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The overall purpose of the ‘Statistical Points and

Pitfalls’ series is to help readers and researchers

alike increase awareness of how to use statistics and

why/how we fall into inappropriate choices or in-

terpretations. We hope to help readers understand

common misconceptions and give clear guidance on

how to avoid common pitfalls by offering simple tips

to improve your reporting of quantitative research

findings. Each entry discusses a commonly encoun-

tered inappropriate practice and alternatives from

a pragmatic perspective with minimal mathematics

involved. We encourage readers to share comments

on or suggestions for this section on Twitter, using

the hashtag: #mededstats.

There is a widespread habit in educational research of inter-

preting statistically non-significant findings, also called null

findings, as evidence in favour of a null hypothesis (i. e., ‘no

difference’, ‘no relation’ or ‘no effect’). Null findings are

frequently interpreted as ‘informing’ theory or as ‘confirm-

ing’ theoretical expectations. In this entry, we explain two

arguments against the habit of interpreting a null finding

as evidence in favour of a null hypothesis. Based on these

arguments, we explain that statistical power and required

sample size calculations along with replication research and
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meta-analysis can help us counter the habit of interpreting

non-significant findings as evidence in favour of the null

hypothesis, and that Bayesian hypothesis testing can help

researchers to evaluate the strength of evidence in favour of

the null hypothesis or against it.

Example study

One area of study in educational research compares learn-

ing from examples with learning by solving problems [1,

2]. Suppose that a group of researchers randomly assigns

40 bachelor students in medicine to a problem-problem (n =

20) and an example-problem (n = 20) condition. Students in

the problem-problem condition solve two problems – prob-

lem A and problem B – that follow the same structure and

are of similar difficulty. In the example-problem condition,

students first study a worked example of problem A and

then solve problem B. Subsequently, students in both con-

ditions complete the same post-test, which comprises ten

problems of the same structure as problem A and B and are

of similar difficulty. Each post-test problem is scored ‘0’

whenever a student provides an incorrect solution and ‘1’

when that student provides a correct solution. Hence, the

total score on the post-test can range from 0 to 10.

The researchers compute post-test scores accordingly for

each student and find that the two conditions do not dif-

fer much in post-test score: the problem-problem condition

yields an average score of 5.775 with a standard deviation

(SD) of 1.16, while the example-problem condition yields

an average score of 6.05 with an SD of 0.89. The 95% con-

fidence interval of the difference between average scores

(6.05–5.75 = 0.30) [3] extends from –0.36 to 0.96 and thus

includes ‘0’, meaning the null hypothesis of ‘no difference’

cannot be rejected [4]. Researchers who tend to compute
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a p-value instead of a confidence interval do a t-test on the

difference between the average scores of the two conditions

with the null hypothesis of ‘no difference’ against the al-

ternative hypothesis of ‘there is a difference’ [5] and find:

p = 0.36.

In many cases, the researchers use the p-value of 0.36

– or the 95% confidence interval that includes ‘0’ for that

matter – to conclude that there is ‘no difference’ between

the two conditions and hence it does not matter whether

in a practical situation we let students solve problems by

themselves right away or we first provide them with an

example. Two main arguments against this ‘confirming the

null’ approach are discussed in the following.

Study has limited statistical power rather than

evidence in favour of the null hypothesis

A first argument against interpreting non-significant p-val-

ues as evidence in favour of the null hypothesis comes from

scholars who note that studies with sample sizes that are

common practice in psychology and education (e. g. our

example study) often lack statistical power and may there-

fore frequently fail to reject the null hypothesis even if it is

not true (i. e. Type II error) [3–7]. Statistical power is the

probability of being able to reject the null hypothesis if the

null hypothesis is not true. Research in psychology and ed-

ucation should strive for a statistical power of around 0.80

[8, 9] ; with that statistical power, a statistical significance

test on an untrue null hypothesis would result in a rejection

of that null hypothesis in 80% of the cases [7]. Some read-

ers might wonder why not strive for a power that lies closer

to 100%; the reason for this is that many phenomena of

interest in the field of education are of such a size that we

would often need samples of hundreds of participants and

more to achieve such a statistical power and that is ethically

and logistically not always feasible.

Had the researchers of our example study, prior to con-

ducting the study, calculated the statistical power (e. g.

using G*Power [10]) for a study with two groups of n =

20, taking as a starting assumption for their calculation half

a standard deviation difference in the population of interest

and testing at the conventional α = 0.05 significance level,

they would have learned that their study has a statistical

power of only 0.34. In other words, even if there is such

a difference in the population they sampled their students

from, only about one of every three studies of this size (two

groups of n = 20) would reject the null hypothesis of ‘no

difference’ (i. e. find p smaller than 0.05). This is the same

as saying that we would fail to reject the null hypothesis in

about two of every three studies of this size.

Had the researchers calculated in advance what sample

size they would need for a statistical power of 0.80, assum-

ing half a standard deviation difference in the population

of interest and testing at the conventional α = 0.05 sig-

nificance level (i. e. required sample size calculation), they

would have learned that they need two groups of n = 64

each [7].

Thus, while the researchers in our example study inter-

pret a non-significant p-value as evidence in favour of the

null hypothesis, a study with two groups of n = 20 is un-

likely to detect a substantial difference between groups in

the first place.

