RSW allocation being IE, it cannot but be ΠL (aL (m̂)) < 0 (see the right panel of Figure 1). Let
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Figure 4: The deviation consists of the same menu as in Figure 3. If the deviant menu offered

with commitment [left panel], the unique PBE has the MWS menu withdrawn and either risk type

choosing the deviant (λLE (m̂) = λ). If the deviant menu is offered without commitment [right

panel], the PBE has either type applying for the MWS menu (λLI (m) = λ), which is honored while

the deviant is withdrawn as loss-making (λLE (m̂) = 0).

now limk→∞ ǫkL/ǫkH = ∞; in the limit, the deviant firm believes that the pool of applicants for m̂

consists entirely of low-risk customers (see the left panel of Figure 5). As for m, the RSW allocation

being safe, any offering firm is always indifferent between withdrawing it or not - whatever its belief

about the risk-type distribution in the pool of applicants (recall that P (m) = [0, 1] in this case).

Notice finally that deviations attracting both risk-types away from m have aL (m̂) %L aL while

aH (m̂) %H aH %H a∗∗H ; thus, Π (m̂|λ) < 0 and the argument proceeds as above. Deviations attract-

ing only the high-risk type have aL ≻L aL (m̂) and aH (m̂) ≻H aH ≻H a∗∗H ; thus, ΠH (aH (m̂)) < 0

and not withdrawing m renders them loss-making.

The equilibrium scenario just outlined can be described formally as follows.

Proposition 3.1 The allocation {aL,aH} is supported as the equilibrium outcome of Γ by the

following (symmetric) strategy and belief profiles. Each firm n ∈ N chooses the action s1∗
n|M = {m}

with c∗n (m) = NC, and follows the strategy s2∗n : {m} → {W,NW} given by

s2∗n (m) =

{
W if m 6= m∗∗, ∃ (n̂, m̂) ∈ N \ {n} × s1

n̂|C : aL (m̂) %L aL

NW otherwise

Each customer follows the strategy in (1) while the firms’ beliefs are as in (2)-(3).

Proof. See Appendix A.

It remains to show that the MWS is the unique equilibrium allocation under the selection-

criterion in (6). Given though Claim 3.1, this is obvious.
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Figure 5: [Left panel] Fending off deviations without commitment when the MWS and RSW

allocations coincide. The deviation consists of the same menu as in Figures 3-4. The unique PBE

has either type applying for the RSW menu (λLI (m) = λ), which is honored while the deviant is

withdrawn as loss-making (λLE (m̂) = 1). [Right panel] Fending off deviations without commitment

when the MWS and RSW allocations differ. The deviation consists of the menus {aL,aL} and

{aH ,aH}, the former offered without commitment. The unique PBE has either risk-type choosing

the MWS menu (λLI (m) = λ), which is honored while {aL,aL} gets withdrawn as loss-making

(λLE (m̂) = 0). The deviant strategy with respect to {aH ,aH} is irrelevant (the menu is strictly

worse than m for the low-risk type).

Corollary 3.1 Let (s∗, α∗) ∈ SF×SA×SA be an equilibrium profile for Γ that survives commitment-

irrelevance on the equilibrium path. Then,

{αL (M (s∗)) , αH (M (s∗))} = m

Proof. Since M (s∗) ⊆ M
(
s1∗

)
while α∗

h

(
M

(
s1∗

))
= αh (M (s∗)) for either h, the criterion in (6)

necessitates that the equilibrium outcome {αL (M (s∗)) , αH (M (s∗))} is of the form {aL,aH} for

some aH ∈ A. As this must lie though in Mλ (recall Lemma A.2), by the fact that the MWS menu

is the unique IE(µ)-optimum, we cannot have aH %H aH with aH 6= aH . If, on the other hand,

aH ≻H aH we get that aL ∼H aH ≻H aH : the equilibrium allocation violates (ICH), an absurdity

since it lies in Mλ ⊂ M.

4 Discussion and Related Literature

To support the MWS menu as the unique equilibrium allocation our mechanism relies on condition

(6): on the equilibrium path, the low-risk type should be indifferent between the collection of menus

introduced at stage 1 and the sub-collection that ends up honored at stage 3. Put differently, on

the equilibrium path, whether or not the firms commit upon the delivery of their contactual offers

should be irrelevant for the low-risk type. The sole role of this requirement is to preclude equilibria
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supported by the deployment of “latent” menus.20

A similar role, but with respect to the high-risk type and the MWS menu, is played also by the

requirement that menus are the objects of trade. The MWS menu expects losses from the high-risk

type whenever the MWS and RSW allocations differ (see Lemma 2.4 in the Online Appendix). If

individual contracts were the objects of trade, on the equilibrium path, where all deviations are

fended off and the MWS menu is left to separate the applicants by risk-type, it would be dominant

strategy for the firm to withdraw only aH at stage 3.21 This would preclude though an equilibrium

in the subgame of stages 2-3: the high-risk type’s optimal response at stage 2 would be to apply

for aL instead of aH , rendering the former a loss-making pooling contract.22

In the context of the canonical insurance problem, the requirement that menus are the objects of

trade is sine qua non for any mechanism with a stage in which the firms may withdraw their offers.

For even when this stage precedes the one in which the customers choose, a slight modification of the

preceding scenario destroys again the MWS equilibrium: on the equilibrium path, the dominant

strategy would now be to withdraw aL, forcing the low-risk type to choose aH and render it a

strictly-profitable pooling contract (recall footnote 22).

A mechanism of this kind is analyzed in Netzer and Scheuer [30], where the time-line for the

last two stages of the game in Hellwig [19] has been reversed: the customers choose at stage 3

while the firms may withdraw their offers at stage 2, albeit subject to paying a withdrawal cost.

For sufficiently-small withdrawal costs, the mechanism supports the MWS allocation as the unique

subgame-perfect Nash equilibrium (SPNE) outcome (see Proposition 2 in Netzer and Scheuer [30]).

The MWS allocation is an equilibrium outcome also when the withdrawal costs are zero but in

this case uniqueness fails: the set of equilibrium outcomes includes also any other allocation in

Mλ, when the MWS and RSW allocations coincide, and any other allocation in Mλ that is strictly

Pareto-dominated by the MWS allocation, otherwise (see Proposition 1 in Netzer and Scheuer [30]).

The authors embed the requirement that menus are the objects of trade within a stronger

condition: a firm can only withdraw at stage 2 the entire set of contractual offers it made at

20Recall that α∗
h

(

M
(

s1∗
))

= αh (M (s∗)) for either h. And since M (s∗) ⊆ M
(

s1∗
)

, the violation of (6) necessi-

tates the existence of m ∈ s∗1n|M for some n ∈ N such that UL (aL (m)) > maxm′∈M(s∗) UL (aL (m′)). But then the

low-risk type would be better off in equilibrium if, other things being equal, s∗1n prescribed that m is offered with

commitment. Moreover, it must be the case that, on the equilibrium path, m gets introduced at stage 1 only to be

withdrawn at stage 3. Clearly, its presence within the equilibrium scenario s∗ is relevant only if the menu acts as

“latent” threat - to be honored only against some deviation.
21To put it in the terminology of industrial organization (and to borrow from the relevant discussion in Asheim and

Nilssen [3]), we restrict the extent to which firms can discriminate amongst customers. Our firms are allowed only

withdrawals that do not discriminate customers on the basis of their contractual choices. They may engage in second-

degree price discrimination (by offering non-linear pricing schemes) but not in third-degree price discrimination (to

the extent that it would arise by segmenting the market according to the customers’ contractual choices). The latter

restriction may originate in laws prohibiting third-degree price discrimination or in (so-called most-favoured-customer)

clauses on the contracts themselves.
22See Lemma 2.5(v) in the Online Appendix, and observe that ΠH (a) < ΠL (a) for any a ∈ A ∩ R

2
+ \ {0}. It

follows, therefore, that Π (aL (m) |λ) < 0 < Π(aH (m) |λ) for any m ∈ M: Π (m|λ) = 0. To apply this observation

on equation (5), notice that, whenever the MWS and RSW menus differ, all active firms trade with both risk-types

on the equilibrium path (see Lemma A.5).
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stage 1, not individual offers from this set. And this highlights an important contrast, in economic

as well as game-theoretic terms, with our mechanism. In economic terms, it means that a firm

can withdraw an offer (a given insurance product in the current context) only by closing down

completely. In game theoretic terms, it restricts the space of deviations under consideration.23

Let the MWS and RSW allocations differ, and consider a deviation s1
n|M = {m̂,m} against

the MWS menu with m̂ a cream-skimming menu and m ∈ Mλ. It is easy to see why Netzer and

Scheuer do not let the deviant firm withdraw m̂ by itself. Facing m̂, any firm that has entered m

at stage 1 cannot but withdraw it at stage 2. This would still leave though the deviant firm with

strictly-positive profits: by withdrawing only m̂, it would be left servicing the entire market with

m. By contrast, such deviations do not affect at all our equilibrium scenario. Since µ = 1 when the

MWS and RSW allocations differ, it cannot but be Π (m̂|λ) < 0. As a result, if m̂ is introduced

with commitment, withdrawing m renders the deviation loss-making. And when m̂ gets introduced

without commitment, our equilibrium scenario has m being honored, not withdrawn (see the right

panel of Figure 5 and Figure 6).24
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Figure 6: [Left panel] Deviations consisting of the menus m̂ = {âL,aH} (with âL in the shaded area)

and m = {a,a} with a =
(
aD0 , a1L

)
. [Right panel] Let UL (a) = 0.8 = UH (a) and UL (âL) = 2. The

unique PBE has either risk type choosing the MWS menu (λLI (m) = λ), which is honored while

m̂ is withdrawn as loss-making (λLE (m̂) = 0). Even though the deviant’s strategy with respect to

m is irrelevant, the payoffs depict it as honoring m.

This major difference between our mechanism and that in Netzer and Scheuer [30] stems from

23In fact, strengthening in our mechanism the restriction that menus are the objects of trade to the requirement

that only the entire set of contractual offers made at stage 1 may be withdrawn at stage 3 would ensure that the

MWS is the unique equilibrium allocation, without the need for equilibrium selection: (6) would be trivially satisfied.
24The MWS allocation being the IE(1)-optimum, m ∈ Mλ means that aL ≻L aL (m). If aH (m) %H aH , since

aH % a
∗∗
H , it cannot but be ΠH (aH (m)) < 0; offering then m with commitment renders it loss-making; offering m

without commitment means that the deviant firm’s best response is to subsequently withdraw it. If aH ≻H aH (m),

since then ah ≻h ah (m) for either h, the deviant’s strategy is inconsequential.
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the latter’s reversal of the last two stages in Hellwig’s game. Having the customers as the last

party to act renders the stages 2-3 subgame a screening game: when been called upon to act,

either risk-type is certain of the delivery of her chosen contract; hence, either risk-type has always

a (weakly) dominant strategy. This being of course common knowledge, the equilibrium outcome

gets determined exclusively by the strategic interaction between the firms: a firm’s beliefs depict

uncertainty about the actions of the other firms, not of the customers; as a result, the best response

against a cream-skimming deviation cannot be but withdraw.25

In our mechanism, this obtains only if the deviation has been offered with commitment. If it has

not, the signaling subgame of stages 2-3 grants the strategic initiative to the insurance customers

(the informed party). When called upon to act now, the optimal choice of either risk-type is not

certain: it depends upon their belief about the likelihood that an offering firm withdraws a given

menu. The customers’ uncertainty affects in turn the firm’s belief about the menu’s profitability. As

a result, a cream-skimming menu gets withdrawn because the offering firm cannot be certain about

the customers’ actions: it cannot be certain that its pool of applicants consists of only the low-risk

type. The equilibrium outcome is determined now by strategic interaction not only between firms,

but also between firms and customers.

