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EQUIVARIANT MORSE THEORY FOR THE NORM-SQUARE OF A

MOMENT MAP ON A VARIETY

GRAEME WILKIN

Abstract. We show that the main theorem of Morse theory holds for a large class of functions on
singular spaces. The function must satisfy certain conditions extending the usual requirements on
a manifold that Condition C holds and the gradient flow around the critical sets is well-behaved,
and the singular space must satisfy a local deformation retract condition. We then show that these
conditions are satisfied when the function is the norm-square of a moment map on an affine variety,
and that the homotopy equivalence from this theorem is equivariant with respect to the associated
Hamiltonian group action. An important special case of these results is that the main theorem of
Morse theory holds for the norm square of a moment map on the space of representations of a finite
quiver with relations.

1. Introduction

Morse theory relates information about the topology of a manifold M to information about the

critical points of a smooth Morse function f : M → R. The “Main theorem of Morse theory”

makes this precise by describing the change in the homotopy type of the level sets of f in terms

of analytic data (the Morse index) around the critical points. When f is a proper Morse function,

the statement is as follows (see for example [4]).

Theorem (Main theorem of Morse theory). Let f : M → R be a C∞ proper function with nondegen-

erate critical points, let eλ denote a cell of dimension λ and given any a ∈ R, let Ma = f−1(−∞, a].

(1) If there are no critical values of f in [a, b] then Mb ≃ Ma.

(2) If a < c < b and there is one critical value c in [a, b] of index λ then Mb ≃ Ma ∪ eλ.

The cell eλ has two interpretations: (a) as a neighbourhood of x in the unstable manifold

W−
x ⊂ M such that ∂eλ ⊂ Ma, or (b) as a neighbourhood of zero in the negative eigenspace of the

Hessian of f at x, such that the exponential image in M satisfies ∂eλ ⊂ Ma. The union Ma ∪ eλ

in the above theorem is interpreted as the union of two subsets of M . The fact that these two

interpretations are equivalent follows from the Morse Lemma, which says that a Morse function

has a canonical description in local coordinates around a critical point.

Various generalisations of this idea have been used to (a) deduce information about the critical

points of a given function from information about the topology of a manifold (for example [28],
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[29], [27], [33], [39], [15], [7], [8], [12]) and (b) deduce information about the topology of a manifold

from information about the critical points of a function (for example [3], [5], [40], [1], [24]).

Each of these results depends on proving an analog of the main theorem of Morse theory for

a given class of functions. The generalisation most relevant to this paper is that of Kirwan in

[24, Sec. 10] who proved that an analogous statement holds for minimally degenerate functions

on a smooth manifold (“Morse-Kirwan functions”). Kirwan also showed that the norm-square of

a moment map on a smooth symplectic manifold is always minimally degenerate and used this to

derive very general results about the topology of symplectic quotients.

This idea originated in the work of Atiyah and Bott [1], who used the Morse theory of the Yang-

Mills functional in order to inductively compute cohomological invariants of the moduli space of

semistable holomorphic bundles on a compact Riemann surface. Their approach was algebraic in the

sense that they used the Harder-Narasimhan stratification instead of the gradient flow stratification

by the Yang-Mills functional, and the analytic details of the Morse theory were later filled in by

Daskalopoulos [11] and R̊ade [35]. In [10], [42] and [43] we continued this program for certain

spaces of coupled equations in gauge theory in order to derive new results about the topology of

moduli spaces of Higgs bundles and stable pairs in low rank. In these examples the analog of the

Morse function is the Yang-Mills-Higgs functional, which can be interpreted as the norm-square

of a moment map (cf. [1], [17], [6]). The new feature is that the underlying space is singular and

since the existing theory from [1] and [24] requires the underlying space to be a manifold, then a

new proof of the main theorem of Morse theory is needed, which we carried out using a method

specific to these particular examples in low rank. Many other interesting examples of moduli spaces

(for example the quiver varieties of [25], [30] and [31]) can also be defined as the minimum of the

norm-square of a moment map on a singular space, and therefore it is of interest to develop a

general approach for these examples.

The first result of this paper is Theorem 1.1, which shows that the main theorem of Morse theory

holds for a large class of functions on singular spaces (functions f : Z → R satisfying Conditions

(1)–(5) below). In particular, this class of functions includes the case where f is the norm-square

of a moment map on an affine variety (not necessarily smooth), which extends Kirwan’s results [24,

Sec. 10] from smooth varieties to varieties with singularities. An important class of examples is

given by representations of a finite quiver with relations, and this paper together with [45] completes

the study of the local analysis around the critical sets with a view to using the ideas of Atiyah &

Bott and Kirwan to compute topological invariants of moduli spaces of quivers with relations in

analogy with the approach of [10], [42] and [43].

The results are stated as follows. Let M be a Riemannian manifold and let f : M → R be a

smooth function. The time t negative gradient flow of f with initial condition x ∈ M is denoted

by ϕ(x, t) satisfying

∂

∂t
ϕ(x, t) = − grad f(ϕ(x, t)), ϕ(x, 0) = x.
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Let Z ⊂ M be any closed subset preserved by the gradient flow of f , i.e. if x ∈ Z then ϕ(x, t) ∈ Z

for all t ∈ R such that ϕ(x, t) is defined. It is not necessary to assume that ϕ(x, t) exists for all

t ∈ R, however when the initial condition is in Z then we do assume local existence, continuous

dependence on initial conditions and Condition (2) below. Since Z is closed in M then if x ∈ Z

and limt→∞ ϕ(x, t) or limt→−∞ ϕ(x, t) exists in M then this limit is contained in Z.

Define a critical point of f : Z → R to be a stationary point of this flow (i.e. a critical point

in Z is a critical point of f : M → R that is also contained in Z). Let CritZ(f) denote the set

of critical points for f : Z → R. Given a critical value c ∈ R and the associated critical set

C = CritZ(f)∩ f−1(c), define W+
C and W−

C to be the stable and unstable sets of C with respect to

the flow

W+
C :=

{

x ∈ Z | lim
t→∞

ϕ(x, t) ∈ C
}

W−
C :=

{

x ∈ Z | lim
t→−∞

ϕ(x, t) ∈ C

}

.

Let W+
x and W−

x denote the analogous stable/unstable sets with respect to a specific critical point

x ∈ C. Suppose also that f : Z → R and the flow ϕ satisfy the following conditions.

(1) The critical values of f are isolated.

(2) For any a < b such that f−1(a)∩CritZ(f) = ∅ = f−1(b)∩CritZ(f) and any x ∈ f−1((a, b))

either there exists T+ > 0 such that f (ϕ(x, T+)) = a or limt→∞ ϕ(x, t) exists in f−1((a, b)).

Similarly, either there exists T− < 0 such that f (ϕ(x, T−)) = b or limt→−∞ ϕ(x, t) exists in

f−1((a, b)).

(3) M is real analytic and f : M → R is real analytic.

(4) For each non-minimal critical point x, let C = CritZ(f) ∩ f−1(f(x)). For each a < f(x)

such that there are no critical values in [a, f(x)) and for each neighbourhood U ⊂ f−1(a)

of W−
x ∩ f−1(a) there exists a neighborhood V of x such that for each y ∈ V \W+

C there

exists T > 0 such that ϕ(y, T ) ∈ U .

(5) For each critical value c let C = CritZ(f) ∩ f−1(c). Then there exists ε > 0 such that

W−
C ∩ f−1(c − ε) has an open neighborhood E ⊂ f−1(c − ε) and a strong deformation

retract r : E × [0, 1] → E of E onto W−
C ∩ f−1(c − ε) such that (using Es to denote the

image r(E, s) for each s ∈ [0, 1]) we have

(a) Es is open in f−1(c− ε) for all s ∈ [0, 1),

(b) Es =
∪

t>sEt and Es =
∩

t<sEt for all s ∈ (0, 1).

Denote Za := {x ∈ Z | f(x) ≤ a}. The following theorem is the analog of the main theorem of

Morse theory for f : Z → R.

Theorem 1.1. Let M be a Riemannian manifold and let f : M → R be a smooth function. Let

Z ⊂ M be any closed subset preserved by the gradient flow of f and suppose that the restriction

f : Z → R satisfies the conditions (1)–(5).

(a) If there are no critical values in [a, b] then Za ≃ Zb.
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(b) If f−1(a) ∩ CritZ(f) = ∅ = f−1(b) ∩ CritZ(f) and there is only one critical value c ∈ (a, b)

with associated critical set C = CritZ(f) ∩ f−1(c) then Za ∪W−
C ≃ Zb.

Moreover, if a group K acts on Z such that (a) f is K-invariant and (b) the deformation retract

of condition (5) is K-equivariant, then these homotopy equivalences are K-equivariant.

Remark 1.2. In part (b) above, the union Za ∪W−
C is interpreted as the union of two subsets of

Z. Note that since there are no critical values in [a, c), then each point in W−
C \ f−1(c) flows into

Za.

Instead of directly verifying Condition (5) for each example, Theorem 1.1 of [34] shows that it is

sufficient to verify the following simpler condition, which can be done for a large class of examples.

(5′) For each critical value c there exists ε > 0 such that there are no critical values of f in

[c− ε, c), and there is a stratification of f−1(c− ε) satisfying Whitney’s Condition B such

that W−
C ∩ f−1(c− ε) is a union of strata.

Moreover, Theorem 1.1 of [34] shows that if a compact Lie group K acts on f−1(c−ε) and preserves

W−
C ∩ f−1(c− ε), then the deformation retract of Condition (5) can be made to be K-equivariant.

In Section 6 we prove that (5′) is satisfied in the case where f : Z → R is the norm-square of a

moment map on an affine variety. As a consequence of this, we can prove that the main theorem

of Morse theory holds in this setting.

