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MORSE THEORY AND STABLE PAIRS

RICHARD A. WENTWORTH AND GRAEME WILKIN

Abstract. We study the Morse theory of the Yang-Mills-Higgs functional on the space of pairs
(A,Φ), where A is a unitary connection on a rank 2 hermitian vector bundle over a compact Riemann
surface, and Φ is a holomorphic section of (E, d′′A). We prove that a certain explicitly defined
substratification of the Morse stratification is perfect in the sense of G-equivariant cohomology,
where G denotes the unitary gauge group. As a consequence, Kirwan surjectivity holds for pairs.
It also follows that the twist embedding into higher degree induces a surjection on equivariant
cohomology. This may be interpreted as a rank 2 version of the analogous statement for symmetric
products of Riemann surfaces. Finally, we compute the G-equivariant Poincaré polynomial of the
space of τ -semistable pairs. In particular, we recover an earlier result of Thaddeus. The analysis
provides an interpretation of the Thaddeus flips in terms of a variation of Morse functions.
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1. Introduction

In this paper we revisit the notion of a stable pair on a Riemann surface. We introduce new

techniques for the computation of the equivariant cohomology of moduli spaces. The main ingredi-

ent is a version of Morse theory in the spirit of Atiyah and Bott [1] adapted to the singular infinite

dimensional space of holomorphic pairs.

Recall first the basic idea. Let E be a hermitian vector bundle over a closed Riemann surface

M of genus g ≥ 2. The space A(E) of unitary connections on E is an infinite dimensional affine

space with an action of the group G of unitary gauge transformations. Via the Chern connection

there is an isomorphism A 7→ d′′A between A(E) and the space of (integrable) Dolbeault operators

(i.e. holomorphic structures) on E. One of the key observations of Atiyah-Bott is that the Morse

theory of a suitable G-invariant functional on A(E), namely the Yang-Mills functional, gives rise to

a smooth stratification (see also [6]). Moreover, this stratification is G-equivariantly perfect in the

sense that the long exact sequences for the equivariant cohomology of successive pairs split. Since

A(E) is contractible, this gives an effective method, inductive on the rank of E, for computing the

equivariant cohomology of the minimum, which consists of projectively flat connections.

Consider now a configuration space B(E) consisting of pairs (A,Φ), where A ∈ A(E) and Φ is

a section of a vector bundle associated to E. We impose the condition that Φ be d′′A-holomorphic.

Note that B(E) is still contractible, since an equivariant retraction of B(E) to A(E) is given by

simply scaling Φ. It is therefore reasonable to attempt an inductive computation of equivariant

cohomology as above. A problem arises, however, from the singularities caused by jumps in the

dimension of the kernel as A varies. Nevertheless, the methods introduced in [8] for the case of

Higgs bundles demonstrate that in certain cases this difficulty can be managed.

Below we apply this approach to the moduli space of rank 2, degree d, τ -semistable pairs

Mτ,d = Bτ
ss(E)

//
GC introduced by Bradlow [3] and Bradlow-Daskalopoulos [4]. In this case, Φ is

holomorphic section of E, and the Yang-Mills functional YM(A) is replaced by the Yang-Mills-Higgs

functional YMH(A,Φ). We give a description of the algebraic and Morse theoretic stratifications of

B(E). These stratifications, as well as the moduli space, depend on a real parameter τ , and since

Mτ,d is nonempty only for d/2 < τ < d, we shall always assume this bound for τ . For generic τ , G

acts freely, and the quotient is geometric.

We will see that, as in [6, 7, 8], the algebraic and Morse stratifications agree (see Theorem 3.9).

Because of singularities, however, the Morse stratification actually fails to be perfect in this case.

We identify precisely how this comes about, and in fact we will show that this “failure of perfection”

exactly cancels between different strata, so that there is a substratification that is indeed perfect

(see Theorem 3.11). We formulate this result as

Theorem 1.1 (Equivariantly perfect stratification). For every τ , d/2 < τ < d, there is a G-

invariant stratification of B(E) defined via the Yang-Mills-Higgs flow that is perfect in G-equivariant

cohomology.
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The fact that perfection fails for the Morse stratification but holds for a substratification seems

to be a new phenomenon. In any case, as with vector bundles, Theorem 1.1 allows us to compute

the G-equivariant cohomology of the open stratum Bτ
ss(E). Explicit formulas in terms of symmetric

products of M are given in Theorems 4.1 and 4.2.

There is a natural map (called the Kirwan map) from the cohomology of the classifying space BG

of G to the equivariant cohomology of the stratum of τ -semistable pairs Bτ
ss(E) ⊂ B(E), coming

from inclusion (see [13]). One of the consequences of the work of Atiyah-Bott is that the analogous

map is surjective for the case of semistable bundles. The same is true for pairs:

Theorem 1.2 (Kirwan surjectivity). The Kirwan map H∗(BG) → H∗
G
(Bτ

ss(E)) is surjective. In

particular, for generic τ , H∗(BG) → H∗(Mτ,d) is surjective.

As noted above, for noninteger values of τ , d/2 < τ < d, Mτ,d is a smooth projective algebraic

manifold of dimension d + 2g − 2, and the equivariant cohomology of Bτ
ss(E) is identical to the

ordinary cohomology of Mτ,d. The computation of equivariant cohomology presented here then

recovers the result of Thaddeus in [20], who computed the cohomology using different methods.

Namely, he gives an explicit description of the modifications, or “flips”, in Mτ,d as the parameter τ

varies. At integer values there is a change in stability conditions. Below, we show how the change

in cohomology arising from a flip may be reinterpreted as a variation of the Morse function. This

is perhaps not surprising in view of the construction in [5]. However, here we work directly on

the infinite dimensional space. The basic idea is that there is a one parameter choice of Morse

functions fτ on B. The minimum f−1
τ (0)/G ≃ Mτ,d, and the cohomology of Mτ,d may, in principle,

be computed from the cohomology of the higher critical sets. As τ varies past certain critical values,

new critical sets are created while others merge. Moreover, indices of critical sets can jump. All

this taken together accounts for the change in topology of the minimum.

There are several important points in this interpretation. One is that the subvarieties responsible

for the change in cohomology observed by Thaddeus as the parameter varies are somehow directly

built into the Morse theory, even for a fixed τ , in the guise of higher critical sets. This example

also exhibits computations at critical strata that can be carried out in the presence of singular

normal cusps, as opposed to the singular normal vector bundles in [8]. These ideas may be useful

for computations in higher rank or for other moduli spaces.

The critical set corresponding to minimal Yang-Mills connections, regarded as a subset of B(E)

by setting Φ ≡ 0, is special from the point of view of the Morse theory. In particular, essentially

because of issues regarding Brill-Noether loci in the moduli space of vector bundles, we can only

directly prove the perfection of the stratification at this step, and the crucial Morse-Bott lemma

(Theorem 3.18), for d > 4g − 4. This we do in Section 3.5. By contrast, for the other critical

strata there is no such requirement on the degree. Using this fact, we then give an inductive

argument by twisting E by a positive line bundle and embedding B(E) into the space of pairs for

higher degree, thus indirectly concluding the splitting of the associated long exact sequence even

at minimal Yang-Mills connections in low degree (see Section 3.7).
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This line of reasoning leads to another interesting consequence. For τ close to d/2, there is a

surjective holomorphic map from Mτ,d to the moduli space of semistable rank 2 bundles of degree

d. This is the rank 2 version of the Abel-Jacobi map [4]. In this sense, Mτ,d is a generalization

of the d-th symmetric product SdM of M . Choosing an effective divisor on M of degree k, there

is a natural inclusion SdM →֒ Sd+kM , and it was shown by MacDonald in (14.3) of [16] that this

inclusion induces a surjection on rational cohomology. A similar construction works for rank 2

pairs, except now d 7→ d+2k, while there is also a shift in the parameter τ 7→ τ + k. We will prove

the following

Theorem 1.3 (Embedding in higher degree). Let degE = d and deg Ẽ = d + 2k. Then for all

d/2 < τ < d, the inclusion Bτ
ss(E) →֒ Bτ+k

ss (Ẽ) described above induces a surjection on rational

G-equivariant cohomology. In particular, for generic τ , the inclusion Mτ,d →֒ Mτ+k,d+2k induces a

surjection on rational cohomology.

Remark 1.4. It is also possible to construct a moduli space of pairs for which the isomorphism class

of detE is fixed, indeed this is the space studied by Thaddeus in [20]. The explicit calculations

in this paper are all done for the non-fixed determinant case, however it is worth pointing out

here that the idea is essentially the same for the fixed determinant case, and that the only major

difference between the two cases is in the topology of the critical sets. In particular, the indexing

set ∆τ,d for the stratification is the same in both cases.

Acknowledgements. Thanks to George Daskalopoulos for many discussions. R.W. is also grateful

for the hospitality at the MPIM-Bonn, where some of the work on this paper was completed.

2. Stable pairs

2.1. The Harder-Narasimhan stratification. Throughout this paper, E will denote a rank 2

hermitian vector bundle on M of positive degree d = degE. We will regard E as a smooth complex

vector bundle, and when endowed with a holomorphic structure that is understood, we will use the

same notation for the holomorphic bundle.

Recall that a holomorphic bundle E of degree d is stable (resp. semistable) if degL < d/2 (resp.

degL ≤ d/2) for all holomorphic line subbundles L ⊂ E.

Definition 2.1. For a stable holomorphic bundle E, set µ+(E) = d/2. For E unstable, let

µ+(E) = sup{degL : L ⊂ E a holomorphic line subbundle}

For a holomorphic section Φ 6≡ 0 of E, define degΦ to be the number of zeros of Φ, counted with

multiplicity. Finally, for a holomorphic pair (E,Φ) let

µ−(E,Φ) =

{
d− degΦ Φ 6≡ 0

d− µ+(E) Φ ≡ 0
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Definition 2.2 ([3]). Given τ , a holomorphic pair (E,Φ) is called τ -stable (resp. τ -semistable) if

µ+(E) < τ < µ−(E,Φ) (resp. µ+(E) ≤ τ ≤ µ−(E,Φ))

As with holomorphic bundles, there is a notion of s-equivalence of strictly semistable objects.

The set Mτ,d of isomorphism classes of semistable pairs, modulo s-equivalence, has the structure of

a projective variety. Note that Mτ,d is empty if τ 6∈ [d/2, d]. For non-integer values of τ ∈ (d/2, d),

semistable is equivalent to stable, and Mτ,d is smooth.

Let A = A(E) denote the infinite dimensional affine space of holomorphic structures on E, G

the group of unitary gauge transformations, and GC its complexification. The space A may be

identified with Dolbeault operators A 7→ d′′A : Ω0(E) → Ω0,1(E), with the inverse of d′′A given by

the Chern connection with respect to the fixed hermitian structure. When we want to emphasize

the holomorphic bundle, we write (E, d′′A).

(2.1) B = B(E) =
{
(A,Φ) ∈ A× Ω0(E) : d′′AΦ = 0

}

Let

Bτ
ss =

{
(A,Φ) ∈ B : ((E, d′′A),Φ) is τ -semistable

}

Then Mτ,d = Bτ
ss

//
GC, where the double slash identifies s-equivalent orbits. For generic values of

τ , semistability implies stability and G acts freely, and so this is a geometric quotient.

We now describe the stratification of B associated to the Harder-Narasimhan filtration, which has

an important relationship to the Morse theory picture that will be discussed below in Section 3.2.

In the case of rank 2 bundles, this stratification is particularly easy to describe. For convenience,

throughout this section we fix a generic τ , d/2 < τ < d (it suffices to assume 4τ 6∈ Z). Genericity

is used only to give a simple description of the strata in terms of δ. The extension to special values

of τ is straightforward (see Remark 2.11).

