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Abstract 

Printing of conductive inks is an attractive means of electronic component manufacturing on 

flexible substrates including textiles. Highly conductive inks are preferably made from metal 

nanoparticles such as silver. However, such inks are expensive and generally not known to 

withstand severe washing and wearing to which textiles are normally subjected to during the 

end use. In the present study, which forms a part of a larger study by the authors, dispersions 

of conductive grades of carbon black were formulated. These dispersions are converted into 

finished inks and are found to be very stable after let down with different binders. The final 

pigment loading in all of the formulated inks was significantly less than the pigment loading 

that is generally found in commercial conductive inks. In addition, the electrical conductivity 

after washing and creasing tests of the formulated inks was found to be significantly greater 

than that of the tested commercial conductive inks.  

Keywords 

Conductive inks, textile printing, e-textiles, carbon black  
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1. Introduction 

The development of wearable electronics technology has been/and is fuelled by the increasing 

desire for ubiquitous smart systems 1, 2. Many of the claimed prototypes of interactive 

electronic textiles are based on integrated wiring to which the devices are attached, adding 

bulk and weight to the garments which make them uncomfortable and impractical for most of 

the intended uses. In the case of truly wearable e-textiles, it is important to ensure that the 

hardware integrated into clothing is unobtrusive, washable, and does not impede the 

garment’s ability to conform to body curvatures 3, 4.  

 

Using conductive wires or filaments in various forms such as yarns, threads, cables or ribbons 

is the most widely reported method of component fabrication in textile fabrics 5-10. Some of 

these techniques are reportedly used in commercial e-textile prototypes. However, there are 

limitations. Some techniques restrict circuits to specially prepared fabric. Some require the 

use of specially prepared electrical components and add bulk to the final article. Others 

cannot be practically automated or mass produced. In addition, virtually all of the techniques 

based on the use of conductive filaments involve multiple, very complex manufacturing 

processes, which is arguably the most significant drawback of such techniques.  

 

In contrast, printing allows the one-step formation of an intricate design and thus, offers 

several obvious advantages when it comes to realization of electronic components on a 

flexible substrate such as a textile. The availability of an ink that possesses the desired 

electrical characteristics is a fundamental consideration in the case of printed electronics. It is 

imperative to mention here that the technology of electrically conductive inks is not new and 

several producers manufacture electrically functional inks that are frequently employed to 

develop passive electronic components such as resistors, capacitors, interconnections and so 

on, as well as the more sophisticated electronic devices such as transistors, displays, etc., on 
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flexible plastic substrates 11-14. However, a number of factors pose great challenges for 

successful printing of electronic devices on textiles. Firstly, in contrast to the flexible 

substrates that are commonly employed in the printed electronics industries, for instance 

polyimide films and polyester films, textile fabrics in general and woven textile fabrics in 

particular possess a very rough and porous surface. Thus, the lack of ink film integrity 

becomes a limiting factor in achieving the desired functionality. Secondly, the durability 

requirements, such as the ability to withstand several washing and wearing cycles, are 

stringent for inks that are printed onto textile substrates 15, 16. 

 

For high conductivity applications, for instance printed interconnections, metallic inks are the 

obvious choice. Inks containing silver nano-particles or silver flakes can be used for e-textiles 

fabrication by conventional printing techniques 17-19. To overcome critical problems, such as 

poor mechanical strength of ink film, poor ink film integrity due to substrate surface 

roughness, elaborate methods of using one or more layers of polymeric binders can be 

adopted  20, 21. Another approach to produce a conductive pattern is to deposit a metal 

precursor followed by a second step in which elemental metal is produced in-situ on the 

substrate by a suitable process such as reduction. This method was used to produce 

electrically conductive patterns of silver on various substrates including a woven cotton fabric 

by ink-jet printing22.  

 

The recent discoveries of high performing materials such as graphene have triggered the 

interest of research community in employing these new materials in numerous applications, 

including the formulation of electrically conductive inks. In one such study, inkjet printable 

electrically and thermally conductive ink was formulated from nano-graphene platelets 23. 

Other forms of carbon-based materials, such as CNTs, have also been used in fictionalization 
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of textiles 24, 25. The use of CNTs in silver nano-particle inks is known to reduce silver 

concentration drastically, which could be beneficial in terms of ink film flexibility 26. 

 

Electrically conductive polymers are also a strong candidate for use as conductive filler 

materials in inks/coatings. One of the more widely reported methods of producing electrically 

conductivity textile yarn/fabrics is the in-situ polymerization of an intrinsically conductive 

polymer onto a textile material 27. One such method was reported to produce conductive 

textiles uniformly coated with doped polypyrrole or polyaniline 28. In another study, the 

generally poor mechanical properties of polyaniline (PANI) were dealt with by adding 

polyethylene glycol (PEG) during in-situ polymerisation of the conductive polymer onto a 

polyester fabric 29. However, blending PANI with PEG was found to considerably reduce the 

conductivity of the conductive fabric. 

