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a b s t r a c t

The transcriptome-based GWAS approach, Associative Tran-

scriptomics (AT), which was employed to uncover the genetic basis

controlling quantitative variation of glucosinolates in Brassica

napus vegetative tissues is described. This article includes the

phenotypic data of leaf and root glucosinolate (GSL) profiles across

a diversity panel of 288 B. napus genotypes, as well as information

on population structure and levels of GSLs grouped by crop types.

Moreover, data on genetic associations of single nucleotide poly-

morphism (SNP) markers and gene expression markers (GEMs) for

the major GSL types are presented in detail, while Manhattan plots

and QQ plots for the associations of individual GSLs are also

included. Root genetic association are supported by differential

expression analysis generated from root RNA-seq. For further

interpretation and details, please see the related research article

entitled ‘Genetic architecture of glucosinolate variation in Brassica

napus’ (Kittipol et al., 2019).
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1. Data

The data contains information on leaves and roots glucosinolate (GSL) profiles of 288 Brassica napus

genotypes (Fig. 1). The relatedness of the accessions was analyzed and visualized by the dendrogram

(Fig. 1A). The seven assigned crop types shows the expected clustering (Fig. 1B) with the highest

likelihood of two differentiated subpopulations (k ¼ 2), which separated into the spring or winter

oilseed rape crop types or a mixture of the two (Fig.1C). Full dataset of the GSL profiles are presented as

mean from four biological replicates of each accessions (Appendix 1) with distribution of the data

displayed as histograms (Appendix 2) and analysis of GSL contents by crop types (Appendix 3).

These phenotypic data were used to generate association data identifying single nucleotide poly-

morphism (SNP) markers and gene expression markers (GEMs) in transcriptome-based genome wide

association studies, Associative Transcriptomics (AT) [2,3]. The Manhattan plots for these associations

are shown in Appendix 4 for root traits and Appendix 5 for leaf traits. The significance of the trait

associations, shown as elog10P value, passing both false discovery rate (FDR) threshold at 5% and

threshold for Bonferroni significance of 0.05 suggested that the surrounding genomic region has a

strong association with the trait. To assess how well the model accounts for population structure and

familial relatedness, quantile-quantile (QQ) plots from SNP association analyses have been generated

(Appendix 6 & Appendix 7). Appendix 8 summarizes the optimal algorithm showing calculated group

kinship matrix, 2*log likelihood function and the estimated heritability for all GSL traits.

As shown in Fig. 1, aliphatic GSLs is the most abundant class of GSL in B. napus leaves. SNP-based

associations of leaf aliphatic GSL revealed strong associations with markers in the defined regions of

chromosome A2, A9, C2, C7 and C9 (Appendix 9). Within these data tables, details of trait associations

for genome-assigned markers are provided, including polymorphism, significance of association and

the frequency of the minor allele in the population. The same associated regions were shown for total

Specifications Table

Subject area Biology

More specific subject area Brassica secondary metabolite and genetics

Type of data Figure, Tables (MS Excel spreadsheets)

How data was acquired Glucosinolate measurements were obtained using HPLC on C18 reverse phase column. SNP

identification, transcript quantification, construction of the reference coding DNA sequence

and associative transcriptomic analysis platform were developed prior to this publication.

Data format Raw, processed, analyzed

Experimental factors Desulfoglucosinolates determined as glucosinolates from leaves and roots of genotyped B.

napus diversity panel. SNP- and GEM-trait association data were analyzed using R scripts.

Experimental features Transcriptome-based genome wide association

Data source location Glucosinolate data was collected at the University of York, York, UK.

Data accessibility Short read sequence data have been deposited at the Sequence Read Archive under

BioProject ID: PRJNA524101 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA524101).

Glucosinolate data are provided in Annex spreadsheets.

Related research article V. Kittipol, Z. He, L. Wang, T. Doheny-Adams, S. Langer, I. Bancroft, Genetic architecture of

glucosinolate variation in Brassica napus, J. Plant Physiol. 240 (2019) 152988. https://doi.org/

10.1016/j.jplph.2019.06.001 [1].

Value of the data

� This data provides comprehensive leaves and roots glucosinolate profiles across a diversity panel of 288 Brassica napus

(oilseed rape) genotypes with information on the population structure. Glucosinolate trait data can benefit oilseed rape

agribusinesses and researchers of this field in the selection of genotypes with desirable profiles or manipulation of profiles

to modulate plant-pest interactions.