Note that stability of the pair fails if either of the inequalities in Definition 2.2 fails. The two

inequalities are not quite independent, but there are some cases where only one fails and others

where both fail. If the latter, it seems natural to filter by the most destabilizing of the two. With

this in mind, we make the following

Definition 2.3. For a holomorphic pair (E,Φ), let

δ(E,Φ) = max {τ − µ−(E,Φ), µ+(E)− τ, 0}

Note that δ takes on a discrete and infinite set of nonnegative real values, and is upper semicon-

tinuous, since both µ+ and −µ− are (observe that degΦ ≤ µ+(E)). We denote the ordered set of

such δ by ∆τ,d. Clearly, δ is an integer modulo ±τ , or δ = τ − d/2. Because of the genericity of τ ,

the former two possibilities are mutually exclusive:

Lemma 2.4. There is a disjoint union ∆τ,d \ {0} = ∆+
τ,d ∪∆−

τ,d, with

δ ∈ ∆+
τ,d ⇐⇒ δ = τ − µ−(E,Φ) , for some pair (E,Φ)

δ ∈ ∆−
τ,d ⇐⇒ δ = µ+(E)− τ , for some pair (E,Φ)
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Lemma 2.5. Suppose (E,Φ) 6∈ Bτ
ss, Φ 6≡ 0. Then

(1) if degΦ ≥ d/2, δ(E,Φ) = µ+(E)− d+ τ .

(2) if d− τ ≤ degΦ < d/2, δ(E,Φ) = degΦ− d+ τ .

(3) if 0 ≤ degΦ < d− τ , δ(E,Φ) = µ+(E)− τ .

If Φ ≡ 0, then δ(E,Φ) = µ+(E)− d+ τ .

Proof. If deg Φ ≥ d/2, then the line subbundle generated by Φ is the maximal destabilizing sub-

bundle of E. Hence, µ+(E) = degΦ, µ−(E,Φ) = d − µ+(E), and so (1) follows from the fact

that τ > d/2. For (2), consider the extension 0 → L1 → E → L2 → 0, where Φ ∈ H0(L1).

Then degL2 = d − degΦ, so µ+(E,Φ) ≤ d − degΦ. It follows that µ+(E) − τ ≤ 0. For part

(3), 0 ≤ degΦ < d − τ implies τ < µ−(E,Φ). The last statement is clear, since τ > d/2 implies

τ − µ−(E,Φ) = µ+(E)− d+ τ > µ+(E)− τ . �

Corollary 2.6. ∆−
τ,d ⊂ (0, d− τ ].

Proof. Indeed, if (E,Φ) is unstable and δ(E,Φ) = µ+(E) − τ , then by (3) it must be that E is

unstable and Φ 6≡ 0. From the Harder-Narasimhan filtration (cf. [14]) 0 → L2 → E → L1 → 0, the

projection of Φ to L1 must also be nonzero, since degΦ < degL2. Hence, degL1 = d−µ+(E) ≥ 0,

and so d− τ ≥ δ(E,Φ). �

Remark 2.7. If δ ∈ ∆+
τ,d and δ < τ − d/2, then δ ≤ τ − d/2− 1/2. Indeed, if δ + d− τ = k ∈ Z,

the condition forces k < d/2; hence, k ≤ d/2− 1/2.

Let Iτ,d = [τ − d/2, 2τ − d). We are ready to describe the τ -Harder-Narasimhan stratification.

First, for j > d/2, let Aj ⊂ A be the set of holomorphic bundles E of Harder-Narasimhan type

µ+(E) = j. We also set Ad/2 = Ass. There is an obvious inclusion Aj ⊂ B : A 7→ (A, 0).

(0) δ = 0: The open stratum Bτ
0 = Bτ

ss consists of τ -semistable pairs.

(Ia) δ ∈ ∆+
τ,d ∩ Iτ,d: Then we include the strata Aδ+d−τ . Note that this includes the semistable

stratum Ass. The bundles in this strata that are not semistable have a unique description

as extensions

(2.2) 0 −→ L1 −→ E −→ L2 −→ 0

where degL1 = µ+(E) = δ + d− τ .

(Ib) δ ∈ ∆+
τ,d ∩ [2τ − d,+∞): Then Bτ

δ = {(E,Φ) : µ+(E) = δ + d− τ}. These are extensions

(2.2), degL1 = µ+(E) = δ + d− τ , Φ ⊂ H0(L1).

(II+) δ ∈ ∆+
τ,d ∩ (0, 2τ − d): Then Bτ

δ = {(E,Φ) : deg Φ = δ + d− τ}. These are extensions (2.2),

degL1 = δ + d− τ , Φ ⊂ H0(L1).

(II−) δ ∈ ∆−
τ,d: Then Bτ

δ = {(E,Φ) : µ+(E) = δ + τ , degΦ < d/2}. These are extensions

0 −→ L2 −→ E −→ L1 −→ 0

where degL2 = µ+(E), and the projection of Φ to H0(L1) is nonzero.



MORSE THEORY AND STABLE PAIRS 7

For simplicity of notation, when τ is fixed we will mostly omit the superscript: Bδ = Bτ
δ .

Remark 2.8. It is simple to verify that the stratification obtained above coincides with the possible

Harder-Narasimhan filtrations of pairs (E,Φ) considered as coherent systems (see [15, 18, 12]).

It will be convenient to organize ∆τ,d by the slope of the subbundle in the maximal destabilizing

subpair. Define j : ∆τ,d \ {0} → {d/2} ∪ {k ∈ Z : k ≥ d− τ} by

(2.3) j(δ) =

{
δ + d− τ , δ ∈ ∆+

τ,d

δ + τ , δ ∈ ∆−
τ,d

Notice that j(δ) = degL1 for δ ∈ ∆+
τ,d, and j(δ) = degL2 for δ ∈ ∆−

τ,d, where L1, L2 refer to the line

subbundles of E in the filtrations above. Note that j is surjective. It is precisely 2-1 on the image

of ∆−
τ,d and 1-1 elsewhere (if d odd; otherwise d/2 labels both the stratum Ass and the strictly

semistable bundles of type II+). It is not order preserving but is, of course, order preserving on

each of ∆±
τ,d separately.

Definition 2.9. For δ ∈ ∆τ,d, let

Xδ =
⋃

δ′≤δ , δ′∈∆τ,d

Bδ′ ∪
⋃

δ′≤δ , δ′∈∆+
τ,d

∩Iτ,d

Aj(δ′)

For δ ∈ ∆+
τ,d ∩ Iτ,d, let

X ′
δ =

⋃

δ′≤δ , δ′∈∆τ,d

Bδ′ ∪
⋃

δ′<δ , δ′∈∆+
τ,d

∩Iτ,d

Aj(δ′)

For δ 6∈ ∆+
τ,d ∩ Iτ,d, let

X ′
δ =

⋃

δ′<δ , δ′∈∆τ,d

Bδ′ ∪
⋃

δ′<δ , δ′∈∆+
τ,d

∩Iτ,d

Aj(δ′)

We call the collection {Xδ, X
′
δ}δ∈∆τ,d

the τ -Harder-Narasimhan stratification of B.

Note that Xδ1 ⊂ X ′
δ ( Xδ ⊂ X ′

δ2
, where δ1 is the predecessor and δ2 is the successor of δ in ∆τ,d.

If δ 6∈ ∆+
τ,d ∩ Iτ,d, then X ′

δ = Xδ1 and Xδ = X ′
δ2

. In the special case δ = τ − d/2, we have

Xτ−d/2 = X ′
τ−d/2 ∪Ass(2.4)

X ′
τ−d/2 =

{
Xδ1 if d is odd

Xδ1 ∪Bτ−d/2 if d is even
(2.5)

The following is clear.
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Proposition 2.10. The sets {Xδ, X
′
δ}δ∈∆τ,d

, are locally closed in B, G-invariant, and satisfy

B =
⋃

δ∈∆τ,d

Xδ =
⋃

δ∈∆τ,d

X ′
δ

Bδ ⊂
⋃

δ≤δ′ , δ′∈∆τ,d

Bδ′ = Bδ ∪
⋃

δ<δ′ , δ′∈∆τ,d

B′
δ′

B
′
δ ⊂

⋃

δ≤δ′ , δ′∈∆τ,d

B′
δ′ = B′

δ ∪
⋃

δ<δ′ , δ′∈∆τ,d

Bδ′

Remark 2.11. To extend this stratification in the case of nongeneric τ , we define the sets ∆±
τ,d and

the corresponding strata as above. For δ ∈ ∆+
τ,d ∩∆−

τ,d there are two or possibly three components

with the same label.

Let us note the following behavior as τ varies. For τ1 ≤ τ2, there is a well-defined map ∆τ1,d →

∆τ2,d given by δ 7→ max{δ ± (τ2 − τ1), 0}, where ± depends on δ ∈ ∆±
τ,d. Hence, elements of ∆+

τ,d

(white circles in Figure 1 below) “move” to the right, and elements of ∆−
τ,d (dark circles) “move” to

the left as τ increases. The map is an order preserving bijection provided τ1, τ2 are in a connected

component of (d/2, d) \ Cd, where

(2.6) Cd = {τc ∈ (d/2, d) : 2τc ∈ Z if d even, 4τc ∈ Z if d odd}

However, as τ2 crosses an element of Cd, there is a “flip” in the stratification. When this flip occurs

at δ = 0, this is the phenomenon discovered by Thaddeus [20]; the discussion here is an extension

of this effect to the entire stratification.

∆τ1,d

∆τ2,d

Figure 1. A “flip”

Finally, we will also have need to refer to the Harder-Narasimhan stratification of the space A

of unitary connections on E. We denote this by

(2.7) XA
j =

⋃

d/2≤j′≤j

Aj′

The following statement will be used later on. It is an immediate consequence of the descriptions

of the strata above.
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Lemma 2.12. Consider the projection pr : B → A. Then

pr(Bδ) = Aj(δ) , δ ∈ ∆−
τ,d ∪

(
∆+

τ,d ∩ [τ − d/2,+∞)
)

pr(Bδ) = XA
d−j(δ) , δ ∈ ∆+

τ,d ∩ (0, τ − d/2)

2.2. Deformation theory. Fix a conformal metric on M , normalized1 for convenience so that

vol(M) = 2π. Infinitesimal deformations of (A,Φ) ∈ B modulo equivalence are described by the

following elliptic complex, which we denote by C(A,Φ) (cf. [4]).

C0
(A,Φ)

D1
// C1

(A,Φ)
D2

// C2
(A,Φ)

Ω0(EndE)
D1

// Ω0,1(EndE)⊕ Ω0(E)
D2

// Ω0,1(E)

(2.8)

D1(u) = (−d′′Au, uΦ) , D2(a, ϕ) = d′′Aϕ+ aΦ

Here, D1 is the linearization of the action of the complex gauge group GC on B, and D2 is the

linearization of the condition d′′AΦ = 0. Note that D2D1 = 0 if (A,Φ) ∈ B. The hermitian metric

gives adjoint operators

(2.9) D∗
1(a, ϕ) = −(d′′A)

∗a+ ϕΦ∗ , D∗
2(β) = (βΦ∗, (d′′A)

∗β)

The spaces of harmonic forms are by definition

H0(C(A,Φ)) = kerD1

H1(C(A,Φ)) = kerD∗
1 ∩ kerD2

H2(C(A,Φ)) = kerD∗
2

Vectors in Ω0,1(EndE)⊕Ω0(E) that are orthogonal to the GC-orbit through (A,Φ) are in kerD∗
1,

and a slice for the action of GC on B is therefore given by

(2.10) S(A,Φ) = kerD∗
1 ∩

{
(a, ϕ) ∈ Ω0,1(EndE)⊕ Ω0(E) : D2(a, ϕ) + aϕ = 0

}

Define the slice map

Σ : (kerD1)
⊥ × S(A,Φ) → B

(u, a, ϕ) 7→ eu · (A+ a,Φ+ ϕ)
(2.11)

The proof of the following may be modeled on [21, Proposition 4.12]. We omit the details.