Theorem 1.3. Let G be a connected complex reductive group and let V be a linear representation

of G. Suppose that the action of the maximal compact subgroup K ⊂ G is Hamiltonian with respect

to the standard symplectic structure on V and let µ : V → k∗ be a moment map for this action. Let

Z ⊂ V be a closed affine subvariety preserved by G. Then f = ∥µ∥2 : Z → R satisfies conditions

(1)–(5) and therefore

(a) If there are no critical values in [a, b], then Za is K-equivariantly homotopic to Zb.

(b) If f−1(a) ∩ CritZ(f) = ∅ = f−1(b) ∩ CritZ(f) and there is only one critical value c ∈
(a, b) with associated critical set C = CritZ(f) ∩ f−1(c), then Za ∪W−

C is K-equivariantly

homotopic to Zb.

Remark 1.4. A result of Kempf [22, Lemma 1.1] shows that for an affine variety Z with the action

of a connected reductive algebraic group G, there is a representation V of G and a G-equivariant

isomorphism from Z to a closed affine subvariety of V , and so the above theorem applies to any

affine G-variety.

Conditions (1) and (2) in the context of Morse theory on smooth spaces. Combining

the results of [33, Sec. 10] and [37] shows that Conditions (1) and (2) are automatically satisfied

by an analytic function satisfying the Palais-Smale Condition C. The advantage of Condition C is

that it can be verified directly from the function f (i.e. one does not need solve the gradient flow

equations to verify Condition C), however many of the examples that we would like to study do
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not satisfy Condition C because the critical sets are non-compact. For example, in the setting of

Theorem 1.3 the norm-square of a moment map on the space of representations of a quiver with

an oriented cycle does not satisfy Condition C (not even equivariantly), however the norm square

of a moment map on an affine variety does satisfy Conditions (1) and (2) above, since the gradient

flow satisfies a compactness condition due to Sjamaar [38] (see Proposition 4.2) which allows us to

prove that Conditions (1) and (2) hold in this setting.

Conditions (3) and (4) in the context of Morse theory on smooth spaces. Conditions

(3) and (4) are chosen to ensure the continuity of the homotopy equivalences near the critical set

(see Propositions 2.4 and 3.5). These conditions impose extra structure on the maps between level

sets of f defined by the gradient flow (see Lemma 4.3), which allows for the gradient flow ϕ(x, t) to

translate the deformation retract of Condition (5) from a neighbourhood of the unstable manifold

to a neighbourhood of the critical set.

In the context of moment maps on affine varieties, it is natural to impose Condition (3), since

the norm-square of a moment map on an affine variety is an analytic function. It is also natural

to impose Condition (4), since this condition is satisfied by any function whose gradient flow is

hyperbolic around the critical set. In particular this is true for a Morse function or a Morse-Bott

function, since the flow is hyperbolic with respect to the coordinates given by the Morse Lemma

(see for example [16], [21]). Since Condition (4) only involves the unstable set W−
C and not the

stable set W+
C then it is also satisfied by a Morse-Kirwan function (see [24, Sec. 10] and Proposition

4.2 in this paper for more details).

Therefore Conditions (1)–(4) are natural extensions of the usual conditions needed to prove the

main theorem of Morse theory for functions on a manifold (cf. [27], [33] or [24]). Lemma 4.1 shows

that when Z is closed in M and preserved by the gradient flow ϕ, then Conditions (1)–(4) can be

checked by studying the properties of f on the ambient smooth manifold M . Therefore, in order to

show that these conditions are satisfied for the norm-square of a moment map on an affine variety,

it is sufficient to check these conditions for the moment map associated to a linear Hamiltonian

action on a vector space, which is done in Proposition 4.2.

Condition (5). The structure of the singular set Z enters the picture via Condition (5). The

deformation retract studied here is a special case of a Neighbourhood Deformation Retract (NDR)

(see for example [26]), however we also require the extra conditions (a) and (b) on the deformation

retract in order to guarantee that the function σ from Section 2.2 is continuous (this is explained in

Lemma 2.5), which is needed to show that the deformation retract of (3.2) is continuous. Propo-

sition 6.7 shows that Condition (5) is satisfied when f is the norm square of a moment map on

an analytic variety and that the deformation retract can be chosen to be equivariant with respect

to the associated Hamiltonian group action. Therefore Condition (5) is valid for a large class of

interesting examples.

Connection with other examples of Morse theory on singular spaces. The stratified

Morse theory of Goresky and MacPherson [13] is also valid for a large class of functions on singular
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spaces which includes affine varieties. This theory uses a Whitney stratification of the singular

space Z which is compatible with the function f : Z → R. It is important to note that in general

the norm-square of a moment map on a variety does not fulfil the conditions of Goresky and

MacPherson in [13]. It may be possible to perturb the original function to obtain a new function

satisfying Goresky and MacPherson’s conditions, however in doing this we lose the equivariance

of the moment map and also lose the possibility of inductively computing the cohomology of the

critical sets in analogy with the computations of Atiyah & Bott [1] and Kirwan [24] when the space

is smooth.

The essential difference between the stratified Morse theory of [13] and the results of this paper

is that Goresky and MacPherson use the local structure of the Whitney stratification to prove

the main theorem of Morse theory, while for moment maps on affine varieties we already have a

gradient flow which is well-behaved near the critical sets, and so we use the properties of this flow

to prove Theorem 1.1 instead of using the properties of the Whitney stratification.

The Conley index theory [7] is another theory valid for singular spaces, however the proof of the

homotopy invariance of the Conley index requires the critical sets to have compact neighbourhoods,

which is not generally true for the norm-square of a moment map on an affine variety. In particular,

the proof of 4.2(D) on p50 of [7] requires compactness (see also [36, Lemma 4.7]). Nicolaescu in

[32, Thm. 9.10] also uses the homotopy invariance of the Conley index to prove an analog of the

main theorem of Morse theory for tame flows with Morse-like critical points, however this proof

also requires compactness. It may be possible to recover the Conley theory for moment maps on

affine varieties by carefully analysing the behaviour of the gradient flow of f near the ends of the

critical sets, but we avoid this approach here as this would require specific knowledge of f , and the

theory of this paper only requires checking Conditions (1)–(5) which are already valid for a large

class of examples.

Organisation of the paper. The results of Section 2 show that it is possible to deformation

retract to a “good” neighbourhood of each critical set, and the results of Section 3 show that it is

possible to deformation retract from this neighbourhood to the unstable manifold, which completes

the proof of Theorem 1.1. In Section 4 we show that Conditions (1)–(4) are satisfied when f : Z → R

is the norm-square of a moment map on a variety and in Section 5 we use Conditions (1)–(4) to

prove a compactness theorem for sequences of flow lines. The results of Section 6 complete the

proof of Theorem 1.3 by showing that Condition (5) holds for moment maps on varieties.

Acknowledgements. I would like to thank Dinh Tien Cuong and Markus Pflaum for sharing

their knowledge of singular spaces, Carlos Florentino for pointing out the reference [22], and George

Daskalopoulos and Richard Wentworth for discussions about our joint work [10], [42] and [43] which

motivated the current project.
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2. Preliminary results

This section contains the preliminary results and definitions needed to complete the proof of

Theorem 1.1. The first two steps of the proof of Theorem 1.1 are contained in Proposition 2.4 and

Proposition 2.8. Throughout this section and the next we will refer to Conditions (1)–(5) from the

introduction.

2.1. The deformation retraction defined by the gradient flow.

Lemma 2.1. Suppose that f : Z → R satisfies Condition (2), and suppose also that there is at

most one critical value c in the interval [a, b]. Let C = CritZ(f) ∩ f−1(c). Then for each ℓ ∈ [a, b]

there is a continuous function τℓ : f
−1([a, b]) \ (W+

C ∪W−
C ) → R such that f(ϕ(x, τℓ(x))) = ℓ.

If ℓ ∈ [a, c) then τℓ can be extended to a continuous function τℓ : f
−1([a, b]) \W+

C → R.

If ℓ ∈ (c, b] then τℓ can be extended to a continuous function τℓ : f
−1([a, b]) \W−

C → R.

Moreover, τℓ(x) also depends continuously on ℓ.

Proof. For each x ∈ f−1([a, b]) \ (W+
C ∪ W−

C ), the function τℓ(x) exists by Condition (2). Since

f(ϕ(x, t)) ∈ R depends continuously on (x, t) and is C1 with respect to t with ∂
∂t
f(ϕ(x, t)) < 0,

then τℓ(x) is uniquely defined and continuous with respect to x.

If ℓ ∈ [a, c) and x ∈ f−1([a, b])\W+
C then τℓ(x) exists by Condition (2) and the same proof shows

that τℓ is well-defined and continuous with respect to x on f−1([a, b]) \W+
C . Similarly, if ℓ ∈ (c, b]

then τℓ is well-defined and continuous with respect to x on f−1([a, b]) \W−
C → R.

To show continuous dependence on ℓ, note that

(2.1) ℓ = f(ϕ(x, τℓ(x))) = f(x)−
∫ τℓ(x)

0
∥ grad f(ϕ(x, t))∥2 dt

Since ∥ grad f(ϕ(x, t))∥ > 0 depends continuously on (x, t) then for t in any closed bounded interval

we have that ∥ grad f(ϕ(x, t))∥ is bounded below by a positive constant (here we use the continuity

of grad f along a compact subset of a flow line in place of Condition C as in [33]). Since we assumed

that x /∈ W+
C ∪W−

C , then ∥ grad f(ϕ(x, t))∥ is bounded below by a positive constant along the entire

flow line from x to ϕ(x, τℓ(x)) and therefore (2.1) implies that τℓ(x) depends continuously on ℓ.

Similarly, if ℓ ∈ [a, c) and x /∈ W+
C , or if ℓ ∈ (c, b] and x /∈ W−

C , then the same argument shows that

τℓ(x) depends continuously on ℓ. �

The following lemma is well-known (see for example [33, Sec. 10] or [7, Thm. 2.3]).

Lemma 2.2. If f : Z → R satisfies Conditions (1) and (2), and there are no critical values in the

interval [a, b], then there is a deformation retract Zb ≃ Za .