� The GEM and SNP markers identified in the region of the genome that controls the variation in glucosinolate contents can

help accelerate breeding of oilseed rape by marker-assisted selection

� This data could be used for comparison or replication of genetic association markers for the natural glucosinolate vari-

ations in other populations and other plant tissues.
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seed GSL in B. napus (Appendix 10). As presented in [1], orthologues of HAG1 (AT5G61420), a tran-

scription factor that positively regulated aliphatic GSL biosynthesis, have been discovered within all of

these SNP-based associated loci (Appendix 9). In addition, the six GEMs detected above the threshold

for the false discovery rate (FDR) at 5% are shown to be involved directly in aliphatic GSL biosynthesis,

with orthologues of HAG1 as the top GEMs (Appendix 11). Presence of GEM association peaks on

chromosome A9, C2 and C9 for aliphatic GSL suggested structural genome variation via homoeologous

exchange where neighboring genes displayed the same directionality of one genome over-expressed

and other genome under-expressed (Appendix 12). The Transcriptome Display Tile Plots [4] was

used to visualize the homoeologous exchanges in these regions (Appendix 13).

In B. napus roots, aromatic GSL is the dominant GSL class and revealed a clear SNP association peak

on chromosome A3 (Appendix 4). As described in [1], an orthologue of HAG3 was identified in close

proximity to the top associated SNP markers within in this region (Appendix 14). To support gene

expression analysis in roots, differential expression analysis from root transcriptome-sequence was

performed, which compared the expression patterns of 4 accessions with high root aromatic GSLs and

4 accessions with low root aromatic GSLs (Appendix 15). Within the SNP associated region of chro-

mosome A3, Bna.HAG3.A3 showed the highest significant log2 fold-change (Appendix 15) with higher

expression of Bna.HAG3.A3 observed in high-root aromatic GSL genotypes and vice versa in the low-

root GSL genotypes. To limit potential confounding effect between GSL pathways, further stringent

analysis of differential root expression (p� 1�10�10) was performed between accessions which differs

in root aromatic GSLs but are low in aliphatic GSLs (Appendix 16). This analysis revealed insight into

genes that had been identified in aliphatic GSL pathway but could have potential roles in the aromatic

GSL pathway. This is shown by the significant positive correlations between their expression levels and

levels of aromatic GSL (Appendix 17).

Fig. 1. Population structure and Glucosinolate variation from 288 B. napus accessions of the Renewable Industrial Products

from Rapeseed (RIPR) Panel. (A) Relatedness of accessions in the panel based on 355 536 scored single-nucleotide polymorphisms

(SNPs). (B) Main crop types, color coded: orange for spring oilseed (SpOSR); green for semi-winter oilseed rape; light blue for swede;

dark blue for kale; red for winter oilseed rape(WOSR); black for winter fodder and gray for crop type not assigned. (C) Population

structure for highest likelihood k¼2. Variation for glucosinolates content (D) leaf and (E) root of 288 B. napus accessions. Individual

glucosinolates were grouped according to their structural class as aliphatic (dark blue), indole(margenta) and aromatic(light blue).

Panel A, B and C reproduced from Havlickova et al 2018.
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To investigate the relationship of GSLs between vegetative tissues and seeds, seed GSL data from [5]

was added to the dataset. Correlation analysis between levels of aliphatic GSLs and the transcript

abundance of GSL transporters, GTR1 (AT3G47960) and GTR2 (AT5G62680), was conducted to inves-

tigate the role of transporters on GSL accumulation pattern (Appendix 18), as described in [1]. Finally,

correlations between leaf and seed GSLs was analyzed to investigate the basis for the accumulation

pattern of GSLs in these tissues (Appendix 19).

2. Experimental design, materials, and methods

2.1. Growth of plant material for glucosinolate content

A subset of 288 B. napus accessions from the Renewable Industrial Products from Rapeseed (RIPR)

diversity population [2] was grown in long day (16/8 h, 20 �C/14 �C) under controlled glasshouse

conditions (University of York, UK).Within this panel, there are 56ModernWinter OSR, 65Winter OSR,

6 Winter Fodder, 121 Spring OSR, 26 Swede and 14 Exotic varieties (Appendix 1). Four biological

replicates of each accession were grown in root trainers with Terra-Green for ease of root harvesting,

supplemented weekly with a half concentration of Murashige and Skoog growth medium [6] adjusted

to pH6.5 with KOH. The experiment was arranged as randomized four-block designwith one plant per

lines in each block. Four weeks after sowing, the third true leaf and the whole root system were

harvested from each plant. At harvest, leaves were cut at the base, wrapped in a labelled aluminum foil

and immediately frozen in liquid nitrogen. Plants were removed from the tray, had the roots washed,

dried with paper towel and cut. All samples werewrapped in labelled aluminum foils and immediately

frozen in liquid nitrogen and stored at �80 �C.

2.2. Glucosinolate quantification

As per the recommended quantification method previously tested [7], frozen tissue samples were

lyophilized before homogenized to fine powder for 10 min at a frequency of 30 Hz (TissueLyser II,

Qiagen). To 50 mg of homogenate, 1975 ml of 80% (v/v) methanol and 25 ml of 5 mM internal standard

glucotropaeolinwas added. The sample was mixed and left to stand for 30 min at 20 �C and further

mixed with orbital shaker (Vibrax, IKA) at 1200 rpm for 30 min before centrifugation at 8000 rpm for

10 min. Supernatant methanol extract was then transferred to the pre-conditioned Sephadex column

in purification step. Purification and desulfation of GSLs was according to [8]. Columns were prepared

with 0.5 ml ion-exchange resin (DEAE Sephadex beads in 1:1 ratio with 2 M acetic acid), conditioned

with 2 ml imizadoleformate (6 M) and washed twice with 1 ml water. One ml of the extract was

transferred to a prepared column and gently washed twice with 1 ml 20 mM sodium acetate (pH 4)

before adding 75 ml of purified sulfatase (5 U/ml). Columns were incubated for 24 h and desulfoglu-

cosinolates were eluted with two 1 ml portions of water.