Proposition 2.13. The slice map Σ is a local homeomorphism from a neighborhood of 0 in

(kerD1)
⊥ × S(A,Φ) to a neighborhood of (A,Φ) in B.

The Kuranishi map is defined by

Ω0,1(EndE)⊕ Ω0(E)
k

−→ Ω0,1(EndE)⊕ Ω0(E)

k(a, ϕ) = (a, ϕ) +D∗
2 ◦G2(aϕ)

1More generally, the scale invariant parameter is τ vol(M)/2π.
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where G2 denotes the Green’s operator associated to the laplacian D2(D2)
∗. We have the following

standard result (cf. [14, Chapter VII] for the case of holomorphic bundles over a Kähler manifold

and [4] for this case).

Proposition 2.14. The Kuranishi map k maps S(A,Φ) to harmonics H1(C(A,Φ)), and in a neigh-

borhood of zero it is a local homeomorphism onto its image. Moreover, if H2(C(A,Φ)) = {0}, then k

is a local homeomorphism S(A,Φ) → H1(C(A,Φ)).

The following is immediate from (2.8) and (2.9).

Lemma 2.15. Given (A,Φ) ∈ B, if Φ 6= 0 then H0(C(A,Φ)) = H2(C(A,Φ)) = {0}. If H1(E) = {0}

then H2(C(A,Φ)) = {0}.

We will be interested in the deformation complex along higher critical sets of the Yang-Mills-Higgs

functional. As we will see in the next section, in addition to the Yang-Mills connections (where

Φ ≡ 0), the other critical sets correspond to split bundles E = L1⊕L2, (A,Φ) = (A1⊕A2,Φ1⊕{0}),

with degL1 = j ≥ degL2 = d − j. Here, j = j(δ) for some δ ∈ ∆+
τ,d, or j = d − j(δ) for some

δ ∈ ∆−
τ,d. The set of all such critical points will therefore be denoted by ηδ ⊂ B. We will denote

the components of EndE ≃ Li ⊗ L∗
j in the complex by uij , aij , ϕij .

In this case, H1(C(A,Φ)) consists of all (a, ϕ) satisfying

(d′′A)
∗a12 = 0 (d′′)∗a22 = 0

(d′′)∗a11 − ϕ1Φ
∗
1 = 0 (d′′A)

∗a21 − ϕ2Φ
∗
1 = 0(2.12)

d′′A1
ϕ1 + a11Φ1 = 0 d′′A2

ϕ2 + a21Φ1 = 0

We use this formalism to define deformation retractions in a neighborhood of (A,Φ) ∈ B in two

cases. First, we have

Lemma 2.16. Suppose (A,Φ) = (A1 ⊕A2,Φ1 ⊕ 0) is a split pair as above, Φ1 6= 0. Let

S
neg.
(A,Φ) = {(a, ϕ) ∈ S(A,Φ) : aij = 0 , (ij) 6= (21) , and ϕ1 = 0}

S′(A,Φ) = {(a, ϕ) ∈ S(A,Φ) : (a21, ϕ2) 6= 0}

Then there is an equivariant deformation retraction S
neg.
(A,Φ) →֒ S(A,Φ) which restricts to a deformation

retraction S
neg.
(A,Φ) \ {0} →֒ S′(A,Φ).

Proof. By Lemma 2.15 and Proposition 2.14, the Kuranishi map gives a homeomorphism of the

slice with H1(C(A,Φ)). Hence, it suffices to define the retraction there. For this we take

rt(a11, a12, a21, a22;ϕ1, ϕ2) = (ta11, ta12, a21, ta22; tϕ1, ϕ2) , t ∈ [0, 1]

Notice that this preserves the equations in (2.12). �

Second, near minimal Yang-Mills connections, we find a similar retraction under the assumption

that H2(C(A,Φ)) vanishes.
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Lemma 2.17. Suppose d > 4g − 4 and A is semistable. Let

S
neg.
(A,0) = {(a, ϕ) ∈ S(A,0) : a = 0}

S′(A,0) = {(a, ϕ) ∈ S(A,0) : ϕ 6= 0}

Then there is an equivariant deformation retraction S
neg.
(A,0) →֒ S(A,0) which restricts to a deformation

retraction S
neg.
(A,0) \ {0} →֒ S′(A,0).

Proof. Let E be the holomorphic bundle given by A. Since E is semistable, so is E∗ ⊗KM , where

KM is the canonical bundle of M . On the other hand, by the assumption, deg(E∗ ⊗ KM ) =

4g − 4 − degE < 0. Hence, by Serre duality, H1(E) ≃ H0(E∗ ⊗ KM )∗ = {0}. Given a, let Ha

denote harmonic projection to ker d′′A+a. It follows that for a in a small neighborhood of the origin

in the slice, Ha is a continuous family. We can therefore define the deformation retraction explicitly

by

rt(a, ϕ) = (ta,Hta(ϕ)) , t ∈ [0, 1]

For a sufficiently small neighborhood of the origin in the slice, this preserves the set S′(A,0). It is

also clearly equivariant. �

3. Morse theory

3.1. The τ-vortex equations. Let µ(A,Φ) = ∗FA − iΦΦ∗. Then ∗µ is a moment map for the

action of G on B ⊂ A×Ω0(E). Let τ > 0 be a positive parameter and define the Yang-Mills-Higgs

functional

(3.1) fτ (A,Φ) = ‖µ+ iτ · id ‖2

Solutions to the τ -vortex equations are the absolute minima of fτ :

(3.2) µ(A,Φ) + iτ · id = 0

Theorem 3.1 (Bradlow [3]). Mτ,d = {(A,Φ) ∈ B : µ(A,Φ) + iτ · id = 0} /G.

If the space of solutions to the τ -vortex equations is nonempty, then τ must satisfy the following

restriction.

µ+ iτ · id = ∗FA − iΦΦ∗ + iτ · id = 0

=⇒
i

2π

∫

M
Tr(∗FA − iΦΦ∗) = 2τ ⇐⇒ degE + ‖Φ‖2 = 2τ

(3.3)

Therefore 2τ ≥ d (with strict inequality if we want to ensure that Φ 6= 0). Theorem 2.1.6 of [3]

shows that a solution to the τ -vortex equations which is not τ -stable must split. Moreover, since

rkE = 2 the solutions can only split if τ is an integer. In particular, for a generic choice of τ

solutions to (3.2) must be τ -stable. In general, critical sets of fτ can be characterized in terms of
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a decomposition of the holomorphic structure of E. The critical point equations for the functional

fτ are

d′′A (µ+ iτ · id) = 0(3.4)

(µ+ iτ · id)Φ = 0(3.5)

There are three different types of critical points.

(0) Absolute minimum f−1
τ (0).

(I) Yang-Mills connections with Φ = 0. Then either A is an irreducible Yang-Mills minimum

or E splits holomorphically as E = L1 ⊕ L2. The latter exist for all values of degL1 ≥ d/2

and the existence of the critical points is independent of the choice of τ . However, as shown

below the Morse index does depend on τ . If E is semistable (resp. degL1 < τ) we call

this a critical point of type Ia, and we label it δ = τ − d/2 (resp. δ = degL1 − d + τ). If

degL1 > τ it is of type Ib, and set δ = degL1 − d+ τ .

(II) E splits holomorphically as E = L1 ⊕ L2, and Φ ∈ H0(L1) \ {0}. On L1 we have

∗FA1 − iΦΦ∗ = −iτ , ‖Φ‖2 = 2π(τ − degL1)

Therefore degL1 < τ . Further subdivide these depending upon degL1.

(II−) degL1 ≤ d− τ , δ = d− degL1 − τ ;

(II+) d− τ < degL1 < τ , δ = degL1 − d+ τ ;

Let SdM denote the d-th symmetric product of the Riemann surface M , and Jd(M) the Jacobian

variety of degree d line bundles on M . For future reference we record the following

Proposition 3.2. For δ ∈ ∆τ,d \ {0},

H∗
G(ηδ) =





H∗
G
(Ass) Type I, δ = τ − d/2

H∗(Jj(δ)(M)× Jd−j(δ)(M))⊗H∗(BU(1)×BU(1)) Type I, δ 6= τ − d/2

H∗(Sj(δ)M × Jd−j(δ)(M))⊗H∗(BU(1)) Type II+

H∗(Sd−j(δ)M × Jj(δ)(M))⊗H∗(BU(1)) Type II−

3.2. The gradient flow. Consider the negative gradient flow of the Yang-Mills-Higgs functional

fτ defined on the space B ⊂ A×Ω0(E). Since the functional is very similar to that studied in [10],

we only sketch the details of the existence and convergence of the flow and focus on showing that

the Morse stratification induced by the flow is equivalent to the Harder-Narasimhan stratification

described in Section 2.1.

The gradient flow equations are

(3.6)
∂A

∂t
= 2 ∗ dA(µ+ iτ) ,

∂Φ

∂t
= −4i(µ+ iτ)Φ

Theorem 3.3. The gradient flow of fτ with initial conditions in B exists for all time and converges

to a critical point of fτ in the smooth topology.
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A standard calculation (cf. [3, Section 4]) shows that fτ can be re-written as

(3.7) fτ =

∫

X

(
|FA|

2 +
∣∣d′AΦ

∣∣2 + |ΦΦ∗|2 − 2τ |Φ|2 + |τ |2
)
dvol + 4τ degE

This is very similar to the functional YMH studied in [10], and the proof for existence of the

flow for all positive time follows the same structure (which is in turn modeled on Donaldson’s proof

for the Yang-Mills functional in [9]), therefore we omit the details. An important part of the proof

worth mentioning here is that the flow is generated by the action of GC, i.e. for all t ∈ [0,∞) there

exists g(t) ∈ GC such that the solution (A(t),Φ(t)) to the flow equations (3.6) with initial condition

(A,Φ) is given by (A(t),Φ(t)) = g(t) · (A,Φ).

To show that the gradient flow converges, one can use the results of Theorem B of [11] (where

again, the functional is not exactly the same as fτ , but it has the same structure and so the proof

of convergence is similar). The statement of [11, Theorem B] only describes smooth convergence

along a subsequence (since they also study the higher dimensional case where bubbling occurs),

and to extend this to show that the limit is unique we use the Lojasiewicz inequality technique of

[19] and [17]. The key estimate is contained in the following proposition.

Proposition 3.4. Let (A∞,Φ∞) be a critical point of fτ . Then there exist ε1 > 0, a positive

constant C, and θ ∈
(
0, 12

)
, such that ‖(A,Φ)− (A∞,Φ∞)‖ implies that

(3.8) ‖∇fτ (A,Φ)‖L2 ≥ C |fτ (A,Φ)− fτ (A∞,Φ∞)|1−θ

The proof is similar to that in [21], and so is omitted.

The rest of the proof of convergence then follows the analysis in [21] for Higgs bundles. The key

result is the following proposition, which is the analog of [21, Proposition 3.7] (see also [19] or [17,

Proposition 7.4]).