 

A number of studies that are summarized in the preceding text reveal the use of conductive 

inks, comprising of different conductive filler materials, in the formation of conductive 

prints/coatings. This review shows that the available techniques suffer from one or more of 

the following limitations. 

a. High loading of metallic fillers usually renders the ink film brittle and impairs the 

adhesion with flexible substrates such as textile fabrics. 

b. Increasing trend in the cost metals is a major limitation to large scale application of 

such inks.  

c. In some cases, for instance when metal nano-particles are synthesized in-situ, the final 

conductive layer is produced by depositing several layers of various reagents. Thus, 

the fabrication process is either too complex or involves several steps. 

d. In case of non-metallic conductive fillers, the electrical conductivity achieved is rather 

low in many cases. 
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e. Furthermore, in a number of cases, performance testing in terms of washing and 

creasing tests were not carried out and thus the durability of the produced conductive 

patterns could not be established. 

 

In contrast to other conductive filler materials, carbon black offers the advantages of being 

relatively low cost and easily processable. In addition, the electrical conductivity of the 

ink/coating can be adjusted in a broad range with relative ease. In the first phase of this 

research, dispersions of conductive carbon black pigments were produced, optimized and 

characterized 30. In this part of the study, these dispersions were formulated into finished inks 

followed by application and performance testing on textile substrates in order to investigate if 

one or more of the aforementioned limitations can be overcome by using specific grades of 

carbon black in printing inks. 

 

2. Materials 

2.1 Pigment dispersions 

A 4-step procedure, as described in a separate study by the authors 30, was followed to prepare 

waterborne dispersions of non-printing ink grades of carbon black pigments. The dispersion 

formulations containing the pigment, the dispersant and vehicle (water) were subjected to 

bead milling for an appropriate length of time and under optimised conditions as determined 

in another study by the authors31. The twelve pigment-dispersant combinations, listed in Table 

I, were used to formulate finished inks which were printed onto textile fabrics and 

subsequently tested. 

Table I: Pigment-dispersant combinations prepared and tested in the 1st phase of study. 

Dispersant name 
(Code*) 

 Solsperse 44000 BYK-190 Tego 760W 
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(Dispersant1) (Dispersant2) (Dispersant3) 

P
ig

m
e

n
t 

n
a

m
e 

(C
o

d
e

*)
 

Vulcan XC605 
SA** = 59 m2/g 

(Carbon1) 

Dispersion 1 
(C1D1) 

Dispersion 2 
(C1D2) 

Dispersion 3 
(C1D3) 

Ensaco 250G 
SA** = 62 m2/g 

(Carbon2) 

Dispersion 4 
(C2D1) 

Dispersion 5 
(C2D2) 

Dispersion 6 
(C2D3) 

Ensaco 350G 
SA** = 770 m2/g 

(Carbon3) 

Dispersion 7 
(C3D1) 

Dispersion 8 
(C3D2) 

Dispersion 9 
(C3D3) 

Printex XE2B 
SA** = 1000 m2/g 

(Carbon4) 

Dispersion 11 
(C4D1) 

Dispersion 10 
(C4D2) 

Dispersion 12 
(C4D3) 

*Code refers to the symbol used in this study for a product instead of its full commercial name 
** BET Surface area 

 

2.2 Binders 

In this study, polymeric binders were used for one or more of the following: for the let-down 

of optimized pigment dispersions; and in the primer coating of textile substrates. Three 

polymeric binders, which represent the types commonly used in inks/coatings for textiles, 

were selected. The available details for these binders are provided in Table II . In order to 

calculate the amount of binder that was required to formulate the finished inks from the 

optimized pigment dispersions, the solid content of each of the three binders was determined 

using thermogravimetric analysis. 

Table II : Binders used in the study. 

Binder  
(Code) 

Supplier Description 

Solids 
content 
(wt %) 

Impranil DLC-F 
(Binder1) 

BASF 
Anionic polycarbonate ester 
polyurethane dispersion 

40 

Impranil LP GHG 519 
(Binder2) 

BASF 
Anionic aliphatic polyester-
polyurethane dispersion 

40 

Printofix Binder 83 liquid 
(Binder3) 

Clariant 
Aqueous dispersion of a styrene-
acrylic copolymer 

40 
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2.3 Commercial conductive inks 

The surface resistivity and the durability (resistance to washing and creasing) of the inks that 

were formulated in this study were compared against two commercially available carbon 

based inks that were kindly supplied by the respective manufacturers. The surface resistivity 

values that are shown in Table III  relate to an ink layer that has a dry film thickness of 25 

microns and deposited on a polyimide film. The solids content of these inks was determined 

using thermogravimetric analysis. 