Remark 2.3. Note that Conditions (1) and (2) are a consequence of the Palais-Smale Condition

C used in [33, Sec. 10] and the proof of Lemma 2.2 given in [33] only uses Conditions (1) and (2).

We avoid assuming Condition C here since we would also like to consider the case where f is the

norm-square of a moment map on a variety, in which case Condition C fails in general since f may

have non-compact critical sets, but Conditions (1) and (2) still hold.
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The next result shows that if we also assume Condition (3) (f is analytic), then an analogous

statement is true for the situation when there is a critical value at one end of the interval [c, b].

Proposition 2.4. Suppose that f : Z → R satisfies conditions (1), (2) and (3). Let C be a critical

set of f : Z → R with critical value c and suppose that there are no critical values in the interval

(c, b]. Then Zb ≃ Zc.

Proof. Lemma 2.1 shows that there exists a continuous function τc : f−1([c, b]) \ W+
C → R such

that f(x, τc(x)) = c. This immediately gives us a deformation retract from f−1([c, b]) \ W+
C to

f−1(c) \C, and the goal of the proof is to show that this can be extended to a deformation retract

from f−1([c, b]) to f−1(c).

Given ℓ1, ℓ2 ∈ (c, b], Lemma 2.1 implies that the gradient flow defines a continuous map of level

sets φℓ1,ℓ2 : f−1(ℓ1) → f−1(ℓ2) by φℓ1,ℓ2(x) = ϕ(x, τℓ2(x)).

If x ∈ W+
C then Condition (2) guarantees that limt→∞ ϕ(x, t) = z for some z ∈ C. Therefore, for

any ℓ ∈ (c, b] there is a well-defined map of level sets φℓ,c : f−1(ℓ) → f−1(c) and we aim to show

that this is continuous. If x ∈ f−1(ℓ) \ (f−1(ℓ) ∩W+
C ) then τc(x) is finite and so the continuity of

φℓ,c(x) = ϕ(x, τc(x)) follows from the continuous dependence of τc on x proved in Lemma 2.1.

If x ∈ f−1(ℓ) ∩W+
C then the proof of continuity of φℓ,c uses the Lojasiewicz gradient inequality

method of [37] as follows. Let z = φℓ,c(x). For every neighbourhood V of z in f−1(c) there exists

a neighbourhood U of z in f−1([c,∞)) such that if y ∈ U then either ϕ(y, t) converges to a critical

point in V ∩ C, or there exists a finite T such that ϕ(y, T ) ∈ V . Continuity of the finite-time flow

guarantees an open neighbourhood U ′ of x in f−1(ℓ) such that for each y ∈ U ′ there exists T ′ such

that ϕ(y, T ′) ∈ U and therefore φℓ,c(y) ∈ V . Therefore, given any open set V ⊂ f−1(c) containing

φℓ,c(x), there exists an open neighbourhood U ′ of x in f−1(ℓ) such that φℓ,c(U
′) ⊂ V , and so φℓ,c

is continuous.

Therefore we can define a continuous deformation retract ρ : Zb × [0, 1] → Zc by

ρ(x, s) =

{

x if f(x) ≤ c

φf(x),(f(x)−s(f(x)−c))(x) if c < f(x) ≤ b
�

2.2. The deformation retract to a neighbourhood of the critical set. In this section we

prove Proposition 2.8, which shows that Zc deformation retracts to the union of Zc−ε with the set

Y defined below.

Now assume that conditions (1), (2), (4) and (5) hold. Let c be a critical value with corresponding

critical set C = CritZ(f)∩ f−1(c) and let ε, E and r : E× [0, 1] → E be as in condition (5). Define

Es = r(E, s) for all s ∈ [0, 1]. Define σ : f−1(c− ε) → [0, 1] by

σ(x) :=

{

0 x /∈ E

sup{s ∈ [0, 1] | x ∈ Es} x ∈ E

Lemma 2.5. If x ∈ E and s ∈ (0, 1), then

(1) σ(x) = s if and only if x ∈ Es \ Es.
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(2) σ(x) < s if and only if x /∈ Es.

(3) σ(x) > s if and only if x ∈ Es.

Proof. First note that Es =
∩

t<sEt implies that Es ⊂ Et for all s > t, and so the set {s ∈ [0, 1] |
x ∈ Es} is a connected interval for all x ∈ E.

(1) If σ(x) = s then x ∈ Et for all t < s. Therefore x ∈ ∩

t<sEt = Es. If x ∈ Es =
∪

t>sEt

then there exists t > s such that x ∈ Et, contradicting σ(x) = s. Therefore x ∈ Es \ Es.

Conversely, if x ∈ Es =
∩

t<sEt then σ(x) ≥ s. If x /∈ Es then {t ∈ [0, 1] | x ∈ Et} ⊂ [0, s)

(since it is connected and x ∈ Es ⊂ E0) and so σ(x) ≤ s. Therefore x ∈ Es \ Es implies

that σ(x) = s.

(2) If σ(x) < s then there exists t such that σ(x) < t < s. Then x /∈ Et ⊃ Es.

If x /∈ Es =
∩

t<sEt then there exists t < s such that x /∈ Et and so σ(x) < s since

{s ∈ [0, 1] | x ∈ Es} is a connected interval and x ∈ E0 by assumption.

(3) If σ(x) > s then there exists t such that x ∈ Et and σ(x) > t > s. Therefore x ∈ Et ⊂ Es.

If x ∈ Es then σ(x) ≥ s. The proof above shows that σ(x) = s if and only if x ∈ Es \Es

and so x ∈ Es implies that σ(x) > s. �

Corollary 2.6. σ is continuous.

Proof. The previous lemma shows that if 0 < s1 < s2 < 1 then σ−1 ((s1, s2)) = Es1 \ Es2 which is

open. We also have σ−1([0, s2)) = f−1(c − ε) \ Es2 which is open and σ−1((s1, 1]) = Es1 which is

also open. Therefore σ−1(U) is open for all open sets U ⊂ [0, 1] and so σ is continuous. �

Now extend the domain of σ to f−1([c − ε, c + ε]) \ W+
C by defining σ(x) = σ(ϕ(x, τc−ε(x)))

so that σ is constant on flow lines. Since τc−ε and ϕ are continuous (Lemmas 2.1 and 2.5) then

σ : f−1([c− ε, c+ ε]) \W+
C → [0, 1] is also continuous.

Lemma 2.7. For each x ∈ C and any ε > 0 there exists a neighbourhood V of x such that

y ∈ V \W+
C implies that σ(y) ∈ (1− ε, 1].

Proof. Given any ε > 0, choose s ∈ (1− ε, 1]. Choose a neighbourhood U of W−
x ∩ f−1(c− ε) such

that U ⊂ Es. Then Condition (4) says that there exists a neighbourhood V of x such that for each

y ∈ V \ W+
C we have ϕ(y, T ) ∈ U ⊂ Es for some T > 0. Therefore σ(y) > s > 1 − ε by Lemma

2.5. �

We can further extend σ to a function

(2.2) σ :
(

f−1([c− ε, c+ ε]) \W+
C

)

∪ C → [0, 1].

by defining σ(x) = σ(ϕ(x, τc−ε(x))) for x /∈ C and σ(x) = 1 for x ∈ C. Lemma 2.7 shows that this

is continuous. Define g : f−1([c− ε, c]) → [c− 3ε, c] by

g(x) = f(x)− 2εσ(x)
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and define the set Y := g−1([c − 3ε, c − ε]) ⊂ f−1([c − ε, c]). Note that g is continuous since

σ is continuous. Also note that f and g have the same stationary points for the flow ϕ(x, t),

since ∂
∂t
f(ϕ(x, t)) = 0 if and only if x ∈ C and (by definition) σ is constant along the flow, so

∂
∂t
g(ϕ(x, t)) = 0 if and only if x ∈ C. In particular, there are no stationary points in g−1([c− ε, c])

since x ∈ C implies g(x) = c− 2ε.

b

bbbbb

C

g−1(c− ε)g−1(c− ε) W−
C

f−1(c)

f−1(c− ε) σ = 0σ = 1
2

σ = 1σ = 1
2

σ = 0

Figure 1. In the figure above, the flow lines for f are represented by vertical lines
and the level sets of f are represented by horizontal lines. The set Y is the shaded
region.

Proposition 2.8. Suppose that f : Z → R satisfies conditions (1), (2) and (5). Then Zc ≃
Zc−ε ∪ Y .

Proof. Since Y = g−1([c−3ε, c−ε]) ⊂ f−1([c−ε, c]) then the proof reduces to defining a deformation

retract of f−1([c−ε, c]) = g−1([c−3ε, c]) onto g−1([c−3ε, c−ε]). Since ∂
∂t
g(ϕ(x, t)) = ∂

∂t
f(ϕ(x, t)) <

0 if and only if x /∈ C and there are no stationary points for the flow in g−1([c− ε, c]), then

• for all x ∈ g−1([c− ε, c]) there exists t such that g(ϕ(x, t)) < c− ε, and

• for all x ∈ g−1(c− ε) we have g(ϕ(x, t)) < c− ε for all t > 0.

Therefore g−1(c− ε) is an exit set for the flow on g−1([c− ε, c]) (see [7, Def. 2.2]).

The function g is continuous, so g−1(c − ε) is closed in g−1([c − ε, c]), and we have already

observed that there are no stationary points for the flow in g−1([c − ε, c]). Therefore the required

deformation retract follows from Wazewski’s theorem (see for example [41] or [7, Thm 2.3]). �

3. Proof of the main theorem

Propositions 2.4 and 2.8 together define a deformation retract from Zb to Zc ∪ Y . In this

section we complete the proof of Theorem 1.1 by constructing a deformation retract from Zc ∪ Y

to Zc−ε ∪W−
C .