Proposition 3.5. Each critical point (A,Φ) of fτ has a neighborhood U such that if (A(t),Φ(t))

is a solution of the gradient flow equations for fτ and (A(T ),Φ(T )) ∈ U for some T , then either

fτ (A(t),Φ(t)) < fτ (A,Φ) for some t, or (A(t),Φ(t)) converges to a critical point (A′,Φ′) such that

fτ (A
′,Φ′) = fτ (A,Φ). Moreover, there exists ε (depending on U) such that ‖(A′,Φ′)− (A,Φ)‖ < ε.

The next step is the main result of this section: The Morse stratification induced by the gradient

flow of fτ is the same as the τ -Harder-Narasimhan stratification described in Section 2.1. First

recall the Hitchin-Kobayashi correspondence from Theorem 3.1, and the distance-decreasing result

from [10], which can be re-stated as follows.

Lemma 3.6 (Hong [10]). Let (A1,Φ1) and (A2,Φ2) be two pairs related by an element g ∈ GC.

Then the distance between the G-orbits of (A1(t),Φ1(t)) and (A2(t),Φ2(t)) is non-increasing along

the flow.

Recall that the critical sets associated to each stratum are given in Section 3.1, and that the

critical set associated to the stratum Bδ is denoted ηδ. Define Sδ ⊂ B to be the subset of pairs
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that converge to a point in Cδ under the gradient flow of fτ . The next lemma gives some standard

results about the critical sets of fτ .

Lemma 3.7. (1) The critical set ηδ is the minimum of the functional fτ on the stratum Bδ.

(2) The closure of each GC orbit in Bδ intersects the critical set ηδ.

(3) There exists ε > 0 (depending on τ) such that (A,Φ) ∈ ηδ and (A′,Φ′) ∈ ηδ′ with δ 6= δ′

implies that ‖(A,Φ)− (A′,Φ′)‖ ≥ ε.

Proof. Since these results are analogous to standard results for the Yang-Mills functional (see for

example [1], [6], or [7]), and the proof for holomorphic pairs is similar, we only sketch the idea of

the proof here.

• The first statement follows by noting that the convexity of the norm-square function ‖ · ‖2

shows that the minimum of fτ on each extension class occurs at a critical point. This can

be checked explicitly for each of the types Ia, Ib, II
+, and II−.

• To see the second statement, simply scale the extension class and apply Theorem 3.1 (the

Hitchin-Kobayashi correspondence) to the graded object of the filtration (cf. [7, Theorem

3.10] for the Yang-Mills case).

• The third statement can be checked by noting that (modulo the G-action) the critical sets

are compact, and then explicitly computing the distance between distinct critical sets.

�

As a consequence we have

Proposition 3.8. (1) Each critical set ηδ has a neighborhood Vδ such that Vδ ∩Bδ ⊂ Sδ.

(2) Sδ ∩Bδ is GC-invariant.

Proof. Proposition 3.5 implies that there exists a neighborhood Vδ of each critical set ηδ such that

if (A,Φ) ∈ Vδ then the flow with initial conditions (A,Φ) either flows below ηδ, or converges to

a critical point close to ηδ. Since fτ is minimized on each Harder-Narasimhan stratum Bδ by the

critical set ηδ, the flow is generated by the action of GC, and the strata Bδ are GC-invariant, then

the first alternative cannot occur if (A,Φ) ∈ Bδ ∩ Vδ. Since the critical sets are a finite distance

apart, then (by shrinking Vδ if necessary) the limit must be contained in ηδ. Therefore Vδ∩Bδ ⊂ Sδ,

which completes the proof of (1).

To prove (2), for each pair (A,Φ) ∈ Sδ ∩ Bδ, let Y(A,Φ) =
{
g ∈ GC : g · (A,Φ) ∈ Sδ ∩Bδ

}
. The

aim is to show that Y(A,Φ) = GC. Firstly we note that since the group Γ of components of GC is

the same as that for the unitary gauge group G, the flow equations (3.6) are G-equivariant, and

the critical sets ηδ are G-invariant, then it is sufficient to consider the connected component of GC

containing the identity. Therefore the problem reduces to showing that Y(A,Φ) is open and closed.

Openness follows from the continuity of the group action, the distance-decreasing result of Lemma

3.6, and the result in part (1). Closedness follows by taking a sequence of points {gk} ⊂ Y(A,Φ)

that converges to some g ∈ GC, and observing that the distance-decreasing result of Lemma 3.6
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implies that the flow with initial conditions g · (A,Φ) must converge to a limit close to the G-orbit

of the limit of the flow with initial conditions gk · (A,Φ) for some large k. Since the critical sets are

G-invariant, and critical sets of different types are a finite distance apart, then by taking k large

enough (so that gk · (A,Φ) is close enough to g · (A,Φ)) we see that the limit of the flow with initial

conditions g · (A,Φ) must be in ηδ. Therefore Y(A,Φ) is both open and closed. �

Theorem 3.9. The Morse stratification by gradient flow is the same as the Harder-Narasimhan

stratification in Definition 2.9.

Proof. The goal is to show that Bδ ⊆ Sδ for each δ. Let x ∈ Bδ. By Lemma 3.7 (2) the closure

of the orbit GC · x intersects ηδ, therefore there exists g ∈ GC such that g · x ∈ Vδ ∩ Bδ ⊆ Sδ by

Proposition 3.8 (1). Since Sδ ∩ Bδ is GC-invariant by Proposition 3.8 (2), then x ∈ Bδ ∩ Sδ also,

and therefore Bδ ⊆ Sδ. Since {Bδ} and {Sδ} are both stratifications of B, then we have Bδ = Sδ

for all δ. �

Remark 3.10. While we have identified the stable strata of the critical sets with the Harder-

Narasimhan strata, the ordering on the set ∆τ,d coming from the values of YMH is more compli-

cated. Since this will not affect the calculations, we continue to use the ordering already defined in

Section 2.

We may now reformulate the main result, Theorem 1.1. The key idea is to define a substrati-

fication of {Xδ, X
′
δ}δ∈∆τ,d

by combining Bδ and Aj(δ) for δ ∈ ∆+
τ,d ∩ Iτ,d. In other words, this is

simply {Xδ}δ∈∆τ,d
. We call this the modified Morse stratification.

Theorem 3.11. The modified Morse stratification {Xδ}δ∈∆τ,d
is G-equivariantly perfect in the

following sense: For all δ ∈ ∆τ,d, the long exact sequence

(3.9) · · · −→ H∗
G(Xδ, Xδ1) −→ H∗

G(Xδ) −→ H∗
G(Xδ1) −→ · · ·

splits. Here, δ1 denotes the predecessor of δ in ∆τ,d.

3.3. Negative normal spaces. For critical points (A,Φ) ∈ ηδ, a tangent vector

(a, ϕ) ∈ Ω0,1(EndE)⊕ Ω0(E)

is an eigenvector for the Hessian of fτ if

i[µ+ iτ · id, a] = λa(3.10)

i(µ+ iτ · id)ϕ = λϕ(3.11)

Let V neg.
(A,Φ) ⊂ Ω0,1(EndE) ⊕ Ω0(E) denote the span of all such (a, ϕ) with λ < 0. This is clearly

G-invariant, since fτ is. Let S(A,Φ) be the slice at (A,Φ). Then we set νδ ∩ S(A,Φ) = V neg.
(A,Φ) ∩ S(A,Φ).

Using Proposition 2.13, this gives a well-defined G-invariant subset νδ ⊂ B, which we call the

negative normal space at ηδ. By definition, ηδ is a closed subset of νδ.

We next describe νδ in detail for each of the critical sets:
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(Ia) Recall that in this case Φ ≡ 0. If E semistable, the negative eigenspace of the Hessian is

H0(E). To see this, note that since Φ = 0 then i(µ + iτ · id) = (d/2− τ) · id is a negative

constant multiple of the identity (by assumption τ > d/2). Therefore i[µ + iτ · id, a] = 0,

and a = 0. Then the slice equations imply ϕ ∈ H0(E). If E = L1 ⊕ L2, then H2(C(A,0)) is

nonzero in general. From the slice equations, we see that the negative eigendirections νδ of

the Hessian are given by

(3.12) d′′A2
ϕ2 + a21ϕ1 = 0 , (a21, ϕ1) ∈ H0,1(L∗

1L2)⊕H0(L1)

(Ib) This is similar to the case above, except now for negative directions, ϕ1 ≡ 0. We therefore

conclude that νδ is given by

(3.13) H0,1(L∗
1L2)⊕H0(L2)

Note that if δ > τ , then degL2 = d − j(δ) < 0, and so ν−δ has constant dimension

dimCH0,1(L∗
1L2) = 2j(δ)− d+ g − 1.

(II+) In this case, Φ 6≡ 0, so by Lemma 2.15, H2(C(A,0)) = 0, and the slice is homeomorphic to

H1(C(A,0)) via the Kuranishi map. The negative eigenspace of the Hessian is then just

(3.14) (d′′A)
∗a21 − ϕ2Φ

∗
1 = 0 , d′′Aϕ2 + a21Φ1 = 0

(II−) This is similar to above, except now ϕ2 ≡ 0. Hence, the fiber of νδ is given by

(3.15) H0,1(L∗
2L1)

Note that dimCH0,1(L∗
2L1) = 2j(δ)− d+ g − 1.

To see (II+) and (II−), we need to compute the solutions to (3.10) and (3.11), which involves

knowing the value of i(µ+ iτ · id) on the critical set. Equation (3.4) shows that

i(µ+ iτ · id) =

(
λ1 0
0 λ2

)

where λ1 ∈ Ω0(L∗
1L1) and λ2 ∈ Ω0(L∗

2L2) are constant. Since Φ ∈ H0(L1) \ {0}, then (3.5) shows

that λ1 = 0. Since λ2 is constant, the integral over M becomes

λ2 =
1

2π

∫

M
λ2 dvol =

i

2π

∫

M
FA2 −

1

2π

∫

M
τ dvol = degL2 − τ

Therefore, if d − τ < degL1 = d − degL2, then degL2 < τ and so λ2 is negative. Similarly, if

degL1 < d−τ then λ2 is positive. Equation (3.10) then shows that a ∈ Ω0,1(L∗
1L2) if d−τ < degL1,

and a ∈ Ω0,1(L∗
2L1) if degL1 < d − τ . Similarly, if d − τ < degL1 then ϕ ∈ Ω0(L2), and if

degL1 < d− τ then ϕ = 0. Equations (3.14) and (3.15) then follow from the slice equations.

The following lemma describes the space of solutions to (3.12) when ϕ1 is fixed.

Lemma 3.12. Fix ϕ1. When ϕ1 = 0 then the space of solutions {(a21, ϕ2)} to (3.12) is isomorphic

to H0,1(L∗
1L2) ⊕ H0(L2). When ϕ1 6= 0 then the space of solutions {(a21, ϕ2)} to (3.12) has

dimension degL1.
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Proof. The first case (when ϕ1 = 0) is easy, since the equations for a ∈ Ω0,1(L∗
1L2) and ϕ2 ∈ Ω0(L2)

become

(3.16) d′′∗A a = 0, d′′Aϕ2 = 0.

In the second case (when ϕ1 6= 0 is fixed), note (3.12) implies that H(aϕ1) = 0, where H denotes

the harmonic projection Ω0,1(L2) → H0,1(L2). Hence, it suffices to show that the map

(3.17) H0,1(L∗
1L2) → H0,1(L2)

given by multiplication with ϕ1 (followed by harmonic projection) is surjective. For then, since

degL∗
1L2 < 0, we have by Riemann-Roch that the dimension of (3.12) is h0(L2) + h1(L∗

1L2) −

h1(L2) = degL1. By Serre duality, (3.17) is surjective if and only if H0(KL∗
2) → H0(KL∗

2L1) is

injective. But since ϕ1 6= 0, multiplication gives an injection of sheaves O →֒ L1, and the result

follows by tensoring and taking cohomology. �

Lemma 3.13. The space of solutions to (3.14) has constant dimension = degL1 = j(δ).