Table III : Commercial conductive inks used in the study. 

Product Supplier 
Surface 

resistivity 
(Ω/) 

Solids content 
(wt %) 

C2030519P4 
Carbon/Graphite ink 

Gwent 
Electronic 

Materials Ltd 
13 -20 40 

SD 2843 HAL Peters GmBH 10 73 

 

2.4 Substrates 

The substrates on which the printing of conductive patterns was targeted in this study were 

textile fabrics. There are number of physical and chemical properties of a textile fabric that 

might influence the resultant print quality and, in turn, influence the performance/behaviour 

of the printed patterns. These include the surface smoothness, the absorbency, the surface 

energy, the fabric construction (weave design, warp and weft count in case of woven fabrics), 

the GSM, the porosity (related to fabric construction and GSM) and the resistance to 

acidic/alkaline media. These substrate-dependent variables are important. None-the-less this 

study was focused on achieving high electrical conductivities in ink formulations. Thus, the 

testing of substrate-related variables was beyond the scope of this study and some of the tests 

were carried out on calcium carbonate clay coated paperboard substrate of having a weight 

per unit area of 240 g/m2. 
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For performance testing of inks on textile substrates, 100% cotton and 100% poly(ethylene 

terephthalate) (elsewhere referred to as polyester) woven fabrics, which are the two more 

commonly used woven textile fabrics, were selected as the substrates. These fabrics were 

obtained from Whaley-Bradford Limited, UK. Both the cotton and the polyester fabric had a 1 

x 1 plain woven structure and GSM of 80 and 55, respectively. 

 

3. Methods 

3.1 Letdown procedure to formulate finished inks 

Each of the 12 optimized pigment dispersions was let-down with Binder1 (B1), Binder2 (B2) 

and Binder3 (B3). The inks were formulated to contain 100% binder solids on the weight of 

pigment (referred to as %BOWP). For let-down, 10 g of a pigment dispersion was weighed in 

a 25 mL beaker and the required amount of binder was added drop-wise using a pipette while 

the mixture was continuously stirred using a magnetic stirrer. The beaker containing the ink 

was sealed using parafilm to avoid evaporation and mixing was continued for 10 minutes after 

addition of the required amount of the binder. The ink was then collected in a glass vial that 

was covered with a PTFE sealed cap to avoid exposure to air and to prevent evaporation of 

water.  

 

3.2 Sample preparation 

For various tests relevant to this study, samples were prepared by depositing the formulated 

inks onto the paperboard substrate and the selected textile fabrics. Ink deposition was done 

using a hand coating apparatus from RK PrintCoat Instruments, UK. In the case of textile 

substrates, primer coated fabrics were also prepared and considered for performance testing of 

the formulated inks and the commercial inks. To select a binder for primer coating, a separate 

set of tests was conducted in which each of the three binders that are listed in Table II  was 
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padded onto the fabric substrates using a laboratory padder. Binder3 was found to be better 

than Binder1 and Binder2 in terms of the washing durability of the coating. Figure 1(a,b) 

show that actual fabric samples while Figure 1(c,d) show the Binder3 coated fabrics after 

washing according to BS EN ISO 105-C06 test method. It is evident from Figure 1(c,d) that 

the primer coating was durable and it also greatly reduced the surface roughness and porosity 

of both the fabrics. Binder3 primer coating was thus carried out on the cotton and polyester 

fabrics by padding the fabrics with the binder. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1: Micrographs of (a) uncoated cotton, (b) uncoated polyester, (c) coated cotton and (d) coated 
polyester. 

 

3.3 Durability testing of inks 

In the research that underpins this paper, the washing and creasing durability of inks that were 

printed onto textile substrates were evaluated. These two tests are arguably the more 

important durability tests to be carried out on any product in the domain of e-textiles.  
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3.3.1 Washing tests 

From one of the sets of printed substrates, prepared as described in the preceding section, 

swatches were cut out for washing tests which were performed according to the BS EN ISO 

105-C06:1997 test method. This test method is used to determine the colour fastness of a 

textile material to domestic washing and commercial laundering. In the context of present 

study, however, the test was carried out to determine the effects of washing on the surface 

resistivity of the conductive inks deposited onto textile substrates. The washing tests were 

carried out on a Mathis Washtester Model WT, which complies with the requirements for a 

suitable mechanical device, as specified in the standard test method. The AATCC Reference 

Detergent 1993 (Without Optical Brightener) was used in all the tests. 