Yet another difference between the two mechanisms has to do with the fact that the equilibrium

scenario in Netzer and Scheuer [30] hinges crucially on the deployment of “latent contractual offers.”

Depending on the equilibrium outcome to be supported, cream-skimming deviations are deterred

because either the RSW menu or the MWS menu and the high-risk RSW contract are deployed

as credible threats by “latent firms” (which in effect collude strategically with those offering the

equilibrium menus).26 In sharp contrast, our equilibrium-selection criterion in (6) precludes the

use of latent menus.27

Rather than modify the time-line of the game in Hellwig [19], the approach in Asheim and

Nilssen [3] is to have the firms at stage 3 add rather than withdraw menus, subject to the condition

25For a graphical representation of the game in Netzer and Scheuer [30] consider Figures 2-3 and the left panel of

Figure 4. Replace the actions C and NC, respectively, by the actions NW and W , and the node N.4 by the payoff

(0, 0) in Figure 2. Delete also the NW action from the Incumbent [resp. Entrant] in the right panel of Figure 3 [resp.

in the left panel of Figure 4].
26The need for “latent firms,” not just “latent menus,” is noteworthy. For it shows that allowing firms to withdraw

only their entire sets of contractual offers, not individual offers from their sets, restricts not just the space of possible

deviations but the firms’ strategy space more generally. A firm offering the equilibrium menu in Netzer and Scheuer

[30] is not allowed to use latent contractual offers on the equilibrium path (i.e., in the absence of deviations). In

sharp contrast, it may well do so in our mechanism. This explains why the deployment of latent contractual offers in

our mechanism allows also for equilibrium outcomes in Mλ that are not Pareto-dominated by the MWS allocation,

even when the MWS and RSW allocations differ (see Corollary A.1 in Appendix A). It also explains why withdrawal

costs are of no use as means for equilibrium-selection in our mechanism.
27Mimra and Wambach [27] extend the Netzer-Scheuer game along two dimensions: the firms are allowed to

withdraw individual menus from their sets of contractual offers at stage 2, which entails a (potentially countably-

infinite) sequence of withdrawal rounds until no firm wishes to make any more withdrawals. The authors’ aim is

to provide a game-theoretic foundation for the notion of anticipatory foresight in Wilson [40]. The resulting set

of equilibrium allocations is given by Mλ. As in Netzer and Scheuer [30], the equilibrium scenario requires the

deployment of latent contractual offers when the MWS and RSW allocations differ.
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that their new offers (weakly) Pareto-dominate the original ones. This stage is then followed by

another, the final stage, in which the customers choose from the revised set of menus. The MWS

allocation emerges also here as the unique PBE; yet due to the fact that the firms’ bargaining power

is severely limited at stage 3: even though the firms may have already sorted their customers by

type, cream-skimming offers are not allowed at this point.28

Another strand of the recent literature considers the game-theoretic structure that supports the

analysis in Rothschild and Stiglitz [35] (i.e., the restriction of the game in Hellwig [19] to only the

first two stages), under appropriately chosen domains of contractual offers the firms may make.29

In Inderst and Wambach [21], the firms face capacity constraints: each firm is limited in the number

of contracts it can offer so that its customers may have to be rationed, while a rationed customer

can search for another firm with free capacity but only at a cost. The model supports always the

RSW allocation as equilibrium (even when this is not possible in Rothschild and Stiglitz [35] - see

our Claim 4.3 below), as long as the search costs are chosen appropriately (to make any deviation

face a pool of applicants whose risk-distribution is sufficiently less favorable than the prior to render

it loss-making; see assumptions A.1-A.2 in Inderst and Wambach [21]).

The issue of existence of equilibrium in Rothschild and Stiglitz [35] is addressed also in Picard

[31], with menus of contracts in which customers share the profits or losses of the insurer. When no

equilibrium exists in Rothschild and Stiglitz [35] full participation by the customers in the profit or

losses of the firms (ownership with unlimited liability) sustains the MWS menu as a SPNE (within a

dense SPNE set where the MWS is the only IE-optimal allocation). The equilibrium argument rests

upon the fact that the losses the MWS menu makes after a cream-skimming deviation will have

28The authors’ interpretation of the condition that only (weakly) Pareto-dominant new contractual offers are al-

lowed at stage 3 is that of “non-discriminating renegotiation” between the firms and their customers. Even though

much more restrictive in the kind of deviations it allows for, on the equilibrium path “non-discriminating renegoti-

ation” has the same effect as our condition that menus are the object of trade: to ensure that the high-risk MWS

contact will not be withdrawn. Even on the equilibrium path, however, there is a significant difference between the

two conditions. It would take but expositional changes in our analysis if we were to allow the firms to withdraw

individual contracts from menus, but give them also a two-dimensional commitment option: to pre-commit on a

given menu at stage 1, if they so wish, upon either the delivery of one of its constituent contracts or the “non-

discriminating withdrawal” of the menu itself (recall footnote 21). The former dimension suffices for the deviations

that deliver Lemma A.3. The latter would be optimally chosen on the equilibrium path of the scenario in Proposition

3.1. In sharp contrast to “non-discriminating renegotiation,” “non-discriminating withdrawals” can be viewed as an

endogenously-emerging optimal choice by the firms themselves.
29In a methodologically different approach, von Siemens and Kosfeld [38] impose instead conditions on the prefer-

ences of the informed player. They assume that the low-risk customers prefer to be pooled on a contract with their

own rather than the high-risk type. This (one-sided) externality facilitates sorting and supports multiple separating

allocations as equilibria (see also von Siemens and Kosfeld [37] for the application of this approach in the screening

version of the standard job-market model with adverse selection). Yet another methodology is deployed by Ania et

al. [2] where the dynamics of the market in Rothschild and Stiglitz [35] are modeled using evolutionary game theory.

Specifically, the insurers are assumed to be boundedly rational in their strategic behavior: they limit themselves to

imitating profitable contractual offers by other firms, and experimenting (in a particular way) with their own offers.

The RSW allocation emerges as the unique log-run equilibrium outcome if experimentation is sufficiently limited.

However, the result is not robust to even small improvements in firms’ strategic sophistication (see Remark 3 and

footnote 15 in Section 4 of Ania et al. [2]).
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to be incurred by the high-risk customers, unless they also choose the deviating offer (rendering it

loss-making).

4.1 Exit in Bertrand competition

By not restricting the set of contracts from or the way in which the firms make their offers, nor

changing the timing under which these offers are made in Hellwig [19], the present study exhibits

another fundamental difference compared to the literature: it embeds Hellwig’s analysis as well

as that in Rothschild and Stiglitz [35]. And by doing so, it sheds light in important aspects of

Bertrand competition under asymmetric information that seem to have been ignored by the two

papers - causing confusion in the subsequent literature.

To view the results in Hellwig [19] from the present perspective, set C = {NC}; remove that is

the pre-commitment option from the firms’ decision at stage 1. To compare with the unrestricted

version of Γ, recall that the equilibrium scenario in Proposition 3.1 calls for the MWS menu to be

withdrawn only against cream-skimming deviant menus introduced with commitment. When the

firms cannot commit to their offers, this part of the equilibrium scenario becomes irrelevant. And

so does the potential use of latent menus to support equilibria; hence, also the requirement for

commitment-irrelevance. The entire Mλ becomes now the set of equilibrium allocations. It can be

supported by an equilibrium scenario that has the respective menu always honored at stage 3.

Claim 4.1 Set C = {NC} in Γ. The set of equilibrium allocations is Mλ. Each m ∈ Mλ can

be supported as equilibrium outcome by the following (symmetric) equilibrium strategy and belief

profiles: each firm n ∈ N chooses the action s1∗n = (m,NC) and the strategy s2∗n : S1 → {NW},

each customer follows the strategy in (1), while the associated beliefs for the firms are as in (2).

Proof. See Appendix B.

The set of equilibrium allocations gets reduced if we restrict attention to allocations that give

the high-risk type (the source of the adverse selection problem) at least her first-best welfare: i.e.,

equilibrium profiles (s∗, α∗) ∈ SF × SA × SA such that αH (M (s∗)) %H a∗∗H . Needless to say, in

practical terms, for this type to receive her first-best allocation it suffices to simply reveal her type;

in game-theoretic terms, it suffices that some (zeroth) firm includes the (safe) menu {a∗∗H ,a∗∗H } in

its collection of offers at stage 1 with the plan to not withdraw it at stage 3 irrespectively of the

history of play at that point. Guaranteeing the high-risk type her first-best welfare precludes her

from being profitable in equilibrium; necessitating in turn that the low-risk is the profitable type

(see Lemma B.1). In this case, the set of equilibrium allocations in Claim 4.1 shrinks from Mλ to

the following subset

M′ = {m ∈ Mλ : ΠH (aH (m)) ≤ 0 ≤ ΠL (aL (m)) , aH (m) %H a∗∗H }

Of course, to obtain the exact setting in Hellwig [19] we must rule out cross-subsidization. We

must restrict that is the space of contractual offers to singleton (i.e., pooling contracts) or safe
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menus:

M′′ = {m ∈ M : aL (m) = aH (m) ∨Πh (ah (m)) ≥ 0 ∀h ∈ {L,H}}

By Claim 4.1, the set of equilibrium allocations reduces now to Mλ∩M′′ or M′∩M′′ - depending

of course on whether or not we wish to guarantee the high-risk type her first-best welfare. This

illustrates the importance of cross-subsidization in Bertrand competition when firms cannot commit

to not exit. The set Mλ∩M′′ includes at most two IE allocations, the pooling contract IE-(λ) and

the RSW allocation when it is IE. By contrast, M′ includes the entire IE frontier when µ = 1, and

the collection of IE(µ)-optima with µ ∈ [0, µ] otherwise (see Lemma 2.4 in the Online Appendix).

To view next the results in Rothschild and Stiglitz [35] from the perspective of our mechanism,

set C = {C}; remove that is the option of not committing from the firms’ decision at stage 1.