The basic idea is to construct this deformation retract by combining the gradient flow ϕ(x, t)

and the deformation retract r from condition (5). Since these both preserve the space Z then the

composition of these deformation retracts will also preserve Z. The proof that the deformation

retract is continuous uses condition (4).
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Given x ∈ Y , define sfinal : Y → [0, 1] by

sfinal(x) =

{

f(x)−(c−ε)
2ε(1−σ(x)) c− ε ≤ f(x) < c− ε+ 2ε(1− σ(x))

1 f(x) ≥ c− ε+ 2ε(1− σ(x))

Note that if f(x) < c − ε + 2ε(1 − σ(x)) then we automatically have sfinal(x) = f(x)−(c−ε)
2ε(1−σ(x)) < 1.

If σ(x) = 1 then we have f(x) ≥ c − ε = c − ε + 2ε(1 − σ(x)) and so sfinal(x) = 1. Define

ffinal : Y → [c− ε, c] by

ffinal(x) =

{

c− ε c− ε ≤ f(x) < c− ε+ 2ε(1− σ(x))

f(x)− 2ε(1− σ(x)) f(x) ≥ c− ε+ 2ε(1− σ(x))

Note that it follows immediately from the definition that c− ε ≤ ffinal(x) ≤ f(x) for all x ∈ Y .

The functions sfinal and ffinal are chosen so that sfinal is the maximum value of s to use in the

definition of y(x, s) in (3.1) below, and ffinal is the value of f(R(x, 1)) in the deformation retract

R(x, s) of (3.2). Note that sfinal(x) < 1 implies that ffinal(x) = c− ε.

Since ffinal is composed of continuous functions that agree when f(x) = c− ε+2ε(1−σ(x)) and

the same is true for sfinal on the set Y \ (W−
C ∩ f−1(c− ε)), then we have the following lemma.

Lemma 3.1. sfinal is continuous on Y \ (W−
C ∩ f−1(c− ε)) and ffinal is continuous on Y .

Definition 3.2. For s ∈ [0, 1] and x ∈ Y , define

fs(x) =











f(x) s = 0
s

sfinal(x)
ffinal(x) +

(

1− s
sfinal(x)

)

f(x) 0 < s ≤ sfinal(x)

ffinal(x) s > sfinal(x)

Remark 3.3. Since c− ε ≤ ffinal(x) ≤ f(x) for all x ∈ Y then c− ε ≤ fs(x) ≤ f(x) for all x ∈ Y

and s ∈ [0, 1].

Lemma 3.4. The function fs(x) is continuous, it satisfies fsfinal(x)(x) = ffinal(x) and fs(x) ≤ f(x)

for all (x, s) ∈ Y × [0, 1].

Proof. The statement that fsfinal(x)(x) = ffinal(x) and fs(x) ≤ f(x) for all (x, s) ∈ Y × [0, 1]

follows directly from the definition of fs, and so it only remains to prove continuity. Since sfinal is

continuous on Y \ (W−
C ∩ f−1(c− ε)) then the problem reduces to proving that fs is continuous at

W−
C ∩ f−1(c− ε).

Given any x ∈ W−
C ∩ f−1(c− ε), note that σ(x) = 1 and so f(x) ≥ c− ε+ 2ε(1− σ(x)), which

implies that sfinal(x) = 1 and ffinal(x) = c− ε = f(x). Therefore fs(x) = c− ε for all s ∈ [0, 1].

Given δ > 0, choose an open neighbourhood U of x in Y such that y ∈ U implies that |f(y) −
f(x)| < δ. Then f(x) = c − ε ≤ fs(y) ≤ f(y), and so |fs(y) − fs(x)| < δ for all s ∈ [0, 1] and all

y ∈ U . Therefore fs(x) is continuous for x ∈ W−
C ∩ f−1(c− ε) and all s ∈ [0, 1]. �

For convenience, define y : Y \ C × [0, 1] → f−1(c− ε) by

(3.1) y(x, s) = r (ϕ(x, τc−ε(x)),min{s, sfinal(x)}) .
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where r is the deformation retract of Condition (5) and τ is the map from Lemma 2.1. Note that

if f(x) ≥ c− ε+ 2ε(1− σ(x)) then sfinal(x) = 1 and so y(x, 1) ∈ W−
C ∩ f−1(c− ε). Now define the

deformation retract R : Y × [0, 1] → Y by

(3.2) R(x, s) =

{

ϕ
(

y(x, s), τfs(x)(y(x, s))
)

x ∈ Y \ C
x x ∈ C

b

b

bb

b

x

φ(x, τc−ε(x))y(x, s)

R(x, s)

C

Y

f−1(c)

f−1(f(x))

f−1(fs(x))

f−1(c − ε)

Figure 2. The effect of the deformation retract R on x ∈ Y .

Note that f(R(x, 1)) = ffinal(x) and so if c − ε ≤ f(x) < c − ε + 2ε(1 − σ(x)) then R(x, 1) ∈
f−1(c− ε). If f(x) ≥ c− ε+ 2ε(1− σ(x)) then sfinal = 1 and so R(x, 1) ∈ W−

C .

b

bbb

C

Y

f−1(c− ε)

σ = 0σ = 1σ = 0

W−
C

Figure 3. The deformation retract R travels along the dashed lines to give a ho-
motopy equivalence Y ≃ f−1(c− ε) ∪W−

C .

Now we can prove that R is the desired deformation retract.

Proposition 3.5. Suppose that f : Z → R satisfies conditions (1)–(5). Then Zc−ε∪Y ≃ Zc−ε∪W−
C .

Proof of Proposition 3.5. The proof reduces to showing that the deformation retract R is continu-

ous.

If x ∈ Y \
(

(W−
C ∩ f−1(c− ε)) ∪ C

)

then this follows from the continuity of sfinal, ffinal and τ .

Therefore the proof reduces to proving continuity at x ∈ W−
C ∩ f−1(c− ε) and x ∈ C.

Continuity at x ∈ W−
C ∩ f−1(c− ε).

Since sfinal is not continuous at W−
C ∩ f−1(c − ε) then we need to prove continuity by hand.

Given any x ∈ W−
C ∩ f−1(c − ε) we need to show that for any neighbourhood V of x in Y there

exists a neighbourhood V ′ of x in Y such that (v, s) ∈ V ′ × [0, 1] implies that R(v, s) ∈ V .
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Since V is open and the flow ϕ(·, t) is continuous, then we can construct an open set in V with

a product structure as follows. Choose η > 0 and an open set U ⊂ f−1(c − ε) such that y ∈ U

implies that ϕ(y, τℓ(y)) ∈ V for all ℓ ∈ [c− ε, c− ε+ η). Define

Vϕ,η :=
{

z ∈ f−1([c− ε, c− ε+ η)) : ϕ(z, τc−ε(z)) ∈ U
}

⊂ V

Given such a U ⊂ f−1(c − ε), the continuity of the deformation retract r from Condition (5)

shows that for each s ∈ [0, 1] there exists δs > 0 and a neighbourhood U ′
s of x in f−1(c − ε) such

that r(v, t) ∈ U for all (v, t) ∈ U ′
s × (s − δs, s + δs). Since [0, 1] is compact then there is a finite

cover by open intervals of the form (si − δsi , si + δsi) for i = 1, . . . , n. Therefore there exists a

neighbourhood U ′ = ∩n
i=1U

′
si

of x in f−1(c− ε) such that r(v, t) ∈ U for all v ∈ U ′ and t ∈ [0, 1].

By continuity of the finite time flow, there exists an open subset V ′ ⊂ f−1([c − ε, c − ε + η))

such that v ∈ V ′ implies that ϕ(v, τc−ε(v)) ∈ U ′ and hence y(v, s) ∈ U for all (v, s) ∈ V ′ × [0, 1].

Note that fs(v) ≤ f(v) < c− ε+ η for all v ∈ V ′ and s ∈ [0, 1] (using the same η as above). Then

y(v, s) ∈ U for all (v, s) ∈ V ′ × [0, 1] implies that R(v, s) ⊂ Vϕ,η ⊂ V for all (v, s) ∈ V ′ × [0, 1],

completing the proof of continuity at x ∈ W−
C ∩ f−1(c− ε).

Continuity at x ∈ C.

Let x ∈ C and let V be any neighbourhood of x in Y . For each s ∈ [0, 1], we want to show that

there exists a neighbourhood V ′ × ((s− δ, s+ δ) ∩ [0, 1]) of (x, s) in Y × [0, 1] such that (x, s) ∈ V ′

implies that R(x, s) ∈ V .

Given V , choose a neighbourhood X of x in f−1(c) and ℓ0 ∈ (c− ε, c) such that

V0 := {y ∈ Y : f(y) > ℓ0 andφf(y),c(y) ∈ X} ⊂ V,

where φf(y),c is the map of level sets from Proposition 2.4. In the proof of Proposition 2.4 we showed

that φℓ,c : f
−1(ℓ) → f−1(c) is continuous, and so for ℓ = c − ε there exists a neighbourhood U of

W−
x ∩ f−1(c− ε) in f−1(c− ε) such that φℓ,c(U) ⊂ V0 ∩ f−1(c). The continuity of the deformation

retract r from Condition (5) together with the fact that r is the identity on W−
x ∩ f−1(c− ε) shows

that for each s and any δ > 0 there exists a neighbourhood U ′ of W−
x ∩ f−1(c − ε) in f−1(c − ε)

such that r(y, t) ∈ U for all y ∈ U ′ and t ∈ (s− δ, s+ δ).

Now Condition (4) shows that there exists a neighbourhood V ′ of x in Y such that ϕ(y, τc−ε(y)) ∈
U ′ for all y ∈ V ′ \C. After shrinking V ′ if necessary, we can assume that sfinal ≡ 1 and ffinal > ℓ0

on V ′. By construction, R maps V ′ × ((s− δ, s+ δ) ∩ [0, 1]) → U ′ → U → V0 ⊂ V , and so R is

continuous at (x, s) ∈ C × [0, 1]. �

We are now ready to complete the proof of Theorem 1.1.

Theorem 3.6 (Part (b) of Theorem 1.1). Suppose that f : Z → R satisfies conditions (1)–(5) and

suppose that c ∈ (a, b) is the only critical value of f in the interval [a, b]. Then Zb ≃ Za ∪W−
C .