 

3.3.2 Creasing tests 

Creasing tests were performed according to the ASTM F 2749 – 09 test method, which 

specifies the procedure, without specifying the precision and bias of the procedure, for the 

creasing of any part of a membrane switch with conductive circuits. The method defines 

‘crease’ as a ridge or groove made by folding and pressing while a ‘crease cycle’ is defined as 

a 180° crease, followed by straightening of the crease. Five creasing cycles were performed 

and the surface resistivity of the specimen was recorded between successive cycles. 

 

3.4 Electrical characterization 

The surface resistivity of drawdowns of dispersions and the inks was recorded using a 

Keithley digital multimeter (Model 2100). An electrode, designed to record the surface 

resistivity of a 30 mm x 30 mm printed area was used. A standard 5 kg weight block was used 

to press the electrode onto the printed substrate, thus helping to ensure that intimate contact 

between the electrode and the test surface was achieved. 
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4. Results and Discussion 

4.1 Let down stability of finished inks 

As described in Section 3.1, different binders were used to convert the optimized pigment 

dispersions into finished inks. Addition of a binder can induce instability in a pigment 

dispersion. In the case of conductive dispersions and inks, such instability could become 

apparent in the form of significant or complete loss of conductivity due to aggregation of the 

conductive pigment. Thus, in the present study, the surface resistivity measurements were 

used as an indirect means of assessing the letdown stability of the pigment dispersions. In the 

first step, the inks were printed onto paperboard substrate instead of textile fabrics. The use of 

this substrate facilitated the exclusion of the effects of substrate-dependent variations, such as 

non-uniform absorption/penetration of ink and a corresponding variation in the thickness of 

the dried ink layer. K bar 3 was used to prepare drawdowns of each of the finished inks and 

the surface resistivity was recorded, as described in Section 3.4. The relevant data is provided 

in Figure 2. It was found that the inks prepared from the dispersions of both the low surface 

area pigments and the high surface area pigments possessed comparable surface resistivity. In 

addition, the surface resistivity of finished inks that were prepared by incorporating different 

binders in a pigment dispersion was also comparable. This could be considered as an 

indication of the fact that none of the dispersions were destabilized as a result of letdown with 

the different binders that were considered in this study. This point is particularly significant 

for the dispersions of high surface area pigments in which large amounts of dispersants, as 

high as up to 225 % on the weight of pigment, were present.  
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Figure 2: Surface resistivity of inks prepared using different binders. 

It was observed in some trial experiments that K bar 9, that gives a wet film deposit of 120 

ȝm, was appropriate for ink deposition on textile substrates. However, when drawdowns were 

prepared on paperboard substrate using K bar 9, a significant deformation of the paperboard 

substrate resulted. This made it difficult to obtain a stable measurement of surface resistivity. 

Thus, the test samples for surface resistivity measurements of multiple layers of ink were 

produced with three ink layers deposited on top of each other using K-bar 3 (K-bar 3 produces 

a wet film deposit of 24 ȝm). The ink layers were air dried at ambient temperature for one 

hour and the surface resistivity was recorded between successive ink depositions. After 

deposition of the third ink layer, the printed substrates were oven dried at 60 °C for 30 

minutes followed by conditioning at ambient temperature (20-23 ºC) for one hour before the 

surface resistivity was recorded. This approach also ensured that potential unwanted effects 

such as migration of binder to the surface of ink layer during drying were eliminated or 

minimized. The data thus obtained (Figure 3) provided the electrical characteristics of single 

layer and multiple layers of the formulated inks. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: Surface resistivity of single and multiple layers of (a) Carbon1 inks, (b) Carbon2 inks, (c) 
Carbon3 inks and (d) Carbon4 inks. 

 

4.2 Printing and testing on textile substrates 

4.2.1 Washing performance of inks produced using different binders 

The presence of hydrophilic entities of the dispersants can result in a significant reduction in 

the water and chemical resistance of the dry ink film 32-34. This effect can be more pronounced 

if large amount of a dispersant is present in the formulation, as in the case of this study. In 

order to test the durability of films of inks formulated to contain 100% BOWP of various 

binders, fabrics were printed and tested. The results of washing tests, tabulated in Table IV  

and Table V indicate that none of the three binders was significantly inferior to others in 

terms of furnishing resistance to washing. However, in most cases, the increase in surface 

resistivity was the least in those inks that were prepared using Binder3. Furthermore, the 
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surface resistivity of ink films containing Binder3 was generally less (before and after the 

wash tests) compared to the surface resistivity of ink films containing Binder1 or Binder2.  