To compare again with the unrestricted version of Γ, observe that (6) holds now trivially (recall

footnote 20). As a result, the MWS menu remains the unique candidate equilibrium allocation

(recall Claim 3.1). It is easy to show moreover that the equilibrium allocation must break even on

a contract-by-contract basis (see Lemma B.2). Clearly, when firms cannot withdraw their offers,

the unique candidate equilibrium allocation is the MWS one when it coincides with the RSW

allocation.

Observe also that no contract is able to attract only one risk-type away from the RSW allocation

and avoid losses doing so (see Lemma 2.6 in the Online Appendix). Hence credible challenges may

come only from menus m̂ ∈ M that attract both types away from the RSW allocation (i.e.,

ah (m̂) ≻h a∗∗h for either h) and are strictly-profitable doing so (i.e., Π (m̂|λ) > 0). Yet there

are no such menus when the RSW allocation coincides with the MWS one. To summarize these

observations more formally recall that the MWS and RSW allocations coincide when and only when

the latter is IE (see Claim 3.1 in the Online Appendix).30

Claim 4.2 Set C = {C} in Γ. The RSW is the unique candidate equilibrium allocation. It is

supported as equilibrium if and only if it is IE.

To match exactly the setting in Rothschild and Stiglitz [35] we must restrict again the space of

contractual offers to M′′. The RSW menu being safe, it remains the unique candidate equilibrium

allocation. However, as pointed out in Rothschild and Stiglitz [35] (albeit heuristically), the RSW

allocation can be supported as equilibrium now if and only if λ is small enough for the market

fair-odds line {a ∈ A : Π ({a,a} |λ) = 0} to lie below the indifference curve of the low-risk type

through a∗∗L .

As it turns out, the latter condition is not equivalent with the RSW allocation being IE. Letting

U denote the space of strictly-increasing, strictly-concave, and twice-continuously differentiable

functions
[
W − d−W,W +W

]
→ R, we can consider U × (0, 1) × (0, 1) × (0, 1) as the space of

the parameter-vectors (u, pL, pH , λ) for the canonical insurance problem. And U being a complete

30See also Dosis [11] for a direct proof of Claim 4.2 in a canonical insurance market with many risk-types albeit

only two firms.
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metric space under the sup-norm, we may define a measure on its σ−algebra of Borel sets along

with the Borel measure on (0, 1). We can show then that, over a non-null subset of the parameters’

space, the RSW allocation is supported now as equilibrium even though it is not IE.

Claim 4.3 Set C = {C} and M = M′′ in Γ. The RSW is the unique candidate equilibrium

allocation. It is supported as equilibrium if and only if

UL (a∗∗L ) ≥ max
a∈A:Π({a}|λ)≥0

UL (a) (8)

There exist moreover λ′, λ′′ ∈ (0, 1) with λ′ < λ′′ such that, everywhere in the space U × (0, 1) ×

(0, 1) × (λ′, λ′′) of parameters for the canonical insurance problem, condition (8) is satisfied while

the RSW allocation is not IE.

Proof. See Appendix B.

Cross-examining Claims 4.2-4.3 reveals the role of cross-subsidization when firms cannot exit

the Bertrand-competitive market under study: it ensures that the equilibrium outcome will be

efficient, at the expense though of making it harder for the market to achieve equilibrium. Intuitively

speaking, and irrespective of whether or not we allow for cross-subsidization, if firms have to commit

upon their offers they cannot but choose a safe menu on the equilibrium path (recall Lemma B.2).

Equally importantly, withdrawal no longer an option, this menu can be supported as equilibrium

only in the absence of profitable deviations - which under free-entry must attract away the low-risk

type, the only profitable type (see Lemma B.1). Clearly, the only candidate equilibrium allocation

is the RSW one, the most preferred for the low-risk type amongst the safe allocations.

Whether or not it can be supported as equilibrium depends on whether or not there exist

profitable deviations. In the absence of cross-subsidization, such deviations can come only from

singleton menus (pooling contracts): to survive as equilibrium, the RSW allocation must maximize

the welfare of the low-risk type amongst such menus. By contrast, when firms are allowed to cross-

subsidize between contracts, the set of profitable deviations is considerably larger: to survive now,

the RSW allocation must maximize the welfare of the low-risk type within the space Mλ.

In the light of this discussion, we can trace the limiting framework under which the notion of

competitive equilibrium under adverse selection was examined in Rothschild and Stiglitz [35] but

also in Hellwig [19]. By restricting attention to allocations in M′′, the two seminal studies led

the subsequent literature to endorse the premise that the efficiency of equilibrium is fundamentally

related to its existence, and that either becomes an issue precisely because the contractual offers

are restricted in M′′.31 Yet this restriction is in either model of only minor consequence by itself:

even though achieving efficiency is harder in the absence of cross-subsidization, it is not by any

means guaranteed in its presence either.32

31See for instance the relevant discussions in Mimra and Wambach [26] (pp. 140), Netzer and Scheuer [30] (pp.

1), von Siemens and Kosfeld [37] (pp. 182-3)-[38] (pp. 3-4), Ania et al. [2] (pp. 154), or Inderst and Wambach (pp.

1982).
32Claim 3.1 in the Online Appendix attests to how strong is the condition that the RSW allocation is IE. Notice

also that the IE frontier is but a subset of negligible relative size within M′.
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The real issue between the two models has to do instead with their respective approach towards

market exit. In Rothschild and Stiglitz [35], by prohibiting firms to exit, the model guarantees

efficiency of equilibrium at the expense of not doing so for existence. In Hellwig [19], by not allowing

firms to commit to not exit, the model ensures existence of equilibrium at the expense of not doing

so for efficiency. The present study suggests that the real desideratum for Bertrand competition

under adverse selection is to simultaneously enable firms to exit but also publicly-commit to not

do so.

4.2 A neutrally-optimal mechanism

Refocusing the analysis on the very design of this well-known competitive environment calls in turn

for a comparison with two of the most seminal studies in mechanism design: Maskin and Tirole

[25] and Myerson [29]. To fix ideas, it should be noted that throughout the present paper we

have referred to the notions of (direct) mechanism and revelation principle having in mind but the

standard definitions (see for instance Section 2 in Myerson [29]). With respect to either notion, the

firms’ option to withdraw at stage 3 can be interpreted explicitly as part of a direct mechanism:

for any m ∈ M and for either risk-type, the action ((m,NC) ,W ) maps to the trivial menu {0,0}.

In this sense, the perceived lack of commitment by a firm to make good on its stage-1 offer refers

to elements of strategy, not mechanism design. Choosing whether or not to publicly-commit to m

amounts to choosing at stage 1 between committing to {m} or committing to {m, {0,0}} - where

opting to commit to a doubleton of menus postpones for stage 3 the choice of which menu to deliver

eventually as allocation.

Interpreting the extent of ex-ante commitment as an element of strategy brings us in line with

the analysis in Maskin and Tirole [25], which also considers the game-form in Hellwig [19] yet

under a significant generalization of the notion of contractual arrangement. A “contract” is an

actual mechanism: it specifies a game to be played between two parties, the set of possible actions

for each, and an allocation for each pair of their strategies. More precisely, the grand game begins

with stage 1 where at least two uniformed parties (UPs) propose simultaneously “contracts” to an

informed party (IP). The latter responds at stage 2: if she accepts a proposal, the corresponding

game is played out and each party receives the respective outcome at stage 3; otherwise, each party

gets its reservation payoff.33

Even in the context of the canonical insurance problem, the ensuing set of equilibrium outcomes

turns out to be very large. Any allocation in Mλ that satisfies the profit constraint with equality

can be supported as equilibrium.34 The supporting strategic scenario prescribes that, following a

33The main focus in Maskin and Tirole [25] (see Sections 4-6) is on a signaling adaptation of the game-form in

Hellwig [19]. Nonetheless, to facilitate comparison with our analysis, we are referring here to their screening approach

in Section 7. This entails no loss of generality: the main message of Section 7 is that the equilibrium outcomes under

screening and signalling remain essentially the same, as long as the out-of-equilibrium actions and beliefs are left

unrestricted.
34See Proposition 12 as well as condition (iv) of Proposition 7 in Maskin and Tirole [25]. That the condition is

satisfied in the canonical insurance problem follows immediately from Claim 2.1 in the Online Appendix.
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strictly-profitable deviation by another UP, the outcome of the equilibrium mechanism would be an

allocation that all IP-types prefer strictly to that of the deviant. Yet this allocation is but a latent

part of the equilibrium scenario, which explains why the analysis in Maskin and Tirole [25] seems

at odds with our result in Corollary 3.1: our equilibrium-selection criterion rules out the use of

latent contractual offers on the equilibrium path. In conjunction with endogenous commitment, this

allows our mechanism to restrict the market participants’ out-of-equilibrium beliefs appropriately

so as to deliver the MWS allocation as the unique equilibrium outcome.

An even sharper difference emerges when the Maskin-Tirole grand game gets modified into

one in which the two parties alternate in making proposals. The IP being now able to exert

influence on the mechanism design, the equilibrium set consists of the allocations in Mλ that

weakly Pareto-dominate the RSW one (see Proposition 13 in Maskin and Tirole [25]). And this

remains the equilibrium set when the original grand game becomes instead a signalling one, with

the IP making the proposals at stage 1 (see Proposition 6 in Maskin and Tirole [25]). Needless to

say, the equilibrium set in question consists of only the MWS allocation if and only if the RSW

allocation is IE.

In the canonical insurance problem, however, the MWS allocation is the only outcome the IP

should aim for when she is called upon to propose mechanisms. This follows from the study in

Myerson [29], which considers the signalling grand game above but for the generalization that all

parties may be informed. This paper brought attention to the core mechanisms and characterized

the neutral optima among them. The latter are core mechanisms that can be supported as sequential

equilibria of the grand game while forming the smallest class of mechanisms that satisfy four

fundamental axioms of mechanism selection.

Restricting attention to deterministic mechanisms (i.e., allocations), in the canonical insurance

problem the notion of core is defined as follows (for the general definition, see Sections 3 and 6 in

Myerson [29]). For an allocation to be core, there should not exist another allocation that would

be (i) strictly preferred by at least one risk-type, and (ii) individually-rational for the firms given

the information revealed to them when a type who strictly prefers the new allocation proposes

it alone or when both types propose it. Formally, m ∈ M is a core allocation if there does not

exist m̂ ∈ Mλ such that ∅ 6= T = {h ∈ {L,H} : ah (m̂) ≻h ah (m)} while Πh (ah (m̂)) ≥ 0 for all

h ∈ T . By Lemma A.3, the MWS is the unique candidate core allocation. That it is in fact a core

allocation, and thus the unique neutral optimum, follows immediately (see Remark V in the Online

Appendix).