Proof. Consider the subcomplex CLT
(A,Φ)

(3.18) Ω0(L∗
1L2))

D1
// Ω0,1(L∗

1L2)⊕ Ω0(L2)
D2

// Ω1(L2)

Since Φ 6= 0, by Lemma 2.15 the cohomology at the ends of the complex (3.18) vanishes, and we

have (by Riemann-Roch)

dimCH1(CLT
(A,Φ)) = dimC(kerD

∗
1 ∩ kerD2)

= h1(L∗
1L2) + h0(L2)− h1(L2)− h0(L∗

1L2)

= − degL∗
1L2 + g − 1 + degL2 + (1− g)

= degL1

�

We summarize the the above considerations with

Corollary 3.14. The fiber of νδ is linear of constant dimension for critical sets of type II±, and

for those of type Ib provided δ 6∈ ∆+
τ,d ∩ [τ − d/2, τ ]. The complex dimension of the fiber in these

cases is σ(δ), where

σ(δ) =

{
2j(δ)− d+ g − 1 if type Ib or II−

j(δ) if type II+

Remark 3.15. The strata for δ ∈ Iτ,d have two components corresponding to the strata Aj(δ)

and Bδ. When there is a possible ambiguity, we will distinguish these by the notation νI,δ for the

negative normal spaces to strata of type Ia or Ib, and νII,δ for the negative normal spaces to strata

of type II+ or II−.
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3.4. Cohomology of the negative normal spaces. As in [8], at certain critical sets – namely,

those of type Ia, Ib where δ ∈ ∆+
τ,d ∩ [τ − d/2, τ ] – the negative normal directions are not neces-

sarily constant in dimension. In the present case, they are not even linear. In order to carry out

the computations, we appeal to a relative sequence by considering special subspaces with better

behavior.

Definition 3.16. For δ ∈ ∆+
τ,d ∩ (τ − d/2, τ ], let νI,δ be the negative normal space to a critical set

with Φ ≡ 0, as in Section 3.3. Define

ν ′I,δ = {(a, ϕ1, ϕ2) ∈ νI,δ : (a, ϕ1, ϕ2) 6= 0}

ν ′′I,δ = {(a, ϕ1, ϕ2) ∈ νI,δ : a 6= 0}

The goal of this section is the proof of the following

Proposition 3.17.

δ ∈ ∆+
τ,d ∩ (τ − d/2, τ ] : H∗

G(νI,δ, ν
′′
I,δ) ≃ H

∗−2(2j(δ)−d+g−1)
S1×S1 (ηAj(δ))(3.19)

δ ∈ ∆+
τ,d ∩ (2τ − d, τ ] : H∗

G(ν
′
I,δ, ν

′′
I,δ) ≃ H

∗−2(2j(δ)−d+g−1)
S1 (Sd−j(δ)M × Jj(δ)(M))(3.20)

δ ∈ ∆+
τ,d ∩ (τ − d/2, 2τ − d) : H∗

G(ν
′
I,δ, ν

′′
I,δ) ≃ H

∗−2j(δ)
S1 (Sj(δ)M × Jd−j(δ)(M))(3.21)

⊕H
∗−2(2j(δ)−d+g−1)
S1 (Sd−j(δ)M × Jj(δ)(M))

Proof. Fix E = L1 ⊕L2. Consider first the case τ > degL1 = j(δ) > d/2, and degL2 = d− j(δ) <

d/2. Define the following spaces

ωδ = {(A1, A2, a, ϕ1, ϕ2) ∈ νI,δ : (a, ϕ2) 6= 0}

Z−
δ = {(A1, A2, a, ϕ1, ϕ2) ∈ νI,δ : ϕ1 = 0}

Z ′
δ = {(A1, A2, a, ϕ1, ϕ2) ∈ νI,δ : ϕ1 = 0, (a, ϕ2) 6= 0}

Y ′
δ = {(A1, A2, a, ϕ1, ϕ2) ∈ νI,δ : ϕ1 6= 0}

Y ′′
δ = {(A1, A2, a, ϕ1, ϕ2) ∈ νI,δ : ϕ1 6= 0, (a, ϕ2) 6= 0}

Tδ = {(A1, A2, a, ϕ1, ϕ2) ∈ νI,δ : ϕ1 6= 0, (a, ϕ2) = 0}

Note that Y ′
δ = νI,δ \Z

−
δ = ν ′I,δ \Z

′
δ and Y ′′

δ = ωδ \Z
′
δ. Consider the following commutative diagram.
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(3.22) ...

��

· · · // Hp
G
(νI,δ, ν

′
I,δ) //

��

Hp
G
(νI,δ) // Hp

G
(ν ′I,δ) // · · ·

Hp
G
(νI,δ, ν

′′
I,δ)

��

ξ
77ooooooooooo

ξ′′

''OOOOOOOOOOO

. . . // Hp
G
(ν ′I,δ, ωδ) // Hp

G
(ν ′I,δ, ν

′′
I,δ)

��

β
// Hp

G
(ωδ, ν

′′
I,δ) // · · ·

...

• First, it follows as in the proof of [8, Thm. 2.3] that the pair (νI,δ, ν
′′
I,δ) is homotopic to the

Atiyah-Bott pair (XA
j(δ), X

A
j(δ)−1). Hence, (3.19) follows from [1].

• Consider the pair (ν ′I,δ, ωδ). Excision of Z ′
δ gives the isomorphism

(3.23) H∗
G(ν

′
I,δ, ωδ) ∼= H∗

G(ν
′
I,δ \ Z

′
δ, ωδ \ Z

′
δ)

∼= H∗
G(Y

′
δ , Y

′′
δ )

The space Y ′′
δ = Y ′

δ \ Tδ, and Lemma 3.12 shows that Y ′
δ is a vector bundle over Tδ with

fibre dimension = degL1. Therefore the Thom isomorphism implies

H∗
G(Y

′
δ , Y

′′
δ ) = H∗

G(Y
′
δ , Y

′
δ \X

′
δ)

∼= H
∗−2j(δ)
G

(Tδ)

and therefore

(3.24) H∗
G(ν

′
I,δ, ωδ) = H∗

G(Y
′
δ , Y

′′
δ ) = H

∗−2j(δ)
S1 (Sj(δ)M × Jd−j(δ)(M))

• Consider (ωδ, ν
′′
I,δ). By retraction, the pair is homotopic to the intersection with ϕ1 = 0. It

then follows exactly as in [8] (or the argument above) that

(3.25) H∗
G(ωδ, ν

′′
I,δ)

∼= H
∗−2(2j(δ)−d+g−1)
S1 (Sd−j(δ)M × Jj(δ)(M))

(Recall that dimH0,1(L∗
1L2) = 2j(δ) − d + g − 1 by Riemann-Roch, and that degL2 =

d− j(δ)).

It then follows as in [8] that ξ′′, and hence also β, is surjective. This implies that the lower horizontal

exact sequence splits, and (3.21) follows from (3.24) and (3.25). This completes the proof in this

case. The case where degL1 > τ is simpler, since ϕ1 ≡ 0 from (3.11). Hence, ωδ = ν ′I,δ, and the

proof proceeds as above. �
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3.5. The Morse-Bott lemma. In this section we prove the fundamental relationship between

the relative cohomology of successive strata and the relative cohomology of the negative normal

spaces. From this we derive the proof of the main result. In the following we use δ1 to denote the

predecessor of δ in ∆τ,d.

Theorem 3.18. For all δ ∈ ∆τ,d \
(
∆+

τ,d ∩ Iτ,d

)
,

(3.26) H∗
G(Xδ, Xδ1) ≃ H∗

G(νδ, ν
′
δ)

For all δ ∈ ∆+
τ,d ∩ Iτ,d,

(3.27) H∗
G(X

′
δ, Xδ1) ≃ H∗

G(νII,δ, ν
′
II,δ)

For all δ ∈ ∆+
τ,d ∩ Iτ,d, δ 6= τ − d/2,

(3.28) H∗
G(Xδ, X

′
δ) ≃ H∗

G(νI,δ, ν
′
I,δ)

Eq. (3.28) also holds for δ = τ − d/2, provided d > 4g − 4. In the statements above, δ1 denotes the

predecessor of δ in ∆τ,d.

First, we give a proof of (3.26) in the case δ 6∈ ∆+
τ,d ∩ [τ − d/2, τ ]. By excision and convergence

of the gradient flow, there is a neighborhood U of ηδ such that

• U is G-invariant;

• U is the union of images of slices S(A,Φ), where (A,Φ) ∈ ηδ;

• H∗
G
(Xδ, Xδ1) ≃ H∗

G
(U,U \ (U ∩Bδ))

Notice that for each slice S(A,Φ)∩U \ (U ∩Bδ) = S′(A,Φ)∩U , where the latter is defined as in Lemma

2.16. By the lemma, it follows that the pair (U,U \ (U ∩ Bδ)) locally retracts to (νδ, ν
′
δ). On the

other hand, by Corollary 3.14, νδ is a bundle over ηδ. It follows by continuity as in [2], that there

is a G-equivariant retraction of the pair (νδ, ν
′
δ) →֒ (U,U \ (U ∩ Bδ)). The result therefore follows

in this case. We also note that by Corollary 3.14 and the Thom isomorphism,

(3.29) H∗
G(νδ, ν

′
δ) ≃ H

∗−2σ(δ)
G

(ηδ)

Remark 3.19. Notice that by Corollary 3.14 the same argument also proves (3.27). For d > 4g−4,

we can use Lemma 2.17 in the same way to derive (3.28) for δ = τ −d/2. In this case, by the Thom

isomorphism, we have

(3.30) H∗
G(Xτ−d/2, X

′
τ−d/2) ≃ H

∗−2(d+2−2g)
G

(Ass)

Lemma 3.20. For δ 6∈ ∆+
τ,d ∩ [τ − d/2, τ ], or if δ = τ − d/2 and d > 4g − 4, then the long exact

sequence (3.9) splits. Similarly, the long exact sequence

(3.31) · · · −→ Hp
G
(X ′

δ, Xδ1) −→ Hp
G
(X ′

δ) −→ Hp
G
(Xδ1) −→ · · ·

splits for all δ ∈ Iτ,d.
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Proof. Indeed, since (3.26) holds in this case, we have

(3.32) · · · // Hp
G
(Xδ, Xδ1)

∼=
��

α
// Hp

G
(Xδ) //

��

Hp
G
(Xδ1) // · · ·

Hp
G
(νδ, ν

′
δ)

β
// Hp

G
(ηδ)

Now νδ → ηδ is a complex vector bundle with a G-action and a circle subgroup that fixes ηδ and

acts freely on νδ \ηδ, so by [1, Prop. 13.4], β is injective. It follows that is α is injective as well, and

hence the sequence splits. The second statement follows by Remark 3.19 and the same argument

as above. �

It remains to prove (3.28) and the remaining cases of (3.26). As noted above, in these cases the

negative normal spaces are no longer constant in dimension, and indeed they are not even linear

in the fibers. From the point of view of deformation theory, the Kuranishi map near these critical

sets is not surjective, and defining an appropriate retraction is more difficult than in the situation

just considered. Instead, we resort to the analog of the decomposition used in Section 3.3. Let

X ′′
δ = Xδ \ pr

−1(Aj(δ)). Note that by Lemma 2.12, X ′′
δ ⊂ X ′

δ. We will prove the following

Proposition 3.21. Suppose δ ∈ ∆+
τ,d ∩ (τ − d/2, τ ]. Then

H∗
G(Xδ, X

′′
δ )