Table IV : Change in surface resistivity after washing of Carbon1-/Carbon2- containing ink films 
deposited onto cotton fabric. 

Ink composition 
Surface resistivity (Ω/) 
Before  
wash 

After  
wash 

% 
Increase 

Carbon1 31 wt%, 
Dispersant1 15% DOWP 

Binder1 100% BOWP 442 536 21.26 

Binder2 100% BOWP 276 365 32.24 

Binder3 100% BOWP 287 311 8.36 

Carbon1 31 wt%,  
Dispersant2 15% DOWP 

Binder1 100% BOWP 558 690 23.65 

Binder2 100% BOWP 200 257 28.50 

Binder3 100% BOWP 139 169 21.58 

Carbon1 31 wt%,  
Dispersant3 15% DOWP 

Binder1 100% BOWP 725 737 1.65 

Binder2 100% BOWP 225 264 17.33 

Binder3 100% BOWP 99 123 24.24 

     

Carbon2 23 wt%,  
Dispersant1 17.5% DOWP 

Binder1 100% BOWP 220 320 45.45 

Binder2 100% BOWP 155 218 40.64 

Binder3 100% BOWP 127 166 30.71 

Carbon2 23 wt%, 
Dispersant2 17.5% DOWP 

Binder1 100% BOWP 270 383 41.85 

Binder2 100% BOWP 144 194 34.72 

Binder3 100% BOWP 140 188 34.28 

Carbon2 22 wt%,  
Dispersant3 17.5% DOWP 

Binder1 100% BOWP 307 361 17.59 

Binder2 100% BOWP 166 264 59.04 

Binder3 100% BOWP 151 201 33.11 

 

Table V: Change in surface resistivity after washing of Carbon3-/Carbon4- containing ink films 
deposited onto cotton fabric. 

Ink composition 
Surface resistivity (Ω/) 
Before  
wash 

After  
wash 

% 
Increase 

Carbon3 11 wt%,  
Dispersant1 155% DOWP 

Binder1 100% BOWP 568 938 65.14 

Binder2 100% BOWP 441 1050 138.09 

Binder3 100% BOWP 324 573 76.85 

Carbon3 11 wt%,  
Dispersant2 155% DOWP 

Binder1 100% BOWP 422 896 112.32 

Binder2 100% BOWP 297 493 65.99 
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Binder3 100% BOWP 188 350 86.17 

Carbon3 10.5 wt%,  
Dispersant3 155% DOWP 

Binder1 100% BOWP 461 1645 256.83 

Binder2 100% BOWP 216 462 113.88 

Binder3 100% BOWP 112 182 62.50 

 
 

   

Carbon4 9.5 wt%, 
Dispersant1 225% DOWP 

Binder1 100% BOWP 1321 2943 122.78 

Binder2 100% BOWP 784 1966 150.76 

Binder3 100% BOWP 376 987 162.50 

Carbon4 9.5 wt%,  
Dispersant2 225% DOWP 

Binder1 100% BOWP 647 2955 356.72 

Binder2 100% BOWP 411 1314 219.71 

Binder3 100% BOWP 277 582 110.11 

Carbon4 9.3 wt%,  
Dispersant3 225% DOWP 

Binder1 100% BOWP 721 1251 73.51 

Binder2 100% BOWP 241 410 70.12 

Binder3 100% BOWP 206 340 65.05 

 

The results presented in Table IV and Table V also indicate clearly that the increase in surface 

resistivity was more pronounced in the case of inks containing high surface area pigments. 

This could be attributed to the considerably large amounts of dispersants present in these 

formulations. More importantly, it must be noted that in order to maintain a comparable 

pigment:binder ratio in all of the inks, the amount of binder in a dispersion was calculated on 

the weight of pigment in the dispersion. Thus, in the case of high surface area pigments, the 

amount of binder was below the minimum recommended quantities. 

 

4.2.2 Testing of inks on different substrates 

It is well-known that substrate surface characteristics can greatly influence the properties and 

in turn the performance of ink films. Thus, at this stage in the present study, the inks were 

printed and tested on the uncoated fabric substrates and Binder3-coated fabric substrates that 

were prepared by following the procedure described in Section 3.2. On the basis of a 

consideration of the results presented in the preceding section, only the inks containing 

Binder3 were considered for further testing.  
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It is evident from the data presented in Table VI and Table VII that in the case of both cotton 

as well as the polyester fabric substrates, the surface resistivity is generally reduced when an 

ink is printed onto a binder coated substrate. This is commonly attributed to improved ink 

film integrity due to a lesser extent of pores and capillaries. Owing to the very low GSM and 

open structure of the polyester fabric, the drawdowns produced on it were not very uniform 

and the corresponding surface resistivity values varied within a broad range.  