The likelihood of a finding under competing

hypotheses

A second argument against interpreting non-significant p-

values as evidence in favour of the null hypothesis comes

from scholars who point at the fact that a statistical signif-

icance test uses the p-value as a probability under the null

hypothesis but disregards such a probability under the al-

ternative hypothesis [11]. Scholars who use this argument

state that for obtaining either evidence in favour or against

the null hypothesis researchers must compare the likelihood

of their finding under the null hypothesis of ‘no difference’

and the likelihood of their finding under the alternative hy-

pothesis of ‘there is a difference’ to determine under which

of these two hypotheses the finding is more likely to have

occurred. The resulting likelihood ratio or Bayes factor then

expresses under which of the two hypotheses – null or alter-

native – the observed finding is more likely to have occurred

[11]:

Bayes factor for alternative vs: the null =

likelihood of observed finding under alternative

likelihood of observed finding under the null

and

Bayes factor for the null vs:alternative =

likelihood of observed finding under the null

likelihood of observed finding under alternative

hence:

Bayes factor for the null vs:alternative =

1

Bayes factor for alternative vs: the null

A Bayes factor of 1 would indicate that the observed find-

ing is equally likely under both hypotheses (i. e. numerator

and denominator of the ratio are equal). A Bayes factor for

the alternative hypothesis (numerator) vs. the null hypothe-

sis (denominator) of 2 corresponds with a Bayes factor for
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Table 1 Bayes factors and strength of evidence for the alternative

hypothesis (numerator) vs. the null hypothesis (denominator)

Bayes factor Evidential strength

>100

32–100

10–32

3.2–10

1–3.2

Decisive

Very strong

Strong

Substantial

Not worth more than a bare mention

the null hypothesis (numerator) vs. the alternative hypoth-

esis (denominator) of 0.5 (i. e. 1/2 = 0.5) and indicates that

the finding is twice as likely to have occurred under the

alternative hypothesis. Analogously, a Bayes factor for the

alternative hypothesis vs. the null hypothesis of 0.5 is the

same as a Bayes factor for the null hypothesis vs. the alter-

native hypothesis of 2 (i. e. 1/0.5 = 2) and indicates that the

finding is twice as likely to have occurred under the null

hypothesis. Such an interpretation is impossible to achieve

with a p-value. Table 1 provides a brief overview of the

meaning of a Bayes factor in terms of evidential strength

[12].

For more details on the use and interpretation of Bayes

factors, we refer to Rouder et al. [11], who provide a worked

example of a Bayesian t-test as an alternative to the t-test

that we have been using in medical education research for

decades.

There is a free SPSS-like software program that enables

researchers to calculate both p-values and Bayes factors

[13]. Using this software program in the example study –

where researchers find a difference between average scores

of 0.30 – yields a Bayes factor of 2.32 for the null hypothe-

sis of ‘no difference’ vs. the alternative hypothesis of ‘there

is a difference’ (or 1/2.32 � 0.43 for the alternative hypoth-

esis vs. the null hypothesis). In other words, the finding of

a difference between average scores of 0.30 is more than

twice as likely to have occurred under the null hypothesis.

Note, however, that this Bayes factor of 2.32 still only pro-

vides evidence (here: in favour of the null hypothesis) that

is barely worth a mention (i. e. Table 1). In other words,

this Bayes factor indicates some but not much preference

towards the null hypothesis.

A summary of the arguments

Following the argument of limited statistical power, cal-

culations of statistical power and sample size to achieve

a high statistical power can help us reduce the likelihood of

planning a study that is too small to have a decent statisti-

cal power and can help us counter the habit of interpreting

non-significant p-values in terms of evidence in favour of

the null hypothesis. Moreover, the researchers from our ex-

ample study could have a look at other studies that have

also made problem-problem comparisons [1, 2] and would

then notice that these other studies found rather pronounced

differences.

However, in the light of the argument that we ought to

compare the likelihood of a finding under the null vs. under

the alternative hypothesis, we should not interpret a non-

significant p-value as evidence in favour of the null hypoth-

esis regardless of statistical power or sample size [11]. If

we are really interested in the question how strong the evi-

dence is in favour of a null hypothesis, we need a hypothesis

testing approach that allows for comparing the likelihood

of a finding under the null hypothesis with that under an

alternative hypothesis, and Bayes factors can assist in that

endeavour. Moreover, replication studies [14, 15] and meta-

analysis [16] can help us compare findings from similar

studies on the same phenomenon and, contrary to p-val-

ues, Bayes factors of single studies can easily be combined

in meta-analysis to provide a more accurate picture across

studies with regard to the evidence in favour of or against

the null hypothesis [11, 12].

To conclude

Absence of evidence is not the same as evidence of ab-

sence; p-values and confidence intervals may provide some

evidence against a null hypothesis, but cannot provide evi-

dence in favour of a null hypothesis. With statistical power

and required sample size calculations as well as replica-

tion research and meta-analysis, we have powerful tools

for countering the habit of interpreting non-significant p-

values as evidence in favour of a null hypothesis. Besides,

Bayesian hypothesis tests provide researchers with a tool

to address the question of evidence in favour of the null

hypothesis when that question is of interest.
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