The theoretical import of a mechanism that delivers the unique neutral optimum as the unique

equilibrium outcome cannot be overstated. The fact that our analysis sits comfortably within the

realm of incentive-compatible direct mechanisms and the revelation principle begs the question

as to how it fairs against generalized (direct as well as non-direct) mechanisms. In the canonical

insurance problem, the type-spaces of the principal and the agent being a singleton and a dou-

bleton, respectively, the requirement that the mechanism is incentive compatible reduces to our

(IRF ) and (ICh) constraints (see condition (2.6) in Myerson [29]). One could re-interpret therefore

our menu space M as the space of incentive-compatible mechanisms: each mechanism giving the
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corresponding menu as its Bayesian-Nash equilibrium (BNE) allocation, and the customers’ action

being to choose between the two contracts in the given menu. Under this interpretation our result

can be viewed as follows. By delivering the unique neutral optimum as the unique equilibrium

outcome, our mechanism is a sequential equilibrium of the generalized-mechanism selection game

for the canonical insurance problem (see Theorem 5 in Myerson [29]). Which is to say that every

generalized mechanism for the canonical insurance problem has at least one BNE that is weakly

dominated by ours for either risk-type (see Section 5 - especially inequality (5.7) - in Myerson [29]).

Equally noteworthy is the import of our analysis with respect to illustrating fundamental notions

in Myerson [29]. To support the unique neutral optimum as the unique equilibrium outcome, the

requisite restriction in the out-of-equilibrium beliefs obtains because we allow the firms to publicly

pre-commit at stage 1, if they so wish, upon the delivery of their offers at stage 3 irrespectively of

the history of play at that point. This can be viewed as an example of Myerson’s public actions:

enforceable decisions individual players can publicly-commit themselves to carry out, even if they

may turn out ex-post to be harmful to themselves or others. Our notion of endogenous commitment

demonstrates the crucial (yet abstract) role the set of public actions commands in Myerson [29]

when it comes to establishing the very existence of neutral optima.

Of course, we are by no means the first to highlight the role of endogenous public commitment,

nor that of the required supporting institutional structure. The idea of market environments that

allow for commitment as endogenously-emerging strategic choice exists already in the literature.

Nonetheless, a fundamental feature of the equilibrium scenario distinguishes our mechanism sharply:

public commitment is called upon only off-equilibrium, never on the equilibrium path.35 And this

becomes the more important when it comes to applications of the canonical insurance model:

viewing the equilibrium scenario as the predicted path of play, the fact that commitment is not

chosen along this path goes a long way in alleviating the need of a motivational story for the

implicitly-assumed commitment technology.

5 Concluding Remarks

The simplest and most obvious approach to studying markets with incomplete information is to

consider the case of one-sided information: one side of the market has private information about

some relevant characteristic of the good to be traded. In the context of the accident-insurance

35To point out but a few examples, Caruana and Einav [10] consider a dynamic game in which players can change

their previously-announced actions but at a cost. Commitment here is the default strategic option, and the authors

show that it remains almost always the option of choice on the equilibrium path. Equally important is the role

commitment plays on the equilibrium path in Netzer and Scheuer [30]. By contrast, Baker et al. [5] allow firms

to choose between contracts that are binding (because they are based on objectively-verifiable even though poor

performance measures), and contracts that are not (as they are written upon subjective but non-verifiable indicators).

Quite similarly, Bernheim and Whinston [7] analyse binding versus non-binding contractual agreements as the choice

between complete and incomplete contracts. As models of endogenous commitment, however, neither paper relates

to the canonical insurance problem - where one assumes (among other things) contractual completeness in order to

focus on the issue of adverse selection.
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market in Rothschild and Stiglitz [35], the present study approaches a central issue that has been

left open in the literature from a new perspective. Our analysis suggests that the lack of efficient

outcomes in competitive markets under adverse selection may not be due to the presence of private,

but rather due to the absence of public information. More precisely, due to the lack of institutions

that facilitate public commitment by the insurance suppliers - to deliver on the offers customers

have applied for via “pre-approved” forms, and to not discriminate by risk-type when rejecting

applications via standard forms.

Our mechanism augments the game in Hellwig [19] along two dimensions, an accounting and

a strategic. Our firms can subsidize their net income across contractual offers via the deployment

of menus. They can also choose though to publicly pre-commit upon the future delivery of their

menus. In the canonical insurance problem, this type of endogenous commitment plays the same

strategic role as that of the public actions in Myerson [29]. As a result, our mechanism can deliver

the unique neutral optimum as the unique equilibrium outcome.

In the context of the canonical insurance problem, our approach demonstrates the operational

content of Meyrson’s seminal argument for the existence of neutral optima, an ingenious though

entirely abstract method of restricting the out-of-equilibrium beliefs appropriately. In this sense,

the present paper suggests a rather unique in the current literature application of fundamental

theoretical insight. In a more intuitive sense, the present mechanism can be seen as an optimality

benchmark for the evaluation of other accident-insurance models in the literature that may offer

closer approximations to real-world market settings.
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Appendices

A Efficient Insurance Provision

Lemma A.1 Let (s∗, α∗) ∈ SF × SA × SA be an equilibrium profile for Γ. Then,

αh

(
M

(
s1∗

))
%h a∗∗h , h ∈ {L,H}

Proof. Suppose first that a∗∗H ≻H αH

(
M

(
s1∗

))
. Recall that the high-risk type is fully-insured

at the RSW allocation: w (a∗∗0H) = w (a∗∗1H) or equivalently u′ (w (a∗∗0H)) = u′ (w (a∗∗1H)), and thus

IH (a∗∗H ) = 1−pH
pH

. For κH < 1−pH
pH

and sufficiently small ǫH > 0 the contract âH = a∗∗H + (1, κH) ǫH

gives a∗∗H ≻H âH ≻H αH

(
M

(
s1∗

))
while a∗∗H ≻L âH (see Lemma 1.4 in the Online Appendix).

Recall also that the low-risk type is under-insured at the RSW allocation: w (a∗∗0L) > w (a∗∗1L), and

thus IL (a∗∗L ) < 1−pL
pL

. Since a∗∗L ≻L a∗∗H ≻L âH , for κL > 1−pL
pL

and ǫL < 0 with |ǫL| sufficiently

small, the contract âL = a∗∗L + (1, κL) ǫL gives a∗∗L ≻L âL ≻L âH while a∗∗L ≻H âL (see again

Lemma 1.4 in the Online Appendix). And since a∗∗H ∼H a∗∗L ≻H âL while limǫH→0 âH = a∗∗H , letting

∆H = UH (a∗∗H ) − UH (âL) gives UH (a∗∗H ) − UH (âH) < ∆H and thus âH ≻H âL for sufficiently

small ǫH .

Suppose next that a∗∗L ≻L αL

(
M

(
s1∗

))
, and construct the contracts âL and âH as before. Lemma

1.4 in the Online Appendix now dictates that a∗∗L ≻L âL ≻L αL

(
M

(
s1∗

))
and a∗∗L ≻H âL. And as

a∗∗L ≻L a∗∗H while limǫL→0 âL = a∗∗L , clearly âL ≻L a∗∗H for sufficiently small |ǫL|. Observe also that,

since a∗∗H ∼H a∗∗L ≻H âL, it must be a∗∗H ≻H âH ≻H âL and a∗∗H ≻L âH (recall once again Lemma

1.4 in the Online Appendix).

Putting our observations from the two cases above together, it is trivial to check that in either

case the menu m̂ = {âL, âH} is separating and strictly-preferred by at least one risk-type to{
αL

(
M

(
s1∗

))
, αH

(
M

(
s1∗

))}
. Suppose now that some firm n̂ ∈ N deviates to the strategy ŝn̂

entailing the actions ŝ1
n̂|M = {m̂} and ŝ2n̂

(
m̂, s1∗−n̂

)
= NW . As âh ≻h αh

(
M

(
s1∗

))
implies that

αh

(
M

(
ŝn̂, s

∗
−n̂

))
= âh, the firm’s belief vector regarding the distribution of risk-types amongst

its applicants at the subgame Γ
(
ŝ1n̂, s

1∗
−n̂

)
cannot but be some {λLn̂ (m̂) , λHn̂ (m̂)} ∈ [0, 1] × [0, 1]:

λLn̂ (m̂) + λHn̂ (m̂) = 1. Given though that

Πh (âh) = Πh (a
∗∗
h ) +

(
1− ph
ph

− κh

)
phǫh =

(
1− ph
ph

− κh

)
phǫh > 0 h ∈ {L,H}
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this leads to the absurdity that its expected profits will be

ΠNW
n̂

(
ŝ1n̂|M, s∗−n̂, α

)
=

λLn̂ (m̂)ΠL (âL)

|NL

(
M

(
ŝn̂, s

∗
−n̂

))
|
1m̂∈ML(M(ŝn̂,s∗−n̂))

+
λHn̂ (m̂)ΠH (âH)

|NH

(
M

(
ŝn̂, s

∗
−n̂

))
|
1m̂∈MH(M(ŝn̂,s∗−n̂))

> 0

the inequality because m̂ ∈ Mh

(
M

(
ŝn̂, s

∗
−n̂

))
for at least one h.

Lemma A.2 Let (s∗, α∗) ∈ SF × SA × SA be an equilibrium profile for Γ. Then,

m∗ = {αL (M (s∗)) , αH (M (s∗))} ∈ Mλ

Proof. To argue ad absurdum, suppose that Π (m∗|λ) < 0. It must be then ΠL (αL (M (s∗))) < 0

or ΠH (αH (M (s∗))) < 0 or both. Let ΠH (αH (M (s∗))) < 0. As obviously αH (M (s∗)) 6= 0, there

is at least one firm trading with the high-risk type on the equilibrium path. By free entry, however,

no firm can be trading only with this type. Clearly, we must have ∅ 6= NH (M (s∗)) ⊆ NL (M (s∗)).

That is, 0 < |NH (M (s∗)) | ≤ |NL (M (s∗)) |. Suppose now that n ∈ N is trading with both types

on the equilibrium path. Letting m ∈ M (s∗n) ∩ML (M (s∗)) ∩MH (M (s∗)), by equation (5) in

the main text and free entry, it must be

0 ≤ Πn (s
∗, α∗) =

λΠL (aL (m))

|NL (M (s∗)) |
+

(1− λ)ΠL (aH (m))

|NH (M (s∗)) |

=
λΠL (αL (M (s∗)))

|NL (M (s∗)) |
+

(1− λ)ΠL (αH (M (s∗)))

|NH (M (s∗)) |

≤
λΠL (αL (M (s∗))) + (1− λ)ΠH (αH (M (s∗)))

|NL (M (s∗)) |
=

Π(m∗|λ)

|NL (M (s∗)) |

which contradicts though our hypothesis that m∗ 6∈ Mλ. A trivially similar argument leads to the

same contradiction if we let instead ΠL (αL (M (s∗))) < 0.