Moreover, if a group K acts on Z such that f is K-invariant and the deformation retract of

Condition (5) is K-equivariant then the deformation retract from Zb to Za ∪W−
C is K-equivariant.



14 GRAEME WILKIN

Proof. Combining the deformation retracts from Propositions 2.4, 2.8 and 3.5 proves the first

statement of the theorem.

If f isK-invariant then the gradient flow isK-equivariant. If the deformation retract of Condition

(5) is K-equivariant then the composition of deformation retracts from Propositions 2.4, 2.8 and

3.5 is also K-equivariant, which proves the second statement of the theorem. �

4. Conditions (1)–(4) for the norm-square of a moment map on an affine variety

Let G be a connected complex reductive algebraic group, and let Z be an affine variety with an

algebraic action of G. A result of Kempf [22, Lemma 1.1] shows that there is a representation V

of G and a G-equivariant isomorphism from Z to a closed affine subvariety of V (which we also

denote by Z), and so we can assume without loss of generality that Z ⊂ V is an affine subvariety

with a G-action induced from the linear action of G on V .

Let K ⊂ G be the maximal compact subgroup, choose a K-invariant Hermitian inner product

⟨·, ·⟩ on V and let ω(·, ·) = ℑ⟨·, ·⟩. Let ρx : g → TxV ∼= V denote the infinitesimal action of G at

any x ∈ V . Then the action of K on V is Hamiltonian with a moment map µ : V → k∗ given by

µ(x) · u =
1

2
ω(ρx(u), x) for all u ∈ k.

It is easy to check that this satisfies the moment map equation dµx(X) · u = ω(ρx(u), X) (see for

example [38]). For any central element α ∈ Z(k∗) the function µ(x) − α also satisfies the moment

map equation; in the following we abuse the notation and absorb this constant into the function µ.

Define f = ∥µ∥2 : V → R. Then the gradient flow of f with initial condition x ∈ V has the form

ϕ(x, t) = g(t) ·x where g(t) ∈ G satisfies dg
dt
g−1 = −iµ(g(t) ·x) and g(0) = id, and so Z is preserved

by the gradient flow, since it is preserved by G.

The goal of this section is to show that Conditions (1)–(4) are satisfied for f : Z → R in the

setting described above.

First we prove a general result showing that if Conditions (1)–(4) are satisfied for f : Z1 → R,

then they are satisfied on any closed subset Z2 ⊂ Z1 preserved by the flow. In the case of moment

maps on an affine variety described above, this lemma shows that it is sufficient to check Conditions

(1)–(4) for the ambient affine space V .

Lemma 4.1. Let f : Z1 → R be a function satisfying Conditions (1)–(4) and let Z2 ⊂ Z1 ⊂ M

be any closed subset preserved by the gradient flow of f . Then f : Z2 → R satisfies Conditions

(1)–(4).

Proof. (1) Since the critical values for f : Z1 → R are isolated, then the critical values for the

restriction f : Z2 → R are also isolated.

(2) Since Z2 is preserved by the flow, then x ∈ Z2 implies that ϕ(x, t) ∈ Z2 for all t. If x ∈ Z2

and the limit limt→∞ ϕ(x, t) exists then it is contained in Z2 since Z2 ⊂ Z1 is closed, and

the same is true for limt→−∞ ϕ(x, t) if it exists.
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(3) The condition that the ambient manifold M is analytic and f : M → R is analytic is

independent of Z1 and Z2.

(4) Let x ∈ Z2 be a critical point for f : Z2 → R, and choose any a < f(x) such that there are

no critical values in [a, f(x)). Given any neighbourhood U of W−
x ∩ f−1(a) in f−1(a)∩Z2,

let X = (f−1(a) ∩ Z2) \ U . Then X is closed in Z2, so it is also closed as a subset of Z1.

Let U ′ = (f−1(a) ∩ Z1) \X ⊂ Z1. Note that U = U ′ ∩ Z2. Then U ′ is open in f−1(a) ∩ Z1

and so Condition (4) on the space Z1 shows that there exists an open neighbourhood V ′

of x in Z1 such that V ′ \ W+
C flows into U ′. Therefore, since the flow preserves Z2, then

V := (V ′ \ W+
C ) ∩ Z2 flows into U = U ′ ∩ Z2, and so Condition (4) is satisfied for the

restriction of f : Z2 → R. �

Next we show that Conditions (1)–(4) are satisfied for the norm-square of a moment map associ-

ated to a linear action. Combined with Lemma 4.1, this shows that Conditions (1)–(4) are satisfied

for the norm-square of a moment map on any affine variety.

Proposition 4.2. Let G be a connected reductive Lie group acting linearly on M = C
n or M = CPn

and suppose that the action of the maximal compact subgroup K is Hamiltonian with respect to the

standard symplectic structure on M . Let µ : M → k∗ be a moment map for this action and define

f : M → R by f(x) = ∥µ(x)∥2. Then Conditions (1)–(4) are satisfied for f : M → R.

Proof. (1) For projective varieties Condition (1) follows from Kirwan’s explicit construction of

the critical values in [24]. For affine varieties this follows from the analogous construction

in [19].

(2) In the case M = CPn, the flow ϕ(x, t) exists for all t ∈ R since M is compact. In particular,

for any a < b the subset f−1([a, b]) is compact. Since f is analytic (see below) then the

Lojasiewicz inequality method of Simon [37] shows that the flow with initial condition

x ∈ f−1([a, b]) either converges to a critical value c ∈ [a, b] or it flows out of the set

f−1([a, b]). This is true both forwards and backwards in time and so Condition (2) is

satisfied.

For the case M = C
n, the result of Sjamaar [38, Lemma 4.10] shows that the function

f = ∥µ∥2 is proper on each G-orbit. Since the gradient flow ϕ(x, t) is contained in G · x,
then for any a < b, the intersection of the gradient flow line with f−1([a, b]) is compact.

Therefore the same proof as the case M = CPn shows that Condition (2) is also satisfied

for M = C
n.

(3) The moment map associated to a linear representation is analytic, and so Condition (3) is

satisfied.

(4) The function f = ∥µ∥2 is minimally degenerate (see [24]). Therefore, for each critical point

x, the unstable manifold W−
x has the structure of a graph over the negative eigenspace of

the Hessian (see for example [16]). Around each critical point x, there is a neighbourhood

U and coordinates (x1, . . . , xn) such that the minimising manifold is given by x1 = · · · =
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xd = 0, where d is the number of non-negative eigenvalues of the Hessian of f at x. Let

y = (x1, . . . , xd) and z = (xd+1, . . . , xn). Following [24, Ch. 10], the negative gradient flow

is given locally by

(4.1) ϕ(x(0), t) =

(

y(t)
z(t)

)

=

(

ePty(0) + Y (t, y(0), z(0))
eQtz(0) + Z(t, y(0), z(0))

)

where P is diagonal with non-positive entries, Q is diagonal with strictly positive entries,

and Y, Z and their first derivatives vanish at the origin. Clearly the linearised flow y(t) =

ePty(0), z(t) = eQtz(0) satisfies Condition (4), since the term ePt does not increase the

distance from the origin, while the term z(t) strictly increases the distance from the origin.

Then Condition (4) for the nonlinear equation (4.1) follows from the fact that the flow

is topologically conjugate to the linearised flow in a neighbourhood of the critical point x

(see [16, Theorem 4.1]). �

In the remainder of the section, we show that Conditions (1)–(4) impose extra conditions on the

topology of the level sets of the function near a critical point.

Let c be a critical value. Conditions (1) and (2) imply that if there are no critical values in [ℓ, c)

then there is a well-defined function φℓ,c : f−1(ℓ) → f−1(c) (defined in Proposition 2.4) given by

the gradient flow ϕ(x, t). Proposition 2.4 shows that if Condition (3) is also satisfied then this map

φℓ,c is continuous.

Define the equivalence relation x1 ∼ x2 iff φℓ,c(x1) = φℓ,c(x2), denote the quotient by Lℓ =

f−1(ℓ)/∼ with quotient map q : f−1(ℓ) → Lℓ and let ξℓ,c : Lℓ → f−1(c) be the induced injective

map

f−1(ℓ)
φℓ,c

//

q

��

f−1(c)

Lℓ

ξℓ,c

::
t
t
t
t
t
t
t
t
t
t

The next result shows that adding Condition (4) imposes more structure on the maps φℓ,c and ξℓ,c.

Lemma 4.3. Let f : Z → R be a function satisfying Conditions (1)–(4), let c be a non-minimal

critical value and choose any ℓ < c such that there are no critical values in [ℓ, c). Then the map

φℓ,c is closed and ξℓ,c is a homeomorphism onto its image.

Proof. Let A ⊂ f−1(ℓ) be closed. We aim to show that φℓ,c(A) is closed. Let x ∈ f−1(c) \ φℓ,c(A).

First consider the case where x ∈ C := CritZ(f)∩f−1(c) is a critical point. Since φℓ,c is continuous

then φ−1
ℓ,c ({x}) = W−

x ∩ f−1(ℓ) is closed in f−1(ℓ), and by definition it is contained in f−1(ℓ) \ A,

which is open. Therefore there is an open neighbourhood U of W−
x ∩f−1(ℓ) contained in f−1(ℓ)\A.

Condition (4) implies that there exists an open neighbourhood V of x in f−1(c) such that

V ⊂ φℓ,c(U) ⊂ φℓ,c(f
−1(ℓ) \A) ⊂ f−1(c) \ φℓ,c(A)
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Since the flow defines a continuous map f−1(c) \ C → f−1(ℓ) \W−
C , then if x /∈ C there exists an

open neighbourhood U of x in f−1(c)\C such that ϕ(y, τℓ(y)) ∈ f−1(ℓ)\A for all y ∈ U . Therefore

U ⊂ f−1(c) \ φℓ,c(A).

Therefore f−1(c) \ φℓ,c(A) is open, and so φℓ,c(A) is closed.