∼= H∗
G(νI,δ, ν

′′
I,δ))(3.33)

H∗
G(X

′
δ, X

′′
δ )

∼= H∗
G(ν

′
I,δ, ν

′′
I,δ)(3.34)

Proof of (3.33). By [1] and (3.19), it suffices to prove

(3.35) H∗
G(Xδ, X

′′
δ )

∼= H∗
G(X

A
j(δ), X

A
j(δ)−1)

We first note that the pair (Xδ, X
′′
δ ) is not necessarily invariant under scaling tΦ, t → 0, in particular

because of the strata in ∆−
τ,d (cf. Lemma 2.12). However, if we set

X̂δ = Xδ ∪
⋃

δ′≤δ , δ′∈∆−
τ,d

XA
δ′+τ , X̂ ′′

δ = X̂δ \ pr
−1(Aj(δ))

then by excision on the closed subset
⋃

j(δ)−τ<δ′≤δ

δ′∈∆−
τ,d

Aδ′+τ

it follows that H∗
G
(Xδ, X

′′
δ ) = H∗

G
(X̂δ, X̂

′′
δ ). Then for the pair (X̂δ, X̂

′′
δ ), projection to A is a

deformation retraction (by scaling the section Φ), and we have

(3.36) H∗
G(Xδ, X

′′
δ ) = H∗

G(pr(X̂δ), pr(X̂
′′
δ ))

Next, let

Kδ = pr
(
X̂(τ−d/2) ∪

⋃

δ′≤δ , δ′∈∆−
τ,d

Bδ′ ∪
⋃

δ′<τ−d/2 , δ′∈∆+
τ,d

Bδ′
)
∩

⋃

k>j(δ)

Ak
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Note that Kδ ⊂ pr(X̂ ′′
δ ). We claim that it is actually a closed subset of pr(X̂δ). Indeed, suppose

(Ai,Φi) ∈ X(τ−d/2), (Ai,Φi) → (A,Φ) ∈ X̂δ, and suppose that µ+(Ai) > j(δ) for each i. By

semicontinuity, it follows that µ+(A) > j(δ). On the other had, either A ∈ Kδ or (A,Φ) ∈ Bδ′ ,

τ − d/2 < δ′ ≤ δ and δ′ ∈ ∆+
τ,d. But by Lemma 2.12, this would imply A ∈ Aj(δ′); which is a

contradiction, since j(δ′) ≤ j(δ). It follows that the latter cannot occur, and hence, Kδ is closed.

Similarly,

pr(X̂δ) = pr
(
X̂(τ−d/2) ∪

⋃

δ′≤δ , δ′∈∆−
τ,d

Bδ′ ∪
⋃

δ′<τ−d/2 , δ′∈∆+
τ,d

Bδ′
)

∪
⋃

d/2<k≤j(δ)

Ak ∪
⋃

τ−d/2<δ′≤δ , δ′∈∆+
τ,d

pr(Bδ)

= Kδ ∪
⋃

d/2≤k≤j(δ)

Ak

and the union is disjoint. It follows also that

pr(X̂ ′′
δ ) = Kδ ∪

⋃

d/2≤k<j(δ)

Ak

Hence, pr(X̂δ)\Kδ = XA
j(δ), pr(X̂

′′
j(δ))\Kδ = XA

j(δ)−1, and (3.35) follows from (3.36) by excision. �

Proof of (3.34). First consider the case δ ∈ ∆+
τ,d ∩ (τ − d/2, 2τ − d). We have

X ′′
δ =

(
X(τ−d/2) ∪

⋃

δ′≤δ , δ′∈∆−
τ,d

Bδ′ ∪
⋃

δ′<τ−d/2 , δ′∈∆+
τ,d

Bδ′
)
\ pr−1(Aj(δ))

∪
⋃

d/2<k<j(δ)

Ak ∪
⋃

τ−d/2<δ′<δ , δ′∈∆+
τ,d

Bδ

whereas X ′
δ = Xδ1 ∪Bδ, where δ1 is the predecessor of δ in ∆τ,d. Also, X

′′
δ = Xδ1 \pr

−1(Aj(δ)). We

then have the following diagram

(3.37) · · · // Hp
G
(X ′

δ, X
′′
δ )

f

��

// Hp
G
(X ′

δ)

g

��

// Hp
G
(X ′′

δ )

∼=
��

// · · ·

· · · // Hp
G
(Xδ1 , X

′′
δ ) // Hp

G
(Xδ1) // Hp

G
(X ′′

δ ) // · · ·

where f and g are induced by the inclusion Xδ1 →֒ X ′
δ. By Lemma 3.20 and (3.27) (see Remark

3.19), it follows that g is surjective and

ker g = H∗
G(νII,δ, ν

′
II,δ) ≃ H

∗−2j(δ)
G

(Bδ) ≃ H
∗−2j(δ)
S1 (Sj(δ)M × Jd−j(δ)M)

by Thom isomorphism. Chasing through the diagram, it follows that f is also surjective with the

same kernel. We conclude that

(3.38) H∗
G(X

′
δ, X

′′
δ ) ≃ H∗

G(Xδ1 , X
′′
δ )⊕H

∗−2j(δ)
S1 (Sj(δ)M × Jd−j(δ)M)
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It remains to compute the first factor on the right hand side. To begin, notice that
⋃

d/2<k<j(δ)

Ak ∪
⋃

τ−d/2<δ′<δ , δ′∈∆−
τ,d

Bδ′ ∪
⋃

τ−d/2<δ′<δ , δ′∈∆+
τ,d

Bδ

is contained in X ′′
δ and closed in Xδ1 . It follows by excision that

H∗
G(Xδ1 , X

′′
δ ) ≃ H∗

G(Xτ−d/2, Xτ−d/2 \ pr
−1(Aj(δ)))

Next, we observe that

Ass ∪
⋃

δ′<τ−d/2 , δ′∈∆−
τ,d

Bδ′

is contained in Xτ−d/2 \ pr
−1(Aj(δ)) and closed in Xτ−d/2. This is clear for Ass. More generally, if

(E,Φ) in this set and Φ 6≡ 0, then µ+(E) > τ > j(δ), and elements in the strata of type II− cannot

specialize to points in II+. Again applying excision, we have

H∗
G(Xδ1 , X

′′
δ ) ≃ H∗

G(Yδ, Yδ \ pr
−1(Aj(δ)))

where

Yδ = Bτ
ss ∪

⋃

0<δ′≤τ−d/2 , δ′∈∆+
τ,d

Bδ′

We make a third excision of the closed set
⋃

τ−j(δ)<δ′≤τ−d/2 , δ′∈∆+
τ,d

Bδ′

and a final excision of the subset

Dδ =
{
Bτ

ss ∪
⋃

0<δ′≤τ−j(δ) , δ′∈∆+
τ,d

Bδ

}
∩
( ⋃

k>j(δ)

pr−1(Ak)
)

Notice that
{
Bτ

ss ∪
⋃

0<δ′≤τ−j(δ) , δ′∈∆+
τ,d

Bδ

}
\Dδ = Bj(δ)

ss

We conclude that

H∗
G(Xδ1 , X

′′
δ ) ≃ H∗

G(B
j(δ)
ss ,Bj(δ)

ss \ pr−1(Aj(δ)))

Choose ε > 0 small, and let τ ′ = j(δ)− ε. Then with respect to the τ ′-stratification, the right hand

side above is ≃ H∗
G
(Bτ ′

ss ∪ Bτ ′
ε , Bτ ′

ss) where ε ∈ ∆−
τ ′ is the lowest τ ′-critical set. Since ε < τ ′ − d/2,

it follows from Lemma 3.20 that the long exact sequence (3.9) splits for this stratum. Hence, we

have

(3.39) H∗
G(Xδ1 , X

′′
δ ) ≃ H∗

G(B
τ ′

ss ∪Bτ ′

ε , Bτ ′

ss) ≃ H
∗−2(2j(δ)−d+g−1)
S1 (Sd−j(δ)M × Jj(δ)(M))

(notice that jτ ′(ε) = jτ (δ)). Eqs. (3.38) and (3.39), combined with Proposition 3.17, complete the

proof. In case δ 6∈ Iτ,d, note that by definition H∗
G
(X ′

δ, X
′′
δ ) ≃ H∗

G
(Xδ1 , X

′′
δ ). The part of the proof

following (3.38) now applies verbatim to this case. �
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Proof of Theorem 3.18. For δ 6∈ ∆+
τ,d ∩ [τ − d/2, τ ], or δ = τ − d/2 and d > 4g − 4, we have

proven the result directly (see the discussion following Theorem 3.18 and also Remark 3.19). For

δ ∈ ∆+
τ,d ∩ (τ − d/2, τ ], the result follows from Proposition 3.21 and the five lemma. �

3.6. Perfection of the stratification for large degree. Note that Lemma 3.20 shows that the

long exact sequence (3.9) splits for all δ /∈ ∆+
τ,d ∩ [τ − d/2, τ ], and also for δ = τ − d/2 if d > 4g− 4.

Therefore it remains to show that (3.9) splits for δ ∈ ∆+
τ,d ∩ (τ − d/2, τ ].

Firstly we consider the case where δ ∈ ∆+
τ,d ∩ [2τ − d, τ ], which corresponds to a stratum of type

Ib. Proposition 3.21 shows that the vertical long exact sequence splits and the map ξ is injective

in the following commutative diagram.

...

��

· · · // Hp
G
(Xδ, Xδ1)

αp
//

ζp

��

Hp
G
(Xδ) // Hp

G
(Xδ1) // · · ·

Hp
G
(νI,δ, ν

′′
I,δ)

��

∼=
// Hp

G
(Xδ, X

′′
δ )

��

ξ
88qqqqqqqqqq

Hp
G
(ωδ, ν

′′
I,δ)

∼=
//

��

Hp
G
(Xδ1 , X

′′
δ )

��

0 ...

Therefore the map αp is injective, and so the horizontal long exact sequence splits also.

Next, suppose δ ∈ ∆+
τ,d ∩ (τ − d/2, 2τ − d). For this we need the following lemma.

Lemma 3.22. When δ ∈ ∆+
τ,d∩(τ−d/2, 2τ−d), then the isomorphisms H∗

G
(Xδ, X

′′
δ )

∼= H∗
G
(νI,δ, ν

′′
I,δ)

and H∗
G
(Xδ1 , X

′′
δ )

∼= H∗
G
(ωδ, ν

′′
I,δ) in equivariant cohomology are induced by an inclusion of triples

(νI,δ, ωδ, ν
′′
I,δ) →֒ (Xδ, Xδ1 , X

′′
δ ).

Proof. The first isomorphism is contained in (3.33). To see the second isomorphism, note that the

results of the last section show that H∗
G
(Xδ1 , X

′′
δ )

∼= H∗
G
(Bτ ′

ss∪Bτ ′
ε ,Bτ ′

ss), where ε ∈ ∆−
τ ′ is the lowest

τ ′ critical set. Excise all but a neighborhood of Bτ ′
ε , and deformation retract Φ so that ‖Φ‖ is small.

Call these new sets W and W0, respectively. Then

H∗
G(B

τ ′

ss ∪Bτ ′

ε ,Bτ ′

ss)
∼= H∗

G(W,W0)

Since Φ 6= 0, then we can apply Lemma 2.16 to the slices within the spaces W and W0, and the

resulting spaces are homeomorphic to ωδ and ν ′′I,δ respectively. �

The previous lemma together with the surjection ξ′′ : H∗
G
(ν−I,δ, ν

′′
I,δ) → H∗

G
(ωδ, ν

′′
I,δ) from (3.22)

implies that the map ξ′′g is surjective in the following commutative diagram.
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...