Lemma A.3 Let m ∈ Mλ \ {m} be such that aL ≻L aL (m) [resp. aL (m) %L aL]. There

exists then m̂ ∈ M+
λ such that aL ≻L aL (m̂) ≻L aL (m) [resp. aH ≻H aH (m̂) ≻H aH (m)] and

ΠH (aH (m̂)) ≤ 0 [resp. ΠL (aL (m̂)) < 0].

Moreover, the menu m̂ can be chosen so that aL (m̂) [resp. aH (m̂)] is arbitrarily close to aL

[resp. aH ], and thus aL (m̂) ≻L aL (m′) [resp. aH (m̂) ≻H aH (m′)] for any given m′ ∈ M with

aL ≻L aL (m′) %L aL (m) [resp. aH ≻H aH (m′) %H aH (m)].

Proof.

Step 1. Suppose first that aL ≻L aL (m). Letting
{
a
µ
L,a

µ
H

}
be the IE(µ)-optimum for some µ ∈

(λ, µ) sufficiently close to µ, we get

UL

(
a
µ
H

)
< UL

(
a
µ
L

)
≤ UL (aL) , UH

(
a
µ
L

)
= UH

(
a
µ
H

)
, UL (aL (m)) < UL

(
a
µ
L

)

All relations but the last inequality above follow from the choice of µ (see Claim 2.1 and Lemma

1.5 in the Online Appendix; the weak inequality accounts for the case in which the MWS allocation
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coincides with the RSW one). To verify the last inequality, let ∆1 = UL (aL) − UL (aL (m)) and

observe that the value V : [0, 1] 7→ R and solution a∗
h∈{L,H} : [0, 1] 7→ A of the IE(µ)-problem

are continuous functions at any µ ∈ (λ, 1) (see Lemma 2.2 in the Online Appendix) whereas

U
h∈{L,H}

(·) is continuous everywhere. Observe also that UL

(
a
µ
L

)
6= UH

(
a
µ
H

)
; otherwise, we would

have UL

(
a
µ
L

)
= UH

(
a
µ
H

)
= UH

(
a
µ
L

)
- i.e., (pH − pL)

[
u
(
wµ
0L

)
− u

(
wµ
1L

)]
which implies that a

µ
L

provides full insurance, an absurdity given that µ 6= λ. Taking therefore µ sufficiently close to µ

guarantees that

max
{
(1− µ)

∣∣UL

(
a
µ
L

)
− UH

(
a
µ
H

)∣∣ , |V (µ)− V (µ)|
}
< ∆1/2

and thus

UL

(
a
µ
L

)
> µUL

(
a
µ
L

)
+ (1− µ)UH

(
a
µ
H

)
−

∆1

2

= V (µ)−
∆1

2
> V (µ)−∆1 = UL (aL)−∆1 = UL (aL (m))

Consider now the contract âL = a
µ
L + (1, κ) ǫ for some κ ∈

(
0, IH

(
a
µ
L

))
and ǫ > 0. Since a

µ
L ≻L

aL (m) a sufficiently small ǫ gives a
µ
L ≻L âL ≻L aL (m) and a

µ
L ≻H âL (see Lemma 1.4 in the

Online Appendix). And since also a
µ
H ∼H a

µ
L, the menu m̂ =

{
âL,a

µ
H

}
satisfies (ICH). It also

satisfies (IRh∈{L,H}) for µ sufficiently close to µ (see Lemma 2.5(i) and Remark IV(i) in the Online

Appendix). To see that it satisfies (ICL), recall the proof of Lemma 1.3 in the Online Appendix. To

establish that âL ≻L aL we used that UL (âL)−UL

(
a
µ
L

)
∈ (−∆2, 0) for sufficiently small ǫ and where

∆2 = UL

(
a
µ
L

)
−UL (aL). It is trivial to check that the argument remains valid if we define instead

∆2 = UL

(
a
µ
L

)
− max

{
UL

(
a
µ
H

)
, UL (aL (m))

}
to obtain UL (âL) > max

{
UL

(
a
µ
H

)
, UL (aL (m))

}
,

again for sufficiently small ǫ. To show next that Π (m̂|λ) > 0 notice that, compared to
{
a
µ
L,a

µ
H

}

which breaks even across the two types, the new menu faces exactly the same expected losses from

the high-risk type. It expects though even higher profits from the low-risk since

ΠL (âL)−ΠL

(
a
µ
L

)
=

(
1− pL
pL

− κ

)
pLǫ >

[
1− pL
pL

− IL
(
a
µ
L

)]
pLǫ

= (1− pL)

[
1−

u′
(
wµ
0L

)

u′
(
wµ
1L

)
]
ǫ > 0

The first inequality here is because κ < IH
(
a
µ
L

)
< IL

(
a
µ
L

)
. The second follows from risk-aversion

and the fact that,
{
a
µ
L,a

µ
H

}
being IE(µ) with µ > λ, it must be wµ

0L > wµ
1L (see Claim 2.1 in the

Online Appendix). Finally, we have ah (m̂) ∈ R
2
++ for either h (see Lemma 2.5(v) in the Online

Appendix) as well as ΠH

(
a
µ
H

)
≤ 0 (see Lemma 2.4 in the Online Appendix).

Step 2. Suppose next that aL (m) %L aL with aL (m) 6= aL. It cannot but be µ < 1 and

UH (aH (m)) < UH (aH). Let then ∆3 = UH (aH) − UH (aH (m)). Taking µ ∈ (µ, 1) suffi-

ciently close to µ ensures that ΠL

(
a
µ
L

)
< 0 < ΠH

(
a
µ
H

)
(see Lemma 2.4 in the Online Ap-

pendix), while 0 < UH (aH) − UH

(
a
µ
H

)
< ∆3 (see Lemma 1.5 in the Online Appendix) and

thus UH (aH (m)) < UH

(
a
µ
H

)
. Notice also that aµL ≻L a

µ
H (see Claim 2.1 in the Online Appendix)

and let ∆4 = UL

(
a
µ
L

)
− UL

(
a
µ
H

)
. Consider now the menu m̂ =

{
âL,a

µ
H

}
with âL = a

µ
L + (1, κ) ǫ
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for some κ < IH
(
a
µ
L

)
and ǫ > 0. A sufficiently small |ǫ| gives a

µ
L ≻L âL ≻L a

µ
H and a

µ
L ≻H âL

(Lemma 1.4 in the Online Appendix), as well as UL

(
a
µ
L

)
− UL (âL) < ∆4 and thus âL ≻L a

µ
H .

Since also a
µ
H ∼H a

µ
L, the menu m̂ is separating. It meets moreover either (IRh) constraint (see

Lemma 2.5(ii) and Remark IV(ii) in the Online Appendix) and gives ah (m̂) ∈ R
2
++ for either h

(see Remark IV(iii) in the Online Appendix). Finally, since µ > λ, the same argument as in the

previous case shows that Π (m̂|λ) > 0; in the present case, since ΠL

(
a
µ
L

)
< 0 (see again Lemma

2.4 in the Online Appendix), that ΠL (aL (m̂)) < 0 follows from taking |ǫ| sufficiently small.

Step 3. We have established the validity of the claim on the space Mλ \ {m ∈ Mλ : aL (m) 6= aL}.

To complete the argument for the first part of the claim, let m = {aL,aH} with aH ∈ A \ {aH}.

The MWS menu being the unique IE(µ)-optimum, we must have aH ≻H aH (m) and thus aL ∼H

aH ≻H aH (m). But then m violates (ICH), a contradiction of the hypothesis that m ∈ Mλ ⊂ M.

Step 4. Recall that, in either of Steps 1-2 above, the construction of m̂ allows µ and ǫ to be taken

arbitrarily close to µ and zero, respectively. In other words, m̂ can be chosen arbitrarily close to

m. The second part of the claim follows from the continuity of the functions Uh∈{L,H} (·).

Proof of Claim 3.1

Let (s∗, α∗) ∈ SF × SA × SA be an equilibrium profile for Γ. To argue ad absurdum, let suppose

first that aL ≻L αL

(
M

(
s1∗

))
. Since {αL (M (s∗)) , αH (M (s∗))} ∈ Mλ (recall Lemma A.2), by

Lemma A.3 there exists m̂ = (âL, âH) which is incentive-compatible, individually-rational for either

risk-type, and such that âL ≻L αL

(
M

(
s1∗

))
while ΠH (âH) ≤ 0 < Π(m̂|λ). Suppose then that

firm n ∈ N deviates to the strategy ŝn which entails the action ŝ1
n|M = {m̂} = ŝ1

n|C at stage 1 (and

subsequently the choice ŝ2n (m̂, ·) = NW at stage 3 everywhere on S1
−n). Since âL ≻L αL

(
M

(
s1∗

))

ensures that αL

(
M

(
ŝn, s

∗
−n

))
= âL, the deviant should expect profits

ΠC
n

(
{m̂} , s∗−n, α

)
= λΠL (âL) +

(1− λ)ΠH (âH)

|NH

(
M

(
ŝn, s∗−n

))
|
× 1m̂∈MH(M(ŝn,s∗−n))

and we need to account for two possible cases. If m̂ 6∈ MH

(
M

(
ŝn, s

∗
−n

))
, we have

ΠC
n

(
{m̂} , s∗−n, α

)
= λΠL (âL) ≥ λΠL (âL) + (1− λ)ΠH (âH) = Π (m̂|λ) > 0

Otherwise, |NH

(
M

(
ŝn, s

∗
−n

))
| ≥ 1 and thus

ΠC
n

(
{m̂} , s∗−n, α

)
= λΠL (âL) +

(1− λ)ΠH (âH)

|NH

(
M

(
ŝn, s∗−n

))
|

≥ λΠL (âL) + (1− λ)ΠH (âH) = Π (m̂|λ) > 0

In either case therefore the deviation is profitable. To reach moreover the same conclusion when

αL

(
M

(
s1∗

))
%L aL with αL

(
M

(
s1∗

))
6= aL requires but a trivially similar argument. �

Corollary A.1 (s∗, α∗) ∈ SF × SA × SA is an equilibrium profile for Γ only if

{αL (M (s∗)) , αH (M (s∗))} ∈ M∗
λ := {m ∈ Mλ : aL %L αL (m)}

Proof. As M (s∗) ⊆ M
(
s1∗

)
by the definition of our mechanism, the result follows from Claim

3.1 and Lemma A.2.
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Proof of Proposition 3.1

To support the sequential equilibrium scenario in question, we will consider some n̂ ∈ N deviating

with the strategy ŝn̂ that entails offering some the set of menus M ∈ M at stage 1 (i.e., ŝ1
n̂|M =

M̂) and honoring mL,mH ∈ M̂ (i.e., ŝ2n̂
(
mL, s

1∗
−n̂

)
= NW = ŝ2n̂

(
mH , s1∗−n̂

)
) where (mL,mH) ∈

ML (M (ŝn̂))×MH (M (ŝn̂)). This implies of course that m̂ = {aL (mL) ,aH (mH)} satisfies (ICh)

for either h. We will let the trembles in (7) be given by the sequences {ǫ′kh}(k,h)∈N×{L,H} and