Table VI: Surface resistivity data of the films of inks prepared from the dispersions of Carbon1 and 
Carbon2 pigments. 

Ink composition 
Surface resistivity (Ω/) 

Cotton Polyester 
Coated Uncoated Coated Uncoated 

Carbon1 31 wt%, 
Dispersant1 15% DOWP, Binder 3 100% BOWP 128 178 130 193 

Carbon1 31 wt%,  
Dispersant2 15% DOWP, Binder 3 100% BOWP 121 101 153 206 

Carbon1 31 wt%,  
Dispersant3 15% DOWP, Binder 3 100% BOWP 83 102 98 137 

 
  

  

Carbon2 23 wt%,  
Dispersant1 17.5% DOWP, Binder 3 100% 
BOWP 

76 149 93 220 

Carbon2 23 wt%,  
Dispersant2 17.5% DOWP, Binder 3 100% 
BOWP 

98 152 91 236 

Carbon2 22 wt%, 
Dispersant3 17.5% DOWP, Binder 3 100% 
BOWP 

101 139 100 252 

 

Table VII: Surface resistivity data of the films of inks prepared from the dispersions of Carbon3 and 
Carbon4 pigments. 

Ink composition 
Surface resistivity (Ω/) 

Cotton Polyester 
Coated Uncoated Coated Uncoated 

Carbon3 11 wt%,  
Dispersant1 155% DOWP, Binder 3 100% 
BOWP 

216 282 166 274 

Carbon3 11 wt%,  
Dispersant2 155% DOWP, Binder 3 100% 
BOWP 

159 180 133 175 

Carbon3 10.5 wt%,  102 127 122 138 
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Dispersant3 155% DOWP, Binder 3 100% 
BOWP 

     

Carbon4 9.5 wt%,  
Dispersant1 225% DOWP, Binder 3 100% 
BOWP 

187 392 113 407 

Carbon4 9.5 wt%,  
Dispersant2 225% DOWP, Binder 3 100% 
BOWP 

351 301 130 487 

Carbon4 9.3 wt%, 
Dispersant3 225% DOWP, Binder 3 100% 
BOWP 

241 230 114 135 

 

4.2.3 Performance comparison against commercial inks 

The washing and creasing performance of the Binder3 containing inks were compared against 

that of the selected commercial conductive inks. For this purpose, the commercial inks were 

drawn on the fabric substrates, followed by curing and washing the printed fabrics. From the 

data provided in Table VIII and Table IX, it is clear that increase in the surface resistivity, 

when an ink film was deposited on Binder3-coated polyester fabric, was slightly less than that 

in the surface resistivity of the film of same ink deposited onto uncoated cotton fabric. This 

difference could probably be due to improved bonding of ink layer onto the binder 

impregnated substrate.  

 

Prior to washing, the surface resistivity of the films produced from the commercial inks was 

considerably lower than the surface resistivity of the films produced from the formulated inks. 

However, the films produced from the commercial inks were less durable, as indicated by a 

significantly greater increase in the surface resistivity after washing (Table X). Furthermore, 

the commercial inks were removed from large areas of the fabrics during washing. This 

showed that the commercial inks tested were not suitable for printing fine lines, a quality that 

is often required of prints when printing electrical interconnects. 

 

Table VIII: Change in surface resistivity after washing of Carbon1-/Carbon2- containing ink films. 
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Ink composition Substrate 
Surface resistivity (Ω/) 
Before 
wash 

After 
wash 

% 
Increase 

Carbon1 31 wt%,  
Dispersant1 15% DOWP, 
Binder 3 100% BOWP. 

Uncoated Cotton 287 311 8.36 

Coated Polyester 112 118 5.36 

Carbon1 31 wt%,  
Dispersant2 15% DOWP, 
Binder3 100% BOWP 

Uncoated Cotton 139 169 21.58 

Coated Polyester 101 99 -1.49 

Carbon1 31 wt%,  
Dispersant3 15% DOWP, 
Binder3 100% BOWP 

Uncoated Cotton 99 123 24.24 

Coated Polyester 129 157 21.58 

 
    

Carbon2 23 wt%,  
Dispersant1 17.5% DOWP, 
Binder3 100% BOWP 

Uncoated Cotton 127 166 30.71 

Coated Polyester 139 178 27.87 

Carbon2 23 wt%,  
Dispersant2 17.5% DOWP, 
Binder3 100% BOWP 

Uncoated Cotton 140 188 34.28 

Coated Polyester 153 183 19.63 

Carbon2 22 wt%, 
Dispersant3 17.5% DOWP, 
Binder3 100% BOWP 

Uncoated Cotton 151 201 33.11 

Coated Polyester 223 275 23.15 

 

Table IX : Change in surface resistivity after washing of Carbon3-/Carbon4- containing ink films. 