Desulfoglucosinolates were separated by HPLC (Millipore 600E system, Waters) on a reverse phase

C18 column at 30 �C (Phenomonex, SphereClone 5m ODS(2), 150 mm � 4.6 mm) with mobile phase

solutions consisting of 100% diH2O and 30% (v/v) acetronitile, as detailed in [7]. Injection was at 10 ml

and flow rate was set to 1 ml/min. The absorbance of the eluates was monitored at 229 nmwavelength

within the UV spectrum. Samples were separated according to the program described in [7]. Through

standard injections, HPLC-MS identification, retention time and photodiode array (PDA) UV spectra,

the identity of all major GSLs were confirmed.

2.3. Statistical analysis

Statistical analyses were carried out with R statistical software [9]. One-way ANOVA and Tukey's

honest significant difference (HSD) post hoc test were performed on GSL content between crop types

(Appendix 3).
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2.4. Transcriptome sequencing, SNP identification and transcript quantification

Plant growth conditions, sampling of material, RNA extraction and Illumina transcriptome

sequencing was carried out and described previously in [4]. For each genotype, RNA-sequence datawas

mapped onto recently developed ordered Brassica A and C genome-based pan-transcriptomes as

reference sequences [10], using the methods described in [11]. SNP positions were excluded from the

alignment if they have a read depth below 10, a base call quality below Q20, missing data below 0.25,

and three alleles or more. After rigorous filtering and quality checking parameters to reduce errors in

SNP identification and assessment of linkage disequilibrium as detailed in [2], a set of 355 536 SNP

markers was generated, of which 256 397 SNP had a minor allele frequency (MAF) > 0.01. Transcript

abundance was quantified and normalized as reads per kb per million aligned reads (RPKM) for each

sample. Of the 116 098 coding DNA sequence (CDS) models, 53 889 CDS models was detected with

significant expression (>0.4 RPKM).

2.5. Associative Transcriptomics

An overviewof Associative Transcriptomics (AT) analysis is shown in Fig. 2. The use of transcriptome

sequencing in AT allows the discovery of SNP markers in tight linkage disequilibrium with causative

genes like conventional GWAS, with the additional feature of finding genes with expression patterns

(gene expression markers, GEM) that correlate with the trait variation.

ATwas performed using R [9] based on an adaption of the first ATmethods [3] withmodifications to

accommodate for larger dataset, as detailed in [2]. To reduce the risks of false positive associations from

undetected population structure that can mimic the signal of association, population structure infer-

ence using kernel-PCA and optimization (PSIKO; highest likelihood subpopulation k¼ 2) [12] was used

for Q-matrix generation to correct for population stratification. SNP-based analyses were performed

with Genome Association and Prediction Integrated Tool (GAPIT) R package using mixed linear model

that includes both fixed and random effects [13]. SNPmarkers withminor allele frequencies below 0.01

were removed from the SNP dataset leaving 256 397 SNPs for the associations [2]. SNPmarkers that can

be assigned with confidence to the genomic position of the CDS model are rendered dark points and

markers that could not be assigned with confidence were rendered pale points. For GEM-based ana-

lyses, fixed-effect linear model was calculated in R software, with RPKM values and the Q matrix

inferred by PSIKO as explanatory variables, and trait score as the response variable [2]. For each

Fig. 2. Overview of associative transcriptomic analysis.
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regression, coefficients of determination (R2), constant, F-value and significance P-values were pro-

duced. When genomic inflation factor (l) was >1, genomic control with P-value adjustment [14] was

applied to the GEM analysis to correct for false associations. False discovery rate (FDR) [15] and

threshold for Bonferroni [16] corrections were used to set significance threshold at P < 0.05. Quantile-

Quantile plots all association analyses are included as Appendix 6 for root data and Appendix 7 for

leaf data.

2.6. Differential expression analysis of root RNA-seq data

Differential gene expression was analyzed using root transcriptome sequences from four biological

replicates (i.e. using root RNA-seq from 4 separate plants of each plant type). The methods in Bio-

conductor package EdgeR [17] were used to identify the differential expressed genes. In multiple

comparisons, both fold change (FC) > 2 and false discovery rate (FDR) < 0.05 were used to flag a gene

being differentially expressed. Flags of “1”,“-1” and “0” were used to note positively, and negatively or

not significantly expressed genes in the data and can be filtered among comparisons.
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