To see that ξℓ,c is a homeomorphism onto its image, it is sufficient to show that it is injective,

closed and continuous. It is injective by definition, and continuity and closedness follow from the

associated properties of φℓ,c, since Lℓ has the quotient topology. �

The following corollary of Lemma 4.3 shows that Condition (4) implies that the set of critical

points with trivial unstable set (i.e. local minima) must be open in the level set.

Corollary 4.4. With the same conditions as Lemma 4.3, the set of critical points x ∈ C such that

W−
x = {x} is an open subset of f−1(c).

Proof. The level set f−1(ℓ) is closed in Z. Then Lemma 4.3 shows that φℓ,c(f
−1(ℓ)) is closed in

f−1(c). Since Condition (2) implies that any x ∈ f−1(c) \ C flows to f−1(ℓ) then

{x ∈ C : W−
x = {x}} = f−1(c) \ φℓ,c(f

−1(ℓ))

and so {x ∈ C : W−
x = {x}} is open in f−1(c). �

Lemma 4.1 shows that Conditions (1)–(4) are preserved on restricting to a closed subset preserved

by the gradient flow. The following simple example shows that Condition (4) fails if we do not

assume that the subset is closed. In this example the main theorem of Morse theory also fails.

Example 4.5. On R≥0 × [0, 2π) define the equivalence relation (0, θ1) ∼ (0, θ2) and consider

the quotient space Z = R≥0 × [0, 2π)/ ∼. Note that the map φ : Z → R
2 given by φ(ρ, θ) =

(ρ cos θ, ρ sin θ) is a bijection, but not a homeomorphism.

Define the function f : Z → R by f(ρ, θ) = 1
2

(

ρ2 sin2 θ − ρ2 cos2 θ
)

. Note that f ◦ φ−1(x, y) =
1
2(y

2 − x2). Although Z is not a manifold, we can still define a flow along which f is strictly

decreasing by ϕ(ρ0, θ0, t) = φ−1(etρ0 cos θ0, e
−tρ0 sin θ0). Note that the subset φ−1{(x, y) ∈ R

2 :

x > 0, y < 0} is preserved by this flow.

The flow has a single critical point {ρ = 0}. The unstable set is W−
0 = {θ = 0}∪{θ = π}. Given

ε > 0, we have f−1(−ε) ∩W−
0 = {(√ε, 0), (

√
ε, π)}. Then any neighbourhood of f−1(−ε) ∩W−

0 in

f−1(−ε) will not intersect the subset φ−1{(x, y) ∈ R
2 : x > 0, y < 0} = {(ρ, θ) ∈ Z : ρ > 0, θ >

3π
2 }, however any neighbourhood of {ρ = 0} will intersect this set, which is preserved by the flow.

Therefore Condition (4) must fail for this example.

One can also see that the main theorem of Morse theory must also fail for this example, since

f−1((−∞,−ε]) ∪W−
0 is disconnected, however f−1((−∞, ε]) is connected.

This example illustrates that Condition (4) is a nontrivial assumption and that if we don’t assume

this condition then we need a replacement in order to ensure that the main theorem of Morse theory

holds.
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5. A compactness theorem for spaces of flow lines

In this section we show that Conditions (1)–(4) together with an extra compactness condition on

the unstable sets imply that spaces of flow lines connecting two critical points can be compactified

by spaces of broken flow lines. The same is true for spaces of flow lines connecting two critical

sets if we also assume that the critical sets are compact. This type of theorem has appeared for

Morse functions and Morse-Bott functions on smooth manifolds (see for example [2]), however

the techniques used in these papers rely on the manifold structure of the ambient space and the

Morse-Bott assumption to explicitly describe the trajectories near the critical points. Here we

give a completely different proof which is intrinsic to the singular space and which replaces the

Morse-Bott assumption with the more general Condition (4).

A related question is to construct a collar neighbourhood of the boundary of the space of flow

lines and describe this explicitly in terms of spaces of broken flow lines. For Morse-Bott functions

on smooth manifolds, this has been done in [2], and again the methods use the smooth structure of

the ambient space, most notably in the assumption that the stable and unstable manifolds intersect

transversally. In the paper [44] we will combine the methods of this section with the results of [45] to

give an algebro-geometric description of this collar neighbourhood for the space of representations

of a quiver with relations, again using a method intrinsic to the singular space.

We assume throughout this section that Conditions (1)–(4) hold. Since we always assume that

Z is a closed subset of a Riemannian manifold M , then for any x ∈ Z there exists a neighbourhood

U such that for any y1, y2 ∈ U the distance along the shortest geodesic from y1 to y2 is well-defined.

In the remainder of this section we denote this distance by ∥y1−y2∥, and we also use ∥ · ∥ to denote

the length of a tangent vector in TyM for any y ∈ Z.

First we show that if the unstable set W−
x is locally compact, then Conditions (1)–(3) imply that

the intersection of the unstable set with a level set of f is compact if the level set is close enough to

the level set containing the critical point x. The local compactness condition is satisfied whenever

Z is a subset of a finite-dimensional manifold, and it is also satisfied for examples in gauge theory

such as the Yang-Mills-Higgs functional on a compact Riemann surface, where the unstable set is

a subset of a finite-dimensional manifold.

Lemma 5.1. Suppose that Z is locally compact and that f : Z → R satisfies Conditions (1)–(3).

Let x be a critical point of f . Then for every ε > 0 such that there are no critical values in

[f(x)− ε, f(x)), the set W−
x ∩ f−1(f(x)− ε) is compact.

Proof. Since the flow defines a continuous map f−1(f(x) − ε) → f−1(f(x)) by Proposition 2.4,

and W−
x ∩ f−1(f(x)− ε) is the preimage of x under this map, then W−

x ∩ f−1(f(x)− ε) is closed.

Therefore, since Z is locally compact, then it is sufficient to show that W−
x ∩ f−1(f(x) − ε) is

contained in a bounded neighbourhood of x.

Since Z is a subset of a manifold M on which the gradient flow of f is well-defined, and f is

analytic by Condition (3), then we can apply the Lojasiewicz inequality of [37] to show that there
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exists δ > 0 and constants C > 0, θ ∈ (0, 12) such that for any y satisfying ∥x− y∥ < δ, we have

∥ grad f(y)∥ ≥ C|f(x)− f(y)|1−θ.

A standard calculation (cf. [37]) shows that for any flow line yt we have

Cθ∥ grad f(yt)∥ ≤ ∂

∂t
|f(x)− f(yt)|θ

if ∥x − yt∥ < δ. Given any y0 ∈ W−
x there exists τ < 0 such that ∥x − yt∥ < δ for all t ≤ τ .

Integrating the above inequality on the interval (−∞, τ ] gives us

(5.1)

∫ τ

−∞

∥ grad f(yt)∥dt ≤
1

Cθ
|f(x)− f(yτ )|θ ≤

1

Cθ
|f(x)− f(y0)|θ.

Now choose ε′ > 0 such that 1
Cθ

(ε′)θ < 1
2δ. Given y0 ∈ W−

x ∩ f−1(f(x) − ε′), suppose (for

contradiction) that ∥x − yt∥ ≥ δ for some t < 0. Let τ = inf{t ∈ R<0 : ∥x − yt∥ ≥ δ}. Since the

flow is continuous then ∥x− yτ∥ = δ. Then the above estimate applies on the interval (−∞, τ ] and

so we obtain a contradiction

δ = ∥x− yτ∥ ≤
∫ τ

−∞

∥ grad f(yt)∥dt ≤
1

Cθ
|f(x)− f(y0)|θ <

1

2
δ.

Therefore the set {t ∈ R<0 : ∥x − yt∥ ≥ δ} must be empty, which implies that ∥x − y0∥ < δ.

Therefore we have shown that W−
x ∩ f−1(f(x) − ε′) is closed and contained in a ball of radius δ

around x, which implies that it is compact since Z is locally compact.

Given any ε > 0 such that there are no critical values in [f(x) − ε, f(x)), the flow defines a

homeomorphism W−
x ∩ f−1(f(x)− ε) → W−

x ∩ f−1(f(x)− ε′), and so W−
x ∩ f−1(f(x)− ε) is also

compact. �

Given two critical points xu and xℓ with f(xu) > f(xℓ), define F̃(xu, xℓ) := W−
xu

∩ W+
xℓ

as the

space of all points in Z that flow up to xu and down to xℓ. The flow defines a natural R-action on

F̃(xu, xℓ).

Definition 5.2. The space of flow lines connecting xu and xℓ is

F(xu, xℓ) := F̃(xu, xℓ)/R.

Given any z ∈ (f(xℓ), f(xu)), the space of flow lines F(xu, xℓ) is homeomorphic to F̃(xu, xℓ) ∩
f−1(z). Each flow line γ ∈ F(xu, xℓ) defines a map γ : R → W−

xu
∩W+

xℓ
. Given two critical points

xu, xℓ we fix z ∈ (f(xℓ), f(xu)) and adopt the convention that f(γ(t = 0)) = z for all γ ∈ F(xu, xℓ).

Definition 5.3. A sequence {γn} ⊂ F(xu, xℓ) converges to a limit γ∞ ∈ F(xu, xℓ) if and only if

the sequence {γn(0)} converges to a limit γ∞(0) ∈ F̃(xu, xℓ) ∩ f−1(z).

Remark 5.4. This is stronger than the condition that {γn(0)} converges to a limit in f−1(z), since

we also require that the limit is in F̃(xu, xℓ). Theorem 5.6 below shows that if {γn(0)} converges

to a limit in f−1(z) then we can find a subsequence {γnj
} and interpret the limiting trajectory as

a broken flow line.
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Since the finite-time flow depends continuously on the initial condition, then {γn} converges to

γ∞ ∈ F(xu, xℓ) if and only if {γn(t)} converges to γ∞(t) ∈ F̃(xu, xℓ) for every t ∈ R.

In preparation for the main result of the section, we prove that the critical value at the lower

endpoint of a flow line depends lower semi-continuously on the flow line.