Ink composition Substrate 
Surface resistivity (Ω/) 
Before 
wash 

After 
wash 

%  
Increase 

Carbon3 11 wt%,  
Dispersant1 155% DOWP,  
Binder3 100% BOWP 

Uncoated Cotton 324 573 76.85 

Coated Polyester 115 129 12.52 

Carbon3 11 wt%,  
Dispersant2 155% DOWP, 
 Binder3 100% BOWP 

Uncoated Cotton 188 350 86.17 

Coated Polyester 128 145 12.44 

Carbon3 10.5 wt%,  
Dispersant3 155% DOWP,  
Binder3 100% BOWP 

Uncoated Cotton 112 182 62.50 

Coated Polyester 69 77 11.49 

 
   

 

Carbon4 9.5 wt%,  
Dispersant1 225% DOWP,  
Binder3 100% BOWP 

Uncoated Cotton 376 987 162.50 

Coated Polyester 739 1686 128.14 

Carbon4 9.5 wt%,  
Dispersant2 225% DOWP,  
Binder3 100% BOWP 

Uncoated Cotton 277 582 110.11 

Coated Polyester 116 238 105.17 

Carbon4 9.3 wt%, 
Dispersant3 225% DOWP,  
Binder3 100% BOWP 

Uncoated Cotton 206 340 65.05 

Coated Polyester 102 132 29.41 

 

Table X: Washing tests results of commercial inks 
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Ink name Substrate 

Surface resistivity (Ω/) 

Before 
wash 

After 
wash 

%  
Increase 

Gwent C2030519P4 Uncoated Cotton 20.83 81.9 293.18 

Gwent C2030519P4 Coated Polyester 19.14 77.4 304.39 

Peters SD 2843 HAL Uncoated Cotton 59.96 NR - 

Peters SD 2843 HAL Coated Polyester 42.5 307 622.35 

NR refers to ‘no reading’, i.e., the surface resistivity was higher than 100 MΩ 

 

The creasing resistance of only the ink films produced on Binder3-coated polyester fabric was 

tested according to the procedure outlined in Section 3.3.2. Durability of the ink films to 

withstand up to five creasing cycles was tested and the surface resistivity was recorded after 

each cycle. The results are tabulated in Table XI. The results of creasing tests indicate that the 

overall increase in the surface resistivity of the films produced from the formulated inks was 

considerably lower compared to the increase in surface resistivity of films produced from the 

commercial inks. Furthermore, it was also noticed that the increase in surface resistivity was 

more pronounced in case of the inks that were prepared from the dispersions of high surface 

area pigments. As in the case of washing performance, this can be attributed to the very low 

binder solids content in the inks formulated from the dispersions of high surface area 

pigments. 

Table XI: Surface resistivity of inks recorded during crease testing of ink films. 

Ink composition 

Surface resistivity (Ω/) 

Number of crease cycles Overall 
Increase 

(%) 0 1 2 3 4 5 

Carbon1 31 wt%, Dispersant1 15% DOWP, 
Binder3 100% BOWP 

112 121 125 128 127 128 14.29 

Carbon1 31 wt%, Dispersant2 15% DOWP, 
Binder3 100% BOWP 

143 165 170 174 175 181 26.57 

Carbon1 31 wt%, Dispersant3 15% DOWP, 
Binder3 100% BOWP 

90 96 99 103 102 104 15.56 

Carbon2 23 wt%, Dispersant1 17.5% DOWP, 
Binder3 100% BOWP 

102 106 111 108 113 113 10.78 

Carbon2 23 wt%, Dispersant2 17.5% DOWP, 
Binder3 100% BOWP 

92 101 103 103 104 106 15.22 

Carbon2 22 wt%, Dispersant3 17.5% DOWP, 86 87 87 90 91 91 5.81 
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Binder3 100% BOWP 

Carbon3 11 wt%, Dispersant1 155% DOWP, 
Binder3 100% BOWP 

134 146 155 157 162 162 20.90 

Carbon3 11 wt%, Dispersant2 155% DOWP, 
Binder3 100% BOWP 

120 139 149 151 156 158 31.67 

Carbon3 10.5 wt%, Dispersant3 155% 
DOWP, Binder3 100% BOWP 

108 113 123 125 134 141 30.56 

Carbon4 9.5 wt%, Dispersant1 225% DOWP, 
Binder3 100% BOWP 

248 289 314 338 364 386 55.65 

Carbon4 9.5 wt%, Dispersant2 225% DOWP, 
Binder3 100% BOWP 

120 147 159 186 207 226 88.33 

Carbon4 9.3 wt%, Dispersant3 225% DOWP, 
Binder3 100% BOWP 

91 123 163 230 408 538 491.21 

Peters SD 2843 HAL carbon ink 28 63 98 157 196 411 311.00 

Gwent C2030519P4 carbon ink 20 71 170 302 432 550 450.00 

 