{ǫ′′kh}(k,h)∈N×{L,H} for m̂ = mL and m̂ = mH , respectively (recall footnote 19 in the main text). As

either risk-type chooses each of m, mL, and mH with positive probability, the payoffs are given by

Πn̂k

(
ŝn̂, s

∗
−n̂, α

)
=

λk
Ln̂ (mL)ΠL (aL (mL))

|NL

(
M

(
ŝn̂, s

∗
−n̂

))
|

+
λk
Hn̂ (mH)ΠH (aH (mH))

|NH

(
M

(
ŝn̂, s

∗
−n̂

))
|

ΠNW
n∗k

(
ŝn̂, s

∗
−n̂, α

∗
)

=
λk
Ln∗ (m)ΠL (aL)

|NL

(
M

(
ŝn̂, s

∗
−n̂

))
|
+

λk
Hn∗ (m)ΠH (aH)

|NH

(
M

(
ŝn̂, s

∗
−n̂

))
|

where, for either h,

Nh

(
M

(
ŝn̂, s

∗
−n̂

))
=





{n} if αh

(
M

(
ŝn̂, s

∗
−n̂

))
= ah (mh) 6= ah

N if αh

(
M

(
ŝn̂, s

∗
−n̂

))
= ah (mh) = ah

N \ {n} if αh

(
M

(
ŝn̂, s

∗
−n̂

))
= ah 6= ah (mh)

Step 1. Let the deviation attract only the high-risk type away from m: aL ≻L aL (mL) and

aH (mH) ≻H aH . Since aH (mH) ≻H a∗∗H , it cannot but be ΠH (aH (mH)) < 0; the deviation

is potentially profitable only if ΠL (aL (mL)) > 0. And ΠL (aL (mL)) > 0 > ΠH (aH (mH)) allows

us to define the quantity 0 < ∆ = − (1− λ)ΠH (aH (mH)) / [λΠL (aL (mL))].

We will support the scenario that has {mL,mH} withdrawn and m honoured, while either risk-type

applies for m (i.e., σh (ah) = 1 = 1− σh (ah (mh)) for either h).

(i). If mH is offered without commitment, let ǫ′kL/ǫ
′
kH ≤ ǫ′′kL/ǫ

′′
kH < ∆ and ǫ′kL + ǫ′′kL ≤ ǫ′kH +

ǫ′′kH . The first two inequalities ensure that λk
Ln̂ (mL) ≤ λk

Ln̂ (mH) and λk
Ln̂ (mH) /λk

Hn̂ (mH) <

−ΠH (aH (mH)) /ΠL (aL (mL)), respectively, everywhere along the sequences.36 As a result,

Πn̂k

(
ŝn̂, s

∗
−n̂, α

)
= λk

Ln̂ (mL)ΠL (aL (mL)) + λk
Hn̂ (mH)ΠH (aH (mH))

≤ λk
Ln̂ (mH)ΠL (aL (mL)) + λk

Hn̂ (mH)ΠH (aH (mH))

= λk
Hn̂ (mH)

[
λk
Ln̂ (mH)

λk
Hn̂ (mH)

ΠL (aL (mL)) + ΠH (aH (mH))

]
< 0

By contrast, ǫ′kL + ǫ′′kL < ǫ′kH + ǫ′′kH means that λk
n∗ = (1− ǫ′kL − ǫ′′kL) / (1− ǫ′kH − ǫ′′kH) > 1 and

thus λk
Ln∗ (m) > λ and λk

Hn∗ (m) < 1 − λ along the sequence. And since ΠL (aL) ≥ 0 ≥ ΠH (aH)

(see Lemma 2.4 in the Online Appendix), we get

ΠNW
n∗k

(
ŝn̂, s

∗
−n̂, α

∗
)

= (N − 1)−1
[
λk
Ln∗ (m)ΠL (aL) + λk

Hn∗ (m)ΠH (aH)
]

≥ (N − 1)−1 [λΠL (aL) + (1− λ)ΠH (aL)] = (N − 1)−1Π(m|λ) = 0

36Observe that λk
Ln̂ (m) in (7) is strictly increasing with respect to λk

n̂.
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(ii). Let now mH be offered with commitment. Under the equilibrium scenario in consideration we

have aH (mH) ≻H aH = αH

(
M

(
s∗−n̂

))
. That is, αH

(
M

(
ŝn̂, s

∗
−n̂

))
= aH (mH) 6= aH and hence

the only relevant sequence of trembles is {ǫ′kh}(k,h)∈N×{L,H}. Letting limk→∞ ǫ′kL/ǫ
′
kH = 0 ensures

that also limk→∞ λk
Ln̂ (mL) = 0. That is, λk

Ln̂ (mL) < λ∆ (at least along a subsequence) and thus

Πn̂k

(
ŝn̂, s

∗
−n̂, α

)
= λk

Ln̂ (mL)ΠL (aL (mL)) + (1− λ)ΠH (aH (mH)) < 0

Moreover, ǫ′kL < ǫ′kH (at least along a subsequence) and thus

ΠNW
n∗k

(
ŝn̂, s

∗
−n̂, α

∗
)
= (N − 1)−1 λk

Ln∗ (m)ΠL (aL) > (N − 1)−1 λΠL (aL) ≥ 0

Step 2. Let now the deviation attract at least the low-risk type away from m: aL (mL) %L aL. We

will support the scenario that has {mL,mH} withdrawn, m withdrawn if only if mL ∈ ŝ1
n̂|C and

m 6= m∗∗, while either risk-type applies for m.

(i). If a∗∗H ≻H aH (mH), we have aL (mL) %L aL ≻L aH %H a∗∗H and a∗∗H ≻H aH (mH) %L aL (mL).

The menu {aL (mL) ,a
∗∗
H } is incentive-compatible for either risk type and, the RSW allocation

being optimal for the RSW problem, it must be ΠL (aL (mL)) < 0. Clearly, aL (mL) 6= aL while

the deviation is not potentially profitable unless ΠH (aH (mH)) > 0.

(i.a). Let mL ∈ ŝ1
n̂|NC

.

(i.a.i). If µ = 1, it cannot but be Π (m̂|λ) < 0; more precisely, P (m̂) ⊂ [0, λ). Let then ǫ′kL/ǫ
′
kH =

1 = ǫ′′kL/ǫ
′′
kH . Since λk

Ln̂ (mL) = λ = λk
Ln̂ (mH), we have

Πn̂k

(
ŝn̂, s

∗
−n̂, α

)
= λk

Ln̂ (mL)ΠL (aL (mL)) + λk
Hn̂ (mH)ΠH (aH (mH))

= λΠL (aL (mL)) + (1− λ)ΠH (aH (mH)) = Π (m̂|λ) < 0

By contrast, ǫ′kL + ǫ′′kL = ǫ′kH + ǫ′′kH means that λk
n∗ = 1. That is, λk

Ln∗ (m) = λ and

ΠNW
n∗k

(
ŝn̂, s

∗
−n̂, α

∗
)
= (N − 1)−1

[
λk
Ln∗ (m)ΠL (aL) + λk

Hn∗ (m)ΠH (aH)
]
= (N − 1)−1Π(m|λ) = 0

It is optimal for n∗ ∈ N to honor m at stage 3.

(i.a.ii). If µ < 1, then m = m∗∗; any firm offering this menu is always indifferent between honoring

it or not at stage 3 (recall the remark that follows the definition of P (·) in the main text: in the

present case, P (m) = [0, 1]). Let now ǫ′kL/ǫ
′
kH ≥ ǫ′′kL/ǫ

′′
kH > ∆. Since ΠL (aL (mL)) < 0, adapting

trivially the argument in Step 1(i) shows that Πn̂k

(
ŝn̂, s

∗
−n̂, α

)
< 0 (see the left panel of Figure 5).

(i.b). Let mL ∈ ŝ1
n̂|C , and recall the argument in Step 1(ii). Here we have αL

(
M

(
ŝn̂, s

∗
−n̂

))
=

aL (mL) 6= aL. The relevant sequence now is {ǫ′′kh}(k,h)∈N×{L,H}. Letting limk→∞ ǫ′′kL/ǫ
′′
kH = ∞

means that limk→∞ λk
Hn̂ (mH) = 0 and thus λk

Hn̂ (mH) < (1− λ) /∆ (at least along a subsequence).

This gives

Πn̂k

(
ŝn̂, s

∗
−n̂, α

)
= λΠL (aL (mL)) + λk

Hn̂ (mH)ΠH (aH (mH)) < 0

Moreover, ΠNW
n∗k

(
ŝn̂, s

∗
−n̂, α

∗
)

= λk
Hn∗ (m)ΠH (aH) /

[
N − 1 + 1aH(mH)=aH

]
≤ 0 (the inequality

strict unless m = m∗∗) means that it is optimal for n∗ ∈ N to withdraw m at stage 3 if µ = 1 and

m 6= m∗∗. When m = m∗∗, which embeds the case µ < 1, the firm is indifferent between honoring
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or withdrawing m.

(ii). If aH (mH) %H a∗∗H , we have ΠH (aH (mH)) ≤ 0; the deviation is not potentially profitable

unless ΠL (aL (mL)) > 0. In fact, it must be ΠH (aH (mH)) < 0 because ΠH (aH (mH)) = 0

necessitates that aH (mH) = a∗∗H ; an absurdity since aL (mL) %L aL %L a∗∗L (for any {a,a∗∗H } ∈ M,

it cannot be ΠL (a) ≥ 0 and a %L a∗∗L unless a = a∗∗L ). Clearly, aH (mH) 6= a∗∗H and ΠL (aL (mL)) >

0 > ΠH (aH (mH)). The argument proceeds as in Step 1(i) if mL ∈ ŝ1
n̂|NC

(see the right panels of

Figures 4,5,6). If mL ∈ ŝ1
n̂|C , let ǫ

′′
kL/ǫ

′′
kH = 1. This gives λk

Hn̂ (mH) = 1− λ and thus

Πn̂k

(
ŝn̂, s

∗
−n̂, α

)
= λk

Hn̂ (mH)ΠH (aH (mH)) + λΠL (aL (mL)) /
[
1 + (N − 1)1aL(mL)=aL

]

< λk
Hn̂ (mH)ΠH (aH (mH)) + λΠL (aL (mL))

= (1− λ)ΠH (aH (mH)) + λΠL (aL (mL)) = Π (m̂|λ) < 0

the last inequality being strict (more precisely, P (m̂) ⊂ (λ, 1]; see the left panel of Figure 4) unless

ah (mh) = ah for either h. With respect to m, the argument remains the same as in Step 2(i.b). �

Lemma A.4 Let (s∗, α∗) ∈ SF × SA × SA be an equilibrium profile for Γ. Suppose also that ∃h ∈

{L,H}: αh (M (s∗)) %h a∗∗h . We have then NL (M (s∗)) ⊆ NH (M (s∗)) 6= ∅, with NL (M (s∗)) =

∅ only if αH (M (s∗)) = a∗∗H .