��

· · · // Hp
G
(Xδ, Xδ1) //

��

Hp
G
(Xδ) // Hp

G
(Xδ1) // · · ·

Hp
G
(Xδ, X

′′
δ )

ξ′′g
��

ξg
88qqqqqqqqqq

Hp
G
(Xδ1 , X

′′
δ )

��
...

The isomorphism (3.35) together with the results of [1] show that the map ξg is injective, and so

the same argument as before shows that the horizontal long exact sequence splits.

3.7. The case of low degree. By the results of the previous section, there is only one critical

stratum unaccounted for on the way to completing the proof of Theorem 3.11 for 1 ≤ d ≤ 4g − 4.

Namely, we need to analyze what happens when we attach the minimal Yang-Mills stratum Ass,

which is the lowest critical set of Type I. More precisely, from (2.4), we need to show that the

inclusion X ′
τ−d/2 →֒ Xτ−d/2 induces a surjection in G-equivariant rational cohomology for all τ ∈

(d/2, d). Notice that by (2.5), X ′
τ−d/2 = Xδ1 for d odd, so this is precisely what we need to prove;

and if d is even, then the above statement together with Lemma 3.20 will prove that Xδ1 →֒ Xτ−d/2

induces a surjection in G-equivariant rational cohomology in this case as well.

In low degree, the negative normal directions exist only over a Brill-Noether subset of Ass, whose

cohomology is unknown, and the dimension of the fiber jumps in a complicated way; it is not even

clear that there is a good Morse-Bott lemma of the type (3.28) in this case.

Hence, in order to prove surjectivity in this case we will use an indirect argument via embeddings

of the space of pairs of degree d into corresponding pairs of larger degree. More precisely, this is

defined as follows. Choose a point p ∈ M , and let O(p) denote the holomorphic line bundle with

divisor p. We also choose a hermitian metric on O(p). Choose a holomorphic section σp of O(p)

with a simple zero at p. Note that σp is unique up to a nonzero multiple. A holomorphic (and

hermitian) structure on the complex vector bundle E induces one on the bundle Ẽ = E ⊗ O(p).

Moreover, if Φ ∈ H0(E), then Φ̃ = Φ⊗σp ∈ H0(Ẽ). The unitary gauge group G of E is canonically

isomorphic to that of Ẽ. Hence, we have a G-equivariant embedding B(E) →֒ B(Ẽ). For simplicity,

we will use the notation B = B(E) and B̃ = B(Ẽ).
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Let d̃ = d+ 2 and τ̃ = τ + 1. Then we note the following properties:

deg Ẽ = d̃ ∆τ̃ ,d̃ = ∆τ,d

deg Φ̃ = degΦ + 1 Iτ̃ ,d̃ = Iτ,d

µ+(Ẽ) = µ+(E) + 1 jτ̃ ,d̃(δ) = jτ,d + 1

It follows easily that the inclusion respects the Harder-Narasimhan stratification, i.e. for all δ ∈ ∆τ,d,

Bδ →֒ B̃δ, Xδ →֒ X̃δ, and X ′
δ →֒ X̃ ′

δ, where the tilde’s have the obvious meaning. In particular, if we

fix τmax = d− ε, for ε small, then Bτmax
ss →֒ B̃τ̃max

ss . Notice that while Bτmax
ss gives the “last” moduli

space in the sense that there are no critical values between τmax and d (provided ε is sufficiently

small), B̃τ̃max
ss gives the “second to last” moduli space in the sense that there is precisely one critical

value between τ̃max and d̃.

Lemma 3.23. The inclusion Bτmax
ss →֒ B̃τ̃max

ss induces a surjection in G-equivariant rational coho-

mology.

Proof. Since τ is generic, it suffices to prove the result on the level of moduli spaces, i.e. that the

inclusion ı : Mτmax,d →֒ M̃τ̃max,d̃
induces a surjection in cohomology. Consider the determinant

map (E,Φ) 7→ detE. We have the following diagram

(3.40) Mτmax,d
ı

//

det

��

M̃τ̃max,d̃

det

��

Jd(M)


// Jd̃(M)

NowMτmax,d is the projectivization of a vector bundle (cf. [20]). Hence, by the Leray-Hirsch theorem

its cohomology ring is generated by the embedding (det)∗(H∗(Jd(M))), and a 2-dimensional class

generating the cohomology of the fiber. Since ı∗(det)∗ = (det)∗∗, and j∗ is an isomorphism, it

follows that ı∗ is surjective onto (det)∗(H∗(Jd(M))). It remains to show that the 2-dimensional

class is in the image of ı∗. But since ı is holomorphic and Mτ̃max,d̃
is projective, the Kähler class of

Mτ̃max,d̃
restricted to the image generates the cohomology of the fiber. �

Lemma 3.24. Suppose δ ∈ ∆τmax,d, δ < τmax − d/2. Then the inclusion Xδ →֒ X̃δ induces a

surjection in G-equivariant rational cohomology. The same holds for X ′
τ−d/2 →֒ X̃ ′

τ̃−d̃/2
.

Proof. By Lemma 3.23, the result holds for the semistable stratum. Fix δ < τ − d/2, and let δ1 be

its predecessor in ∆τmax,d. By induction, we may assume the result holds for δ1. By Lemma 3.20

we have the following diagram:

(3.41) 0 // Hp
G
(X̃δ, X̃δ1)

f

��

// Hp
G
(X̃δ) //

g

��

Hp
G
(X̃δ1)

h
��

// 0

0 // Hp
G
(Xδ, Xδ1) // Hp

G
(Xδ) // Hp

G
(Xδ1) // 0
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By the inductive hypothesis, h is surjective. On the other hand, by (3.26) and (3.29), surjectivity

of f is equivalent to surjectivity of the map H∗
G
(η̃δ) → H∗

G
(ηδ). From the description of critical sets

(cf. Proposition 3.2), this map is induced by the inclusion Sj(δ)M →֒ Sj(δ)+1M . Surjectivity then

follows by the argument in [8, Sect. 4]. Since both f and h are surjective, so is g. The result for

any δ < τ − d/2 now follows by induction. If d is even, the exact same argument, with δ1 = the

predecessor of τ − d/2, proves the statement for X ′
τ−d/2 as well. �

Lemma 3.25. Suppose the inclusion X̃ ′
τ̃max−d̃/2

→֒ X̃τ̃max−d̃/2 induces a surjection in G-equivariant

rational cohomology. Then the same is true for the inclusion X ′
τmax−d/2 →֒ Xτmax−d/2.

Proof. Consider the diagram

(3.42) Hp
G
(X̃τ̃max−d̃/2)

//

��

Hp
G
(X̃ ′

τ̃max−d̃/2
)

h

��

// 0

Hp
G
(Xτmax−d/2) // Hp

G
(X ′

τmax−d/2) // · · ·

By Lemma 3.24, h is surjective. The result then follows immediately. �

Lemma 3.26. Suppose the inclusion X ′
τ−d/2 →֒ Xτ−d/2 induces a surjection in G-equivariant

rational cohomology for τ = τmax. Then the same is true for all τ ∈ (d/2, d). Moreover,

dimHp
G
(Xτ−d/2, X

′
τ−d/2) is independent of τ for all p.

Proof. The sets X ′
τ−d/2, Xτ−d/2 remain unchanged for τ in a connected component of (d/2, d) \Cd,

where Cd is given in (2.6). Fix τc ∈ Cd, 2τc − d/2 = k ∈ Z, and let τl < τc < τr be in components

(d/2, d) \ Cd containing τc in their closures. Let δl,r = 2τc − d/2 − τl,r. Note that δl,r ∈ ∆−
τl,r,d

,

δl > τl − d/2, and δr < τr − d/2. Also, we claim

(3.43) Xτr−d/2 = Xτl−d/2 ∪B
τl
δl

, X ′
τr−d/2 = X ′

τl−d/2 ∪B
τl
δl

To see this, we refer to Figure 1 and the discussion preceding it. Under the map ∆τl,d → ∆τr,d,

δl 7→ δr and τl − d/2 7→ τr − d/2. The claim then follows if we show that δr is the predecessor of

τr − d/2 in ∆τr,d, and δl is the successor of τl − d/2 in ∆τl,d (see Figure 1). So suppose δ ∈ ∆τr,d,

δ < τr − d/2. By Remark 2.7, we may assume δ ∈ ∆−
τr,d

. Write δ+ τr = ℓ ∈ Z. Then ℓ ≤ 2τr − d/2,

which implies ℓ ≤ k, and δ ≤ δr. The reasoning is similar for δl.

Now since the result holds by assumption for τmax, we may assume by induction that the result

holds for τ ≥ τr. Then we have

(3.44) 0 // Hp
G
(Xτr−d/2, X

′
τr−d/2)

f
��

// Hp
G
(Xτr−d/2) //

g

��

Hp
G
(X ′

τr−d/2)

h
��

// 0

· · · // Hp
G
(Xτl−d/2, X

′
τl−d/2) // Hp

G
(Xτl−d/2) // Hp

G
(X ′

τl−d/2) // · · ·
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By (3.43) and the proof of Lemma 3.24, h is surjective. Hence, the lower long exact sequence

must split. Moreover, g is surjective as well, and ker g = kerh. As a consequence, f must be an

isomorphism. The result now follows by induction. �

Proof of Theorems 3.11 and 1.2. We proceed by induction as follows. First, if d > 4g − 4, then by

Lemma 3.20, the hypothesis of Lemma 3.25 is satisfied. It then follows from Lemma 3.26 that the

inclusion X ′
τ−d/2 →֒ Xτ−d/2 induces a surjection in G-equivariant rational cohomology for any τ .

In particular, this is true for the value τ̃max corresponding to degree d − 2. Hence, the inductive

hypothesis holds, and the result is proven for all d. Kirwan surjectivity follows immediately. �

Proof of Theorem 1.3. This follows from Kirwan surjectivity, but more generally we prove this on

each stratum. Clearly it suffices to prove the result for k = 1. Since the gauge groups for E and Ẽ

are canonically isomorphic, it suffices by induction to show that if the result holds for the inclusion

Xδ →֒ X̃δ, then it also holds for Xδ1 →֒ X̃δ1 , where δ1 is the predecessor of δ in ∆τ,d. By Theorem

3.11, the diagram (3.41) holds for all δ. It follows that if g is surjective, then so is h. This completes

the proof. �

4. Cohomology of moduli spaces

4.1. Equivariant cohomology of τ-semistable pairs. The purpose of this section is to complete

the calculation of the G-equivariant Poincaré polynomial of Bτ
ss. First we consider the case where

τ is generic. Choose an integer N , d/2 < N ≤ d, and let τ ∈ (max{d/2, N − 1}, N). Then the

different allowable values of δ for each type of stratum and the cohomology are as follows (see

Proposition 3.2).