Lemma 5.5. Suppose that f : Z → R satisfies Conditions (1)–(4). Let xu, xℓ be critical points

with f(xu) > f(xℓ) and let {yn} be a sequence of points in F̃(xu, xℓ) which converges to y∞ ∈ Z.

Then limt→∞ f(ϕ(y∞, t)) ≥ f(xℓ) with equality if and only if limt→∞ ϕ(y∞, t) = xℓ.

Proof. Suppose that limt→∞ f(ϕ(y∞, t)) = z < f(xℓ). By Condition (1) we can choose ε > 0

such that there are no critical values in (f(xℓ), f(xℓ) + ε]. For each n there exists tn such that

f(ϕ(yn, tn)) = f(xℓ) + ε. Since limt→∞ f(ϕ(y∞, t)) = z < f(xℓ) by assumption, then there also

exists t∞ such that f(ϕ(y∞, t∞)) = f(xℓ) + ε. Since {yn} converges to y∞ and the finite-time

flow depends continuously on the initial condition, then ϕ(yn, tn) converges to ϕ(y∞, t∞). Since

yn ∈ F̃(xu, xℓ) for all n then ϕ(yn, tn) ∈ W+
xℓ

∩ f−1(f(xℓ) + ε) for all n.

Proposition 2.4 shows that the flow defines a continuous deformation retract from f−1(f(xℓ)+ε)

to f−1(f(xℓ)), therefore W
+
x ∩ f−1(f(xℓ)+ ε) is closed in f−1(f(xℓ)+ ε), and therefore ϕ(yn, tn) →

ϕ(y∞, t∞) implies that ϕ(y∞, t∞) ∈ W+
xℓ
, contradicting the assumption that limt→∞ f(ϕ(y∞, t)) =

z < f(xℓ).

If we assume that limt→∞ f(ϕ(y∞, t)) = f(xℓ) then the same proof as above shows that y∞ ∈
W+

xℓ
. �

The next theorem is the main result of this section, which shows that F(xu, xℓ) has a natural

compactification by spaces of broken flow lines.

Theorem 5.6. Suppose that Conditions (1)–(4) hold and that for any critical point x the unstable

set W−
x is locally compact. Let xℓ, xu be two critical points with f(xu) > f(xℓ), and let {γn} be a

sequence of flow lines in F(xu, xℓ). Then there exists a subsequence {γnj
}, a finite set of critical

points {x0 = xu, x1, . . . , xm, xm+1 = xℓ} with f(xu) > f(x1) > · · · > f(xm) > f(xℓ) and a finite

subset {r0, . . . , rm} such that each rk ∈ (f(xk+1), f(xk)) and the following property holds. For

each k = 0, . . . ,m, define t
(k)
nj to be the unique time such that f

(

γnj
(t

(k)
nj )

)

= rk. Then for each

k = 0, . . . ,m the sequence γnj
(t

(k)
nj ) converges to a point yk ∈ F̃(xk, xk+1).

Proof. Using Condition (1), choose ε > 0 such that there are no critical values in the interval

[f(xu)− ε, f(xu)). For each n, let t
(0)
n be the unique time such that f(γn(t

(0)
n )) = f(xu)− ε. Since

W−
xu

∩f−1(f(xu)−ε) is compact by Lemma 5.1, then there exists a subsequence {γnj
} and y0 ∈ W−

xu

such that γnj
(t

(0)
nj ) converges to y0. If y0 ∈ F̃(xu, xℓ) then we are done. If not, then Lemma 5.5

shows that there exists a critical point x1 with f(xu) > f(x1) > f(xℓ) such that y0 ∈ F̃(xu, x1).

Let C1 denote the set of critical points with critical value f(x1).

Now use Condition (1) again to choose ε > 0 such that [f(x1) − ε, f(x1)) contains no crit-

ical values, define s
(1)
nj and t

(1)
nj as the unique real numbers such that f(γnj

(s
(1)
nj )) = f(x1) and
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f(γnj
(t

(1)
nj )) = f(x1)− ε. Note that γnj

(s
(1)
nj ) converges to x1 by Proposition 2.4. Given any neigh-

bourhood U1 of W−
x1

∩ f−1(f(x1)− ε), Condition (4) guarantees the existence of a neighbourhood

V1 of x1 such that V1 \W+
C1

flows into U1. Since γnj
(s

(1)
nj ) converges to x1 then there exists N1 such

that nj > N1 implies that γnj
(s

(1)
nj ) ∈ V1, and so γnj

(t
(1)
nj ) ∈ U1.

This is true for any neighbourhood U1 of W
−
x1
∩f−1(f(x1)−ε), and so since W−

x1
∩f−1(f(x1)−ε)

is compact by Lemma 5.1, then there exists a further subsequence γn′

j
such that γn′

j
(t

(1)
n′

j
) converges

to a point y1 ∈ W−
x1

∩ f−1(f(x1)− ε). If y1 ∈ F̃(x1, xℓ) then we are done. If not, then Lemma 5.5

shows that y1 ∈ F̃(x1, x2) for some critical point x2 with f(x2) > f(xℓ), and we can repeat the

above process inductively to obtain a finite set of critical points satisfying the conditions of the

theorem. �

6. Condition (5) for moment maps on affine varieties

In this section we complete the proof of Theorem 1.3 by showing that Condition (5) holds for

the case when f = ∥µ∥2 is the norm-square of a moment map on an affine G-variety. The goal is to

reduce the problem of proving that Condition (5) is satisfied to a simpler criterion on the analyticity

of the unstable set W−
C . Proposition 6.7 shows that this criterion holds for the norm-square of a

moment map on an affine variety.

Let G be a connected, reductive algebraic group and let Z be an affine algebraic G-variety. By

[22, Lemma 1.1], we can assume that Z ⊂ V where V is a finite-dimensional vector space and the

action of G on V is linear. Using the same notation and setup as in Section 4, let f = ∥µ∥2 : V → R

be the norm-square of the associated moment map.

Let c be a critical value of f and let C be the associated critical set CritZ(f) ∩ f−1(c). The

unstable set of C is

W−
C :=

{

y ∈ V : lim
t→−∞

ϕ(y, t) ∈ C

}

.

The goal of this section is to show thatW−
C has the structure of a real analytic set in a neighbourhood

of C, and hence we can then apply Theorem 1.1 of [34] to W−
C ∩ f−1(c− ε) in order to prove that

the deformation retract of Condition (5) exists.

First we prove some results about the function f on the smooth space V , before restricting to

the subset Z in Proposition 6.7. Using an Ad-invariant inner product on k, we identify k ∼= k∗ and

also use µ(x) ∈ k to denote the element corresponding to µ(x) ∈ k∗. The infinitesimal action of

u ∈ g at x is denoted ρx(u) = d
dt

∣

∣

t=0
etu · x ∈ TxV . Note that the tangent space to the G-orbit

through x is Tx(G · x) = im ρx. Since V is an affine space then (considering V as a vector space

with zero element at x) we can identify V ∼= TxV , and so for each x we can consider im ρx as a

subspace of V .
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Definition 6.1. Let c be a critical value of f and let C = Crit(f) ∩ f−1(c). The negative slice

bundle is

(6.1) S−
C = {(x, y) ∈ C × V : lim

t→∞
eiµ(x)t · y = 0 and y ⊥ im ρx}

which is equipped with a canonical projection map S−
C → C.

The proof of the following lemma is contained in [24, Sec. 4].

Lemma 6.2. At each critical point x ∈ C, the fibre S−
x = {y ∈ V : limt→∞ eiµ(x)t · y = 0, y ⊥

im ρx} is isomorphic to the negative eigenspace of the Hessian of f . Moreover, S−
C is a vector

bundle over C, with constant rank on each connected component of C.

Therefore, in a neighbourhood of the critical set, we can identify the negative slice bundle with

the normal bundle to the minimising manifold of the critical set via the map S−
C → V given by

(x, y) 7→ x+ y. Now we prove that the normal bundle is real analytic in V , and hence so is S−
C .

Lemma 6.3. There is a neighbourhood U of C in S−
C such that for each y ∈ U there is an open

neighbourhood U ′ of y in V and a finite set of real analytic functions h1, . . . , hn : U ′ → R such that

U ∩ U ′ =
∩n

j=1 h
−1
j (0).

Proof. When f = ∥µ∥2 is the norm-square of a moment map on a complex vector space, Hoskins

[19] gives an explicit description of the Morse strata of f based on Kirwan’s description of the

strata for moment maps on projective varieties in [24]. In particular, the strata are submanifolds

SK·β = GY min
β , where β = µ(x) ∈ k for a critical point x (the choice of β is unique up to the adjoint

action of K) and Y min
β is an open subset of the analytic set V β

+ := {v ∈ V : limt→∞ e−iβt ·v exists}.
Since the G-action is analytic then the strata SK·β are also analytic submanifolds. Moreover, the

critical set CK·β = SK·β ∩ f−1(c) is a real analytic subset.

Given a critical point x ∈ CK·β , there is a neighbourhood U of x and a projection π : U → SK·β

such that U is identified with a neighbourhood of the zero section of the normal bundle of SK·β at

x. Since SK·β is an analytic submanifold then the normal bundle is analytic and so we can choose

the projection π to be analytic.

Since the critical set CK·β is analytic, then the preimage of π−1(U ∩CK·β) is analytic. Therefore

the negative slice bundle is locally cut out by analytic functions. �

For a fixed finite time T , the time T flow defines a diffeomorphism ϕT : V → V . Since the flow is

defined by the equation dx
dt

= − grad f(x), for which the right-hand side depends analytically on x,

then as explained in [32] (see also [9, Ch. 1]) it follows from the Cauchy-Kowalevski theorem that

the time T solution to the flow depends analytically on the initial condition. This is summarised

in the following lemma.

Lemma 6.4. For each finite T > 0, the time T flow ϕT defines an analytic diffeomorphism ϕT :

V → V .
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Before we prove that Condition (5) holds for the norm-square of a moment map on an affine

variety, we first review some results of Hubbard [20] on the analyticity of the unstable manifold for

analytic flows which will be used in the proof of Proposition 6.7.