Proof. Recall that a∗∗h ≻h 0 for either h (see Lemma 2.5(i) in the Online Appendix). By hypothesis,

therefore, firms are trading with at least one type on the equilibrium path: Nh (M (s∗)) 6= ∅

for some h ∈ {L,H}. In fact, it must be NH (M (s∗)) 6= ∅. For otherwise, we would have

NL (M (s∗)) 6= ∅ = NH (M (s∗)). And since there is no trade for the high-risk type (equivalently,

αH (M (s∗)) = 0), it must be αL (M (s∗)) %L a∗∗L ∼H a∗∗H ≻H 0. Which contradicts, though, that

there is no trade with the high-risk type; for she strictly prefers the contract αL (M (s∗)) to her

endowment point.

Lemma A.5 Let (s∗, α∗) ∈ SF × SA × SA be an equilibrium profile for Γ. If αH (M (s∗)) ≻H a∗∗H

then ∅ 6= NL (M (s∗)) = NH (M (s∗)).

Proof. By the preceding lemma, it cannot but be ∅ 6= NL (M (s∗)) ⊆ NH (M (s∗)). Recall also

that a∗∗H = argmaxa∈A:ΠH(a)≥0 UH (a) with ΠH (a∗∗H ) = 0. Clearly, αH (M (s∗)) ≻H a∗∗H implies

that ΠH (aH (m)) < 0 for any m ∈ MH (M (s∗)). Hence, by free entry and equation (5) in the

main text, no firm can be trading with only the high-risk type on the equilibrium path. That is,

NH (M (s∗)) ⊆ NL (M (s∗)) and the claim follows.

B Exit in Bertrand Competition

Lemma B.1 Let (s∗, α∗) ∈ SF × SA × SA be an equilibrium profile for Γ such that αH (M (s∗)) %

a∗∗H . Then,

ΠH (αH (M (s∗))) ≤ 0 ≤ ΠL (αL (M (s∗)))
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Proof. Since a∗∗H = argmaxa∈A:ΠH(a)≥0 UH (a) with ΠH (a∗∗H ) = 0, if αH (M (s∗)) % a∗∗H then

it cannot but be ΠH (αH (M (s∗))) ≤ 0. The claim holds trivially if no firm is trading with the

low-risk type on the equilibrium path: NL (M (s∗)) = ∅ implies that αL (M (s∗)) = 0 and thus

ΠL (αL (M (s∗))) = 0. If NL (M (s∗)) 6= ∅, on the other hand, taking n ∈ NL (M (s∗)) and

m ∈ M (s∗n) ∩ML (M (s∗)), equation (5) in the main text gives

0 ≤ Πn (s
∗, α∗) =

λΠL (aL (m))

|NL (M (s∗)) |
+

(1− λ)ΠH (aH (m))

|NH (M (s∗)) |
× 1M(s∗n)∩MH(M(s∗)) 6=∅

=
λΠL (αL (M (s∗)))

|NL (M (s∗)) |
+

(1− λ)ΠH (αH (M (s∗)))

|NH (M (s∗)) |
× 1M(s∗n)∩MH(M(s∗)) 6=∅

≤
λΠL (αL (M (s∗)))

|NL (M (s∗)) |

where the first inequality above is due to free entry.

Proof of Claim 4.1

Let m ∈ M′. In what follows, we will support the scenario in which the deviation [resp. m] gets

withdrawn [resp. honored] at stage 3, and either risk-type chooses m.

Step 1. If aH (mH) ≻H aH (m) and aL (m) ≻L aL (mL), the argument proceeds as in Step 1(i) of

the proof for Proposition 3.1.

Step 2. Let then aL (mL) %L aL (m). It cannot be P (m̂) = [0, 1]. For this implies ΠH (aH (mH)) =

ΠL (aL (mL)) > 0 - the equality by the definition of P (·) in the main text, and the inequality for the

deviation to be profitable. Yet any solution to the problem maxm∈M:Πh(ah(m))≥0 h∈{L,H} UL (aL (m̃))

gives aL (m̃) = a∗∗L while ΠL (a∗∗L ) = 0. Clearly, aL (m̂) %L aL (m) %L a∗∗L renders ΠH (aH (m̂)) =

ΠL (aL (m̂)) > 0 absurd.

Hence, either P (m̂) = [p (m̂) , 1] or P (m̂) = [0, p (m̂)], for some p (m̂) ∈ (0, 1).

Step 3. P (m̂) = [p (m̂) , 1] necessitates that ΠL (aL (mL)) > ΠH (aH (mH)) > 0; the deviation is

not potentially profitable unless ΠL (aL (mL)) > 0. Let ∆ = (1− λ) p (m̂) / [λ (1− p (m̂))] and

choose trembles as in Step 1(i) of the proof for Proposition 3.1. Since now λk
Ln̂ (mH) /λk

Hn̂ (mH) <

p (m̂) / [1− p (m̂)] everywhere along the sequences, we have

Πnk

(
ŝn̂, s

∗
−n̂, α

)
= λk

Ln̂ (mL)ΠL (aL (mL)) + λk
Hn̂ (mH)ΠH (aH (mH))

≤ λk
Ln̂ (mH)ΠL (aL (mL)) + λk

Hn̂ (mH)ΠH (aH (mH))

= λk
Hn̂ (mH)

[
λk
Ln̂ (mH)

λk
Hn̂ (mH)

ΠL (aL (mL)) + ΠH (aH (mH))

]

< λk
Hn̂ (mH)

[
p (m̂)

1− p (m̂)
ΠL (aL (mL)) + ΠH (aH (mH))

]

=
λk
Hn̂ (mH)

1− p (m̂)
[p (m̂)ΠL (aL (mL)) + (1− p (m̂))ΠH (aH (mH))] = 0

The reasoning for why it is optimal for any n∗ ∈ N to honor m at stage 3 is the same as in Step

1(i) of the proof for Proposition 3.1.

Step 4. If P (m̂) = [0, p (m̂)], it cannot but be ΠL (aL (mL)) < ΠH (aH (mH)); the deviation is
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not potentially profitable unless ΠH (aH (mH)) > 0. Let now ∆ < ǫ′kL/ǫ
′
kH ≤ ǫ′′kL/ǫ

′′
kH and ǫ′kL +

ǫ′′kL ≤ ǫ′kH + ǫ′′kH . As the first two inequalities ensure, respectively, that λk
Ln̂ (mL) /λ

k
Hn̂ (mL) >

p (m̂) / [1− p (m̂)] and λk
Hn̂ (mL) = 1 − λk

Ln̂ (mL) ≥ 1 − λk
Ln̂ (mH) = λk

Hn̂ (mH) everywhere along

the sequences, we have

Πnk

(
ŝn̂, s

∗
−n̂, α

)
= λk

Ln̂ (mL)ΠL (aL (mL)) + λk
Hn̂ (mH)ΠH (aH (mH))

≤ λk
Ln̂ (mL)ΠL (aL (mL)) + λk

Hn̂ (mL)ΠH (aH (mH))

= λk
Ln̂ (mL)

[
ΠL (aL (mL)) +

λk
Hn̂ (mL)

λk
Ln̂ (mL)

ΠH (aH (mH))

]

< λk
Ln̂ (mL)

[
ΠL (aL (mL)) +

1− p (m̂)

p (m̂)
ΠH (aH (mH))

]
= 0

The reasoning for why it is optimal for any n∗ ∈ N to honor m at stage 3 is the same as in Step

1(i) of the proof for Proposition 3.1. �

Lemma B.2 Let (s∗, α∗) ∈ SF × SA × SA be an equilibrium profile for Γ when C = {C}. Then,

{αL (M (s∗)) , αH (M (s∗))} is separating and Πh (αL (M (s∗))) = 0 for either h.

Proof. Let a∗h = αh (M (s∗)) for either h. Suppose first that ΠL (a∗L) = δ > 0 and consider the

contract âL = a∗L + (1, κL) ǫL for some κL ∈ (IH (a∗L) , IL (a∗L)) and ǫL < 0. This gives

ΠL (âL) = (1− pL) (a
∗
0L + ǫL)− pL (a∗1L + κLǫL) = ΠL (a∗L) + [1− pL (1 + κL)] ǫL

= δ + [1− pL (1 + κL)] ǫL

and sufficiently small |ǫL| ensures that |1 − pL (1 + κL) ||ǫL| < δ or ΠL (âL) > 0. Yet, by Lemma

1.3 in the Online Appendix, we also have âL ≻L a∗L ≻H âL. Which, since a∗L %L a∗H %H a∗L,

gives âL ≻L a∗H ≻H âL. The pooling menu {âL, âL} attracts only the low-risk type away from

{a∗L,a
∗
H} and makes strictly positive profits doing so. A similarly absurd conclusion follows from the

hypothesis ΠH (a∗H) > 0 by deploying the contract âH = a∗H+(1, κH) ǫH for κH ∈ (IH (a∗L) , IL (a∗L))

and sufficiently small ǫH > 0. This shows that it cannot but be Πh (a
∗
h) ≤ 0 for either h. That

Πh (a
∗
h) = 0 for either h follows then from free entry.

It remains to rule out that {a∗L,a
∗
H} is pooling. To this end, observe first that a∗L ∼h a∗H for either

h implies that a∗L = a∗H (see Lemma 1.8 in the Online Appendix). Similarly, if a∗L ≻h a∗H [resp.

a∗H ≻h a∗L] for either h, we can replace {a∗L,a
∗
H} with {a∗L,a

∗
L} [resp. with {a∗H ,a∗H}] without loss

of generality. It suffices, therefore, to rule out that a∗L = a∗H . Let then a∗L = a∗H = a∗ and observe

that, since pH > pL, it cannot be ΠL (a∗) = 0 = ΠH (a∗) unless a∗ = 0. As however a∗∗h ≻h 0 (see

Lemma 2.5(i) in the Online Appendix) while M (s∗) = M
(
s1∗

)
when C = {C}, a contradiction

follows from Lemma A.1.

Lemma B.3 Let a ∈ A be such that a %L a∗∗L while Π({a,a} |λ) = 0. Then a ∈ R
2
++.