(Ia) There is one stratum I
d/2
a corresponding to Ass (indexed by j = d/2), and by Lemma 3.26

the contribution I
d/2
a (t) to the Poincaré polynomial is independent of τ . For d > 4g − 4 it

follows from (3.30) that

(4.1) Id/2a (t) =
t2d+4−4g

(1− t2)
P G
t (Ass)

where G is defined in [1, p. 577]. We compute I
d/2
a (t) in general in Lemma 4.3 below. The

remaining strata are indexed by integers j = j(δ) = µ+ such that d/2 < j ≤ N − 1 and

δ = j − d+ τ . The contribution to the G-equivariant Poincaré polynomial is

Ija(t) =
t2(2j(δ)−d+g−1)

(1− t2)2
Pt

(
Jj(δ)(M)× Jd−j(δ)(M)

)
−

t2j(δ)

1− t2
Pt

(
Sj(δ)M × Jd−j(δ)(M)

)

−
t2(2j(δ)−d+g−1)

1− t2
Pt

(
Sd−j(δ)M × Jj(δ)(M)

)(4.2)
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(Ib) There are an infinite number of strata indexed by integers j = j(δ) = µ+ such that N ≤ j

and δ = j − d+ τ . The contribution is

I
j
b(t) =

t2(2j(δ)−d+g−1)

(1− t2)2
Pt

(
Jj(δ)(M)× Jd−j(δ)(M)

)

−
t2(2j(δ)−d+g−1)

1− t2
Pt

(
Sd−j(δ)M × Jj(δ)(M)

)(4.3)

(II+) These strata are indexed by integers j = j(δ) = degΦ = degL1 such that d−N + 1 ≤ j ≤

N − 1, and δ = j − d+ τ . The contribution is

(4.4) II+j (t) =
t2j(δ)

1− t2
Pt

(
Sj(δ)M × Jd−j(δ)(M)

)

(II−) These strata are indexed by integers j = d − j(δ) such that 0 ≤ j ≤ d − N , where δ =

j(δ)− τ = d− j − τ , and the contribution is

(4.5) II−j (t) =
t2(2j(δ)−d+g−1)

1− t2
Pt

(
Sd−j(δ)M × Jj(δ)(M)

)

Then we have

Theorem 4.1. For τ ∈ (max{d/2, N − 1}, N),

Pt(Mτ,d) = P G
t (B

τ
ss) = Pt(BG)− Id/2a (t)−

N−1∑

j=⌊d/2+1⌋

Ija(t)−
∞∑

j=N

I
j
b(t)−

d−N∑

j=0

II−j (t)−
N−1∑

j=d−N+1

II+j (t)

Proof. By Theorem 3.11 we have

P G
t (B

τ
ss) = Pt(BG)−

∑

δ∈∆τ,d\{0}

P G
t (Xδ, Xδ1)

If δ 6∈ ∆+
τ,d ∩ (τ − d/2, τ ], then by the Morse-Bott lemma (3.26) and (3.29),

P G
t (Xδ, Xδ1) =

t2σ(δ)

1− t2
P G
t (ηδ)

where σ(δ) is given in Corollary 3.14. If δ ∈ ∆+
τ,d ∩ (τ − d/2, τ ] then by Section 3.6,

P G
t (Xδ, Xδ1) = P G

t (Xδ, X
′′
δ )− P G

t (Xδ1 , X
′′
δ )

The first term on the right hand side is given by (3.35). For the second term, we have

H∗
G(Xδ1 , X

′′
δ ) =

{
H∗

G
(ν ′I,δ, ν

′′
I,δ) δ ∈ ∆+

τ,d ∩ [2τ − d, τ ]

H∗
G
(ωδ, ν

′′
I,δ) δ ∈ ∆+

τ,d ∩ (τ − d/2, 2τ − d)

and the latter cohomology groups have been computed in (3.20) and (3.25). This completes the

computation. �

When the parameter τ is non-generic (i.e. τ = N for some integer N ∈ [d/2, d]) then the same

analysis as above applies, however now there are split solutions to the vortex equations. These

correspond to one of the critical sets of type II, where E = L1 ⊕ L2 with φ ∈ H0(L1) \ {0}, and

degL2 = τ . Therefore, the only difference the generic and non-generic case is that we do not



30 WENTWORTH AND WILKIN

count any contribution from the critical set of type II− with j = d − N . Therefore the Poincaré

polynomial is

Theorem 4.2. For τ = N ,

P G
t (B

N
ss) = Pt(BG)− Id/2a (t)−

N−1∑

j=⌊d/2+1⌋

Ija(t)−
∞∑

j=N

I
j
b(t)−

d−N−1∑

j=0

II−j (t)−
N−1∑

j=d−N+1

II+j (t)

Finally, using Theorem 4.1, we can give a computation of the remaining term which is as yet

undetermined in low degree.

Lemma 4.3. For all d ≥ 2,

Id/2a (t) =
1

1− t2
P G
t (Ass)−

⌊d/2⌋∑

j=0

t2j − t2(d+g−1−2j)

1− t2
Pt(S

jM × Jd−j(M))

−




0 if d odd

t2g−2

(1− t2)
Pt(S

d/2M × Jd/2(M)) if d even

Remark 4.4. It can be verified directly that for d > 4g−4, the expression above agrees with (4.1).

See the argument of Zagier in [20, pp. 336-7].

Proof of Lemma 4.3. Take the special case N = d. Then Mτ,d is a projective bundle over Jd(M),

and so

Pt(Mτ,d) =
1− t2(d+g−1)

1− t2
Pt(Jd(M))

On the other hand, from Theorem 4.1 we have

Pt(Mτ,d) = Pt(BG)− Id/2a (t)−
d−1∑

j=⌊d/2+1⌋

Ija(t)−
∞∑

j=d

I
j
b(t)− II−0 (t)−

d−1∑

j=1

II+j (t)
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Now notice that the term II−0 (t) is cancelled by the second term in Idb . We combine the remaining

terms in the sum of Ijb with the sum of Ija. We have

Pt(Mτ,d) = Pt(BG)− Id/2a (t)−

∞∑

j=⌊d/2+1⌋

t2(2j−d+g−1)

(1− t2)2
Pt(Jj(M)× Jd−j(M))

+
d−1∑

j=⌊d/2+1⌋

t2j

(1− t2)
Pt(S

jM × Jd−j(M))

+

d−1∑

j=⌊d/2+1⌋

t2(2j−d+g−1)

(1− t2)
Pt(S

d−jM × Jj(M))

−
d−1∑

j=1

t2j

(1− t2)
Pt(S

jM × Jd−j(M))

= Pt(BG)− Id/2a (t)−

∞∑

j=⌊d/2+1⌋

t2(2j−d+g−1)

(1− t2)2
Pt(Jj(M)× Jd−j(M))

+

d−1∑

j=⌊d/2+1⌋

t2(2j−d+g−1)

(1− t2)
Pt(S

d−jM × Jj(M))

−

⌊d/2⌋∑

j=1

t2j

(1− t2)
Pt(S

jM × Jd−j(M))

Now make the substitution j 7→ d− j in the second to the last sum, using

d− ⌊d/2 + 1⌋ =

{
d/2− 1 = ⌊d/2⌋ − 1 if d even

d/2− 1/2 = ⌊d/2⌋ if d odd

The result now follows from this, [1, Thm. 7.14], and the fact that Pt(Mτ,d) is equal to the j = 0

term in the sum. �

4.2. Comparison with the results of Thaddeus. In [20], Thaddeus computed the Poincaré

polynomial of the moduli space using different methods to those of this paper. The idea is to

show that when the parameter τ passes a critical value, then the moduli space Mτ,d undergoes

a birational transformation consisting of a blow-down along a submanifold and a blow-up along

a different submanifold (these transformations are known as “flips”). By computing the change

in Poincaré polynomial caused by the flips as the parameter crosses the critical values, and also

observing that the moduli space is a projective space for one extreme value of τ , Thaddeus computed

the Poincaré polynomial of the moduli space for any value of the parameter. In this section we

recover this result from Theorem 4.1. In the Morse theory picture we see that the critical point

structure changes: As τ increases past a critical value then a new critical set appears, and the index

may change at existing critical points.



32 WENTWORTH AND WILKIN

Theorem 4.5. Let N ∈ Z, d/2 < N ≤ d− 1. Then for τ ∈ (max(d/2, N − 1), N),

(4.6) Pt(Mτ+1,d)− Pt(Mτ,d) =
t4N−2d+2g−2 − t2d−2N

1− t2
Pt

(
Sd−NM × JN (M)

)

As a consequence, the Poincaré polynomial of the moduli space has the form

(4.7) Pt(Mτ,d) =
(1 + t)2g

1− t2
CoeffxN

(
t2d+2g−2−4N

xt4 − 1
−

t2N+2

x− t2

)(
(1 + xt)2g

(1− x)(1− xt2)

)

Remark 4.6. Let M0
τ,d denote the moduli space where the bundle has fixed determinant (see [20]).

The analysis in this paper applies in this case as well. In particular, one obtains

(4.8) Pt(M
0
τ+1,d)− Pt(M

0
τ,d) =

t4N−2d+2g−2 − t2d−2N

1− t2
Pt

(
Sd−NM

)

This exactly corresponds to Thaddeus’ results for Pt(PW
+
j )−Pt(PW

−
j ) [20, p. 21], where j = d−N .

Proof of Theorem 4.5. By Theorem 4.1,

(4.9) Pt(Mτ+1,d)− Pt(Mτ,d) = −INa (t) + INb (t) + II−d−N (t)− II+d−N (t)− II+N (t)

Substituting in the results of (4.2), (4.3), (4.5), and (4.4) gives

Pt(Mτ+1,d)− Pt(Mτ,d) = −
t2(2N−d+g−1)

(1− t2)2
Pt (JN (M)× Jd−N (M)) +

t2N

1− t2
Pt

(
SNM × Jd−N (M)

)

+
t2(2N−d+g−1)

1− t2
Pt

(
Sd−NM × JN (M)

)

+
t2(2N−d+g−1)

(1− t2)2
Pt (JN (M)× Jd−N (M))

−
t2(2N−d+g−1)

1− t2
Pt

(
Sd−NM × JN (M)

)

+
t2(d−2(d−N)+g−1)

1− t2
Pt

(
Sd−NM × JN (M)

)

−
t2(d−N)

1− t2
Pt

(
Sd−NM × JN (M)

)
−

t2N

1− t2
Pt

(
SNM × Jd−N (M)

)

=
1

1− t2
Pt

(
Sd−NM × JN (M)

)(
t4N−2d+2g−2 − t2d−2N

)

as required. Using the results of [16] on the cohomology of the symmetric product, and the fact

that Pt(JN (M)) = (1 + t)2g, we see that the same method as for the proof of [20, (4.1)] gives

equation (4.7). �

Remark 4.7. For τ as above, Theorem 4.2 shows that the difference

P G
t (B

N
ss)− Pt(Mτ,d) = II−d−N (t) =

t4N−2d+2g−2

1− t2
Pt

(
Sd−NM × JN (M)

)

comes from only one critical set; the type II critical set corresponding to a solution of the vortex

equations when τ = N . The rest of the terms in (4.9), corresponding to the difference

Pt(Mτ+1,d)− P G
t (B

N
ss) = −INa (t) + INb (t)− II+d−N (t)− II+N (t) = −

t2N

1− t2
Pt

(
SNM × Jd−N (M)

)
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come from a number of changes that occur in the structure of the critical sets as τ increases past

N : the term −II+d−N (t) corresponds to the type II critical point that no longer is a solution to the

vortex equations, the term −II+N (t) corresponds to the new critical point of type II+ that appears,

and the term −INa (t) + INb (t) corresponds to the critical point that changes type from Ib to Ia.

Therefore we see that the changes in the critical set structure as τ crosses the critical value N

are localized to two regions of B. The first corresponds to interchanging critical sets of type II−

and type II+. This is the phenomenon illustrated in Figure 1. The second corresponds to critical

sets of type Ia and II+ that merge to form a single component of type Ib. The terms from the first

change exactly correspond to those in (4.6), i.e.

II−d−N (t)− II+d−N (t) =
t4N−2d+2g−2 − t2d−2N

1− t2
Pt

(
Sd−NM × JN (M)

)

= Pt(Mτ+1,d)− Pt(Mτ,d)

and the terms from the second change cancel each other, i.e. INb (t)− INa (t)− II+N (t) = 0.
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