4.3 Resistivity of multiple ink layers 

Screen printing is arguably the most common technique of textile printing. Since screen 

printing can be employed to deposit relatively thick layers of inks onto textile substrates, it 

was attempted to find the surface resistivity of relatively very thick deposits of the formulated 

inks. For this purpose, Binder3-coated polyester fabric was selected as a substrate on the basis 

of the results of aforementioned studies, which indicated that this substrate provided a very 

smooth surface for printing. K bar 9 was used and two layers of an ink to be tested were 

deposited on top of each other with intermediate air drying for 1 hour between successive 

depositions. This was followed by air drying for 1 hour and then curing the ink deposit at 110 

– 120 °C for 20 minutes. The cured specimens were conditioned at ambient temperature (22 – 

25 °C) for 24 hours before measuring the surface resistivity. 

 

In Table XII, the pigment loading in the finished inks that were prepared in this study is 

provided along with the surface resistivity data for single and double ink layers on the 

Binder3 coated polyester fabric. The pigment loading in the finished inks was well below 20 

wt% and 10 wt% in the case of low surface area pigments and the high surface area pigments, 
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respectively. Despite the very low pigment loading, most of the formulated inks possessed 

surface resistivity of less than 100 Ω/. The deposition of two inks layers resulted in a 

considerable decrease in the surface resistivity. This shows that for certain applications 

allowing thick ink deposits, for instance printing of resistive heating elements, the electrical 

characteristics of the formulated inks can be adjusted in a broad range with relative ease.  

Table XII: Surface resistivity of single and double ink layers on Binder3-coated polyester fabric.  

Ink composition 

Final 
pigment 
loading 
(wt %) 

Surface resistivity 
(Ω/) 

1 layer 2 layers 

Carbon1 31 wt%, Dispersant1 15% 
DOWP, Binder3 100% BOWP 

17.46 89.4 50.72 

Carbon1 31 wt%, Dispersant2 15% 
DOWP, Binder3 100% BOWP 

17.46 115 68.65 

Carbon1 31 wt%, Dispersant3 15% 
DOWP, Binder3 100% BOWP 

17.46 80 43.68 

Carbon2 23 wt%, Dispersant1 17.5% 
DOWP, Binder3 100% BOWP 

14.60 111 53.74 

Carbon2 23 wt%, Dispersant2 17.5% 
DOWP, Binder3 100% BOWP 

14.60 106 49.96 

Carbon2 22 wt%, Dispersant3 17.5% 
DOWP, Binder3 100% BOWP 

14.19 87.4 46 

Carbon3 11 wt%, Dispersant1 155% 
DOWP, Binder3 100% BOWP 

8.63 162 103 

Carbon3 11 wt%, Dispersant2 155% 
DOWP, Binder3 100% BOWP 

8.63 140 92 

Carbon3 10.5 wt%, Dispersant3 155% 
DOWP, Binder3 100% BOWP 

8.32 152 85 

Carbon4 9.5 wt%, Dispersant1 225% 
DOWP, Binder3 100% BOWP 

7.68 530 435 

Carbon4 9.5 wt%, Dispersant2 225% 
DOWP, Binder3 100% BOWP 

7.68 180 149 

Carbon4 9.3 wt%, Dispersant3 225% 
DOWP, Binder3 100% BOWP 

7.54 157 101 

 

5. Conclusion 

Waterborne dispersions of electrically conductive grades of carbon black pigment were 

converted into finished inks by incorporating various polymeric binders. The electrical 

properties of the prepared inks clearly indicate that no considerable instability occurred in any 
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of the dispersions after letdown with various binders. In terms of washing and creasing, the 

durability of inks that were produced from the dispersions of high surface pigments was 

inferior but this could be primarily attributed to the considerably low binder quantity in these 

inks. The conductive ink formulation procedure devised in the present study can be used to 

produce highly conductive inks from non-printing ink grades of carbon black pigment. The 

results of this study clearly show that such non-printing ink grades furnish high electrical 

conductivity at incredibly low pigment loadings. In addition, the electrical properties can be 

varied within a broad range of values with relative ease. This makes such inks suitable for 

numerous potential applications in the domain of e-textiles. However, the mechanical 

properties required of textile printing inks can be further improved by optimizing the binder 

content.   
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