Proof. Since a 6= 0 (see Lemma 2.5(i) in the Online Appendix), Π ({a,a} |λ) = 0 requires that

a ∈ R
2
++∪R

2
−−. And as also ΠL (a∗∗L ) = 0, letting p = λpL+(1− λ) pH gives a∗∗0L = (1− pL) /pLa

∗∗
1L
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and a0 = (1− p) /pa1. To establish now the claim by contradiction, suppose that a ∈ R
2
−−. Since

a∗∗L ∈ R
2
++ (see Lemma 2.5(iv) in the Online Appendix), it cannot but be a∗∗sL = as+ ǫs with ǫs > 0

for s ∈ {0, 1}. Which gives

ǫ0 = a∗∗0L − a0 =
1− pL
pL

a∗∗1L −
1− p

p
a1 <

1− pL
pL

(a∗∗1L − a1) =
1− pL
pL

ǫ1

the inequality because pL < p. Letting, therefore, κ = ǫ0/ǫ1 we have a∗∗L = a + (κ, 1) ǫ1 for some

κ ∈
(
0, 1−pL

pL

)
. But as a∗∗L offers under-insurance, this necessitates (see Lemma 1.2 in the Online

Appendix) that a∗∗L ≻L a.

Proof of Claim 4.3

To establish the “only if” direction of the first part of the claim, we will argue by contradiction.

To this end, suppose (without loss of generality) that ∃a ∈ A s.t. a ≻L a∗∗L and Π ({a,a} |λ) = 0.37

Since a ≻L a∗∗L ≻L 0, the continuity of the preference relation %L requires the existence of some

π ∈ (0, 1) such that πa + (1− π)0 = πa := â ∼L a∗∗L .38 And as obviously Π ({â, â} |λ) = 0 while

π < 1 and a ∈ R
2
++ (Lemma B.3), letting p = λpL + (1− λ) pH it must be â = a −

(
p

1−p
, 1
)
ǫ for

some ǫ > 0. By Lemma 1.1 in the Online Appendix then we have

UL (a)− UL (â) =

[
pLu

′ (ŵ1 + ǫ̂)−
p (1− pL)

1− p
u′
(
ŵ0 −

pǫ̂

1− p

)]
ǫ

=

[
pLu

′ (w̃1)−
p (1− pL)

1− p
u′ (w̃0)

]
ǫ

for some ǫ̂ ∈ (0, ǫ), and where we let (ŵ0, ŵ1) = w (â), ã = â+
(

p
1−p

, 1
)
ǫ̂, and (w̃0, w̃1) = w (ã).

Observe now that a ≻L a∗∗L ∼L â implies p
1−p

< pLu
′(w̃1)

(1−pL)u′(w̃0)
= IL (ã)−1. We may consider thus the

contract a′ = ã+ (κ, 1) ε with κ ∈
(

p
1−p

, IL (ã)−1
)
and ε > 0. Since Π ({ã, ã} |λ) = 0, as a pooling

menu this new contract gives

Π
({

a′,a′
}
|λ
)
= Π({ã, ã} |λ) + [κ (1− p)− p] ε = [κ (1− p)− p] ε > 0

For either h, moreover, applying again Lemma 1.1 in the Online Appendix successively we get

Uh

(
a′
)
− Uh (â) = Uh

(
a′
)
− Uh (ã) + Uh (ã)− Uh (â)

=
[
phu

′ (w̃1 + ε̃)− κ (1− ph)u
′ (w̃0 − κε̃)

]
ε

+

[
phu

′
(
ŵ1 + ǫ′

)
−

p (1− ph)

1− p
u′
(
ŵ0 −

pǫ′

1− p

)]
ǫ̂

=
[
κ−1 − Ih (ã+ (κ, 1) ε̃)

]
phu

′ (w̃1 + ε̃)κε

+

[
phu

′
(
ŵ1 + ǫ′

)
−

p (1− ph)

1− p
u′
(
ŵ0 −

pǫ′

1− p

)]
ǫ̂

37If a ∈ A is such that Π ({a,a} |λ) = ǫ > 0 then the contract â = a−(1,−1) ǫ gives Π ({â, â} |λ) = Π ({a,a} |λ)−ǫ =

0 and â ≻h a for either h.
38Recall that there is a one-to-one relation between contract and income points. The continuity of the relation %L

derives from continuous preferences over lotteries on wealth vectors. Given this, the existence of the wealth vector

in question (and, thus, of the corresponding contract) is a standard result to be found in textbook derivations of the

expected utility theorem (see for instance Step 3 of Proposition 6.B.3 in Mas-Colell et al. [24]).
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for some (ε̃, ǫ′) ∈ (0, ε)× (0, ǫ̂). Yet, κ−1 > IL (ã) > IH (ã) and, letting ∆ = κ−1 − IL (ã), we may

choose ε (and subsequently ε̃) small enough to guarantee that |Ih (ã+ (κ, 1) ε̃) − Ih (ã) | < ∆ for

either h. But then for either h

Uh

(
a′
)
− Uh (â) = [∆ + IL (ã)− Ih (ã+ (κ, 1) ε̃)] phu

′ (w̃1 + ε̃)κε

+

[
phu

′
(
ŵ1 + ǫ′

)
−

p (1− ph)

1− p
u′
(
ŵ0 −

pǫ′

1− p

)]
ǫ̂

>

[
phu

′
(
ŵ1 + ǫ′

)
−

p (1− ph)

1− p
u′
(
ŵ0 −

pǫ′

1− p

)]
ǫ̂

>

[
phu

′ (ŵ1 + ǫ̂)−
p (1− ph)

1− p
u′
(
ŵ0 −

pǫ̂

1− p

)]
ǫ̂

≥

[
pLu

′ (ŵ1 + ǫ̂)−
p (1− pL)

1− p
u′
(
ŵ0 −

pǫ̂

1− p

)]
ǫ̂

= [UL (a)− UL (â)]
ǫ̂

ǫ
> 0

where the second inequality follows from the fact that ǫ′ < ǫ̂ while u (·) is strictly concave; by

contrast, the last inequality exploits that pH > pL.

Let now the menu {a′} be offered in the presence of the RSW. As a′ ≻L â ∼L a∗∗L ≻L a∗∗H , the

low-risk type is pulled away. If a′ ≻H a∗∗H so is the high-risk type, rendering the deviant menu

strictly-profitable as pooling. Otherwise, the deviant attracts only the low-risk type delivering even

higher expected profits - since a ∈ R
2
++, choosing ǫ sufficiently small guarantees that â, ã,a′ ∈ R

2
++;

that ΠL (a′) > Π({a′,a′} |λ) follows then from pL < p.

For the “if” direction of the first part of the claim, recall first the argument that established Claim

4.2 in the main text. Credible challenges to the RSW allocation may come only from menus m̂ ∈ M

such that ah (m̂) ≻h a∗∗h for either h while Π (m̂|λ) > 0. Given though that now we restrict at-

tention to the space of safe separating menus, in which the RSW allocation is dominant for either

risk-type, credible challenges can come only from pooling menus {â, â} ∈ M: â ≻h a∗∗h for either h

while Π ({â, â} |λ) > 0. By hypothesis however there are no such menus (at least for the low-risk

type).

For the second part of the claim, take an arbitrary (u, pL, pH) ∈ U×(0, 1)2 and consider the function

ã : (0, 1) → R
2
++ given by ã (λ) = argmaxa∈A:Π({a,a}|λ)≥0 UL (a). As the underlying optimization

problem entails an objective function that is strictly-concave and continuous on a constraint set

that for each λ ∈ (0, 1) is compact, ã (·) is a well-defined solution function on (0, 1). As moreover

the IE(λ)-optimum
{
aλ

}
satisfies the constraint while aλ ≻L a∗∗L , it must be ã (λ) ≻L a∗∗L for any

λ ∈ (0, 1). That ã (λ) ∈ R
2
++ for any λ ∈ (0, 1) follows then from the fact that the constraint must

bind at the optimum (recall footnote 37) and Lemma B.3. The balance of our argument will consist

of the following observations.

(i) The value function UL (ã (·)) is strictly increasing on (0, 1).

To see this, notice that pH > pL, ã (λ) ∈ R
2
++, and Π ({ã} (λ) |λ) = 0 together imply that

ΠL (ã (λ)) > 0 > ΠH (ã (λ)) for any λ ∈ (0, 1). Letting then λ, λ′ ∈ (0, 1) : λ′ < λ we must
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have

λΠL (ã (λ)) + (1− λ)ΠH (ã (λ)) = 0

= λ′ΠL

(
ã
(
λ′
))

+
(
1− λ′

)
ΠH

(
ã
(
λ′
))

< λΠL

(
ã
(
λ′
))

+ (1− λ)ΠH

(
ã
(
λ′
))

That is ã (λ) 6= ã (λ′), and thus UL (ã (λ′)) < UL (ã (λ)) given that ã (·) is a function.

(ii) UL (ã (·)) being strictly monotone on (0, 1), the parameter

λ0 ∈ (0, 1) : UL (ã (λ0)) = UL (a∗∗L )

is defined uniquely. Consider then the canonical insurance economy with parameters (u, pL, pH , λ0).

Condition (8) being satisfied, the RSW menu is the equilibrium in this economy. However, the pool-

ing menu {ã (λ0)} being feasible but obviously not optimal in the MWS-problem, it cannot but

be aL (λ0) ≻L ã (λ0) ∼L a∗∗L and the RSW allocation is not IE in the economy with parameters

(u, pL, pH , λ0) (see Claim 3.1 in the Online Appendix).

(iii) Consider next the function aL : (0, 1) → R
2
++ that gives the low-risk MWS-contract in the

canonical insurance economy with parameters (u, pL, pH , λ) for λ ∈ (0, 1). This function is well-

defined while ΠL (aL (λ)) ≥ 0 ≥ ΠH (aH (λ)) for any for λ ∈ (0, 1) (see Claim 2.1 and Lemmas

2.5(v), 2.4 in the Online Appendix). The respective argument in step (i) above can be deployed

again here to establish that UL (aL (·)) is weakly increasing on (0, 1).

(iv) Let now ∆ = UL (aL (λ0))−UL (ã (λ0)), and consider an arbitrary λ ∈ (0, λ0). Since UL (ã (λ)) <

UL (ã (λ0)) = UL (a∗∗L ), the RSW allocation remains the equilibrium of the economy with parame-

ters (u, pL, pH , λ) for any λ ∈ (0, λ0).

(v) By step (iii) however any λ ∈ (0, λ0) gives UL (aL (λ)) ≤ UL (aL (λ0)) and, by the con-

tinuity of UL (aL (·)) (see Lemma 2.2 in the Online Appendix), there exists λ1 ∈ [0, λ0) s.t.

UL (aL (λ0))− UL (aL (λ)) < ∆ for all λ ∈ (λ1, λ0). It follows then that

UL (aL (λ))− UL (a∗∗L ) = UL (aL (λ))− UL (aL (λ0))

+ UL (aL (λ0))− UL (ã (λ0)) + UL (ã (λ0))− UL (a∗∗L )

= UL (aL (λ))− UL (aL (λ0)) + ∆ > 0 ∀λ ∈ (λ1, λ0)

The RSW allocation is not IE in the economy (u, pL, pH , λ) for any λ ∈ (λ1, λ0]. �
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