In [20], Hubbard considers the general case of an analytic flow on a vector space and shows that

the unstable manifold of a critical point is analytically isomorphic to the negative eigenspace of the

Hessian. In the notation of this paper, given a critical point x ∈ C, Hubbard defines a map on each

fibre ξx : S−
x
∼= TxW

−
x → W−

x and shows in [20, Thm. 6] that this is an analytic diffeomorphism in

a neighbourhood of x. If we use y to denote the coordinate on S−
x then Hubbard also shows that

the power series in y converges absolutely uniformly on this neighbourhood (cf. [20, Thm. 6]) and

that the map ξx depends analytically on the critical point x (cf. [20, Thm. 12]).

In order to apply these results in the proof of Proposition 6.7 below, first we complexify V ↩→ V C

so that the real variables x defining V become complex variables z defining V C, and with respect

to these new variables the time t flow ϕt (which is real analytic in the variable x by Lemma 6.4)

becomes a flow ϕC
t which is complex analytic in the variable z. Via the inclusion V ↩→ V C, fixed

points of the flow ϕt map to fixed points of the complexified flow ϕC
t . Let C

C denote the subset of

the fixed point set of ϕC
t containing the image of a critical set C ⊂ V ↩→ V C and let W−

z denote the

unstable manifold of a critical point z. Applying [20, Thm. 6] shows that for each z ∈ CC, there is

a complex analytic map ξz : TzW
−
z → W−

z in a neighbourhood of z, and [20, Thm. 12] shows that

ξz depends complex analytically on z.

If we use w to denote the coordinate on TzW
−
z , then these results show that ξz(w) is separately

complex analytic in z and w, and therefore complex analytic as a function of (z, w) by Hartogs’

theorem (see for example [18, Thm 2.2.8]). If we restrict to the real locus defined by (x, y) =

(ℜ(z),ℜ(w)) then the restriction ξx(y) is real analytic as a function of (x, y). Therefore we have

proved the following lemma.

Lemma 6.5. There is a neighbourhood U1 of the zero section of S−
C → C and a neighbourhood U2

of C in V together with an analytic homeomorphism ξ : U1 → U2 ∩W−
C .

Remark 6.6. It is not true in general that a function f(x, y) which is separately real analytic in x

and y is then real analytic as a function of (x, y) (for example, consider f(x, y) = xy
x2+y2

as explained

in [18, p27]). Therefore we have to apply Hubbard’s theorem to the complexification ϕC
t of the flow

ϕt to prove the stronger result that our map ξx(y) is the restriction of a map which is separately

complex analytic in each variable. Then we can apply Hartogs’ theorem to show that the map is

analytic in both variables. The key is that Hubbard’s results apply to the complexification of the

flow.

Now we can prove that Condition (5) holds for the norm-square of a moment map on an affine

variety.

Proposition 6.7. Let G be a connected, reductive algebraic Lie group, let V be a representation

of G and let Z ⊂ V be an affine G-variety. Suppose also that the action of the maximal compact
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subgroup K on V is Hamiltonian with respect to the standard symplectic structure on V . Let

µ : V → k∗ be a moment map for this action and define f : V → R by f(x) = ∥µ(x)∥2. Then

Condition (5) is satisfied for the restriction f : Z → R, and the deformation retract can be chosen

to be K-equivariant.

Proof. Lemma 6.3 above shows that the negative slice bundle is locally cut out by analytic functions.

Lemma 6.5 shows that (in a neighbourhood of the critical set C) there is an analytic homeomorphism

S−
C → W−

C and therefore the unstable set W−
C is also locally cut out by analytic functions.

A priori this neighbourhood of the critical set may not intersect f−1(c − ε), however for any

point y ∈ W−
C ∩ f−1(c − ε) there exists a finite T < 0 such that ϕ(y, T ) ∈ U . Lemma 6.4 shows

that the finite-time flow defines an analytic diffeomorphism onto its image, and so there exists a

neighbourhood U ′ of y and a collection of functions h1, . . . , hn such that W−
C ∩ U ′ =

∩n
j=1 h

−1
j (0).

Since f−1(c − ε) is an analytic set, then we can extend the results of the previous paragraph to

show that W−
C ∩ f−1(c− ε) is locally cut out by analytic functions.

Since the spaces W−
C , f−1(c−ε) and Z are all K-invariant analytic subsets of a finite-dimensional

affine space V , then we can apply Theorem 1.1 of [34] to Y = W−
C ∩ f−1(c − ε) ∩ Z and X =

f−1(c−ε)∩Z to show that Condition (5) holds for the function f : Z → R and that the deformation

retract can be chosen to be K-equivariant. �

Remark 6.8. In the above proof we use Hubbard’s results to prove the existence of an analytic

homeomorphism S−
C → W−

C . A different question is whether this map restricts to a homeomorphism

S−
C ∩ Z → W−

C ∩ Z. This does not follow from the methods of [20], however in [45] we use the

distance-decreasing property of the moment map flow to give a different construction of a map

S−
C → W−

C which does restrict to a homeomorphism S−
C ∩ Z → W−

C ∩ Z and which is also K-

equivariant. In the next section we explain how this fits into a larger picture of using Morse theory

to compute topological invariants of quiver varieties.

7. Conclusion

Theorem 1.1 shows that the homotopy type of Za = {x ∈ Z : f(x) ≤ a} changes by attaching a

copy of W−
C as a crosses a critical value c. In order to relate the topological invariants of Za and

Zb for a < c < b, it is then natural to investigate the topology of the pair (W−
C ,W−

C \ C).

When f is a Morse function on a manifold M with an appropriate compactness condition (e.g. f

satisfies the Palais-Smale Condition C), then one is faced with the same problem, and the solution

is to use the Morse Lemma to relate the unstable manifold at a critical point x to the negative

eigenspace of the Hessian at x. Therefore the pair (W−
x ,W−

x \{x}) is homeomorphic to (Rλ,Rλ\{0}),
where λ is the dimension of the negative eigenspace of the Hessian at x, and so the homotopy type

of Za changes by attaching a cell of dimension λ as a crosses the critical value f(x). On a singular

space this procedure fails because the Morse Lemma is no longer available and the definition of the

Hessian does not make sense in the absence of the ability to take derivatives.
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In this section we explain how to use the results of [45] to describe W−
C in terms of analytic

data around the critical set C for the space Z of representations of a quiver with relations. On

this singular space the negative eigenspace of the Hessian is replaced by the intersection of Z with

the negative slice bundle S−
C of Definition 6.1, which is defined in terms of the group action and is

therefore intrinsic to the singular space. Since the negative slice bundle has an explicit description

(6.1) in terms of analytic data around the critical set then we can develop a procedure to compute

topological invariants of the pair (S−
C , S

−
C \ C), which will be carried out in [47].

First we recall some basic definitions (cf. [23], [30]) to set the notation for the rest of the section.

Definition 7.1. A quiver Q is a directed graph, consisting of vertices I, edges E, and head/tail maps

h, t : E → I. A complex representation of a quiver consists of a collection of complex Hermitian

vector spaces {Vi}i∈I, and C-linear homomorphisms {xa : Vt(a) → Vh(a)}a∈E. The dimension vector

of a representation is the vector v := (dimC Vi)i∈I ∈ Z
I
≥0. The vector space of all representations

with fixed dimension vector is denoted

Rep(Q,v) :=
⊕

a∈E

Hom(Vt(a), Vh(a)).

The groups

Kv :=
∏

i∈I

U(Vi) ⊂ Gv :=
∏

i∈I

GL(Vi,C)

both act on the space Rep(Q,v) via the induced action on each factor Hom(Vt(a), Vh(a))

(7.1) (gi)i∈I · (xa)a∈E :=
(

gh(a)xag
−1
t(a)

)

a∈E
.

With respect to the standard symplectic structure on Rep(Q,v) induced from the symplectic struc-

ture on each Vi, the action of Kv is Hamiltonian with moment map

µ : Rep(Q,v) → k∗
v

(xa)a∈E 7→ 1

2i

∑

a∈E

[xa, x
∗
a]

(7.2)

Given any α ∈ Z(k∗), define f = ∥µ − α∥2. In [45] we adapt the method of [46] for Higgs bundles

(based on the “scattering method” of Hubbard [20]) and use the distance-decreasing property of

the gradient flow of f to prove the following result.

Theorem 7.2 ([45, Cor. 4.24]). For any critical set C of f = ∥µ − α∥2 and any closed subset

Z ⊂ Rep(Q,v) such that Gv · Z ⊂ Z, there is a Kv-equivariant homeomorphism of pairs (W−
C ∩

Z, (W−
C \ C) ∩ Z) ∼= (S−

C ∩ Z, (S−
C \ C) ∩ Z).

This does not follow from the usual Banach fixed point theorem technique for constructing

the unstable manifold of a Morse function on a smooth space (see for example [21, Sec. 6]),

since these methods rely on choosing local coordinates to define a projection onto the negative

eigenspace of the Hessian at a critical point. Unless one can make this projection map compatible
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with the singularities in the space Z, then it is not obvious that both sides of S−
C

∼= W−
C remain

homeomorphic after intersecting with a singular subset Z ⊂ V .

Theorem 7.2 shows that for a Gv-variety Z ⊂ Rep(Q,v), the problem of computing Kv-

equivariant topological invariants of the pair (W−
C ∩Z, (W−

C \C)∩Z) reduces to the same question

for the pair (S−
C ∩ Z, (S−

C \ C) ∩ Z), which we can describe explicitly in terms of the negative slice

at each critical point. This is the analog of the homeomorphism (W−
x ,W−

x \ {x}) ∼= (Rλ,Rλ \ {0})
for a Morse function on a manifold.

An important class of examples is when Z is the subvariety of representations satisfying a finite

set of relations on the quiver. In the papers [14] and [47] we will investigate the topology of the pair

(S−
C ∩ Z, (S−

C \ C) ∩ Z) to derive information about the cohomology groups and low-dimensional

homotopy groups of moduli spaces of representations of quivers with relations.
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