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Absolutely maximally entangled states, quantum maximum distance separable codes,

and quantum repeaters
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We address the relation between absolutely maximally entangled (AME) states and quantum
maximum distance separable (QMDS) codes by constructing whole families of QMDS codes from
AME states that have stabilizer representations. We introduce a generic reduction-friendly form for
the generator set of the stabilizer representation of an AME state, from which the stabilizer form for
children codes, all QMDS, can be obtained. Our method would work for relevant high-dimensional
codes as well as qubit-based codes. We then relate this to optimal codes for one-way quantum
repeaters, by minimizing the short-term infrastructure cost as well as the long-term running cost of
such quantum repeaters. This would allow us to obtain the optimal QMDS code, derived from an
AME parent state, that can be used in such quantum repeaters.
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I. INTRODUCTION

Quantum Internet [1], viz., the structure via which unknown quantum states can reliably be transferred, heavily
relies on the development of some of the most advanced technologies that enable quantum repeaters [2–5]. Early
proposals for reliable state transfer rely on teleportation [2], which, itself, requires us to distribute and store high-
fidelity entangled states between remote partners in an efficient and scalable way. Most of the experimental efforts
on quantum repeaters have so far focused on this approach, albeit a probabilistic version of it. This may prove useful
for certain applications, such as quantum key distribution (QKD), which can use post-selection in their procedure.
More recent proposals for quantum repeaters go around this limitation by offering an encode-and-go feature in which
the original quantum message is encoded into multipartite entangled states, resilient to loss and error, and sent to
the next node for error correction and retransmission [3–5]. This approach mostly resembles how packets of data are
being transmitted across today’s communications networks, and can form the ultimate solution to the requirements of
a truly working quantum Internet. The required specifications for the codes that enable such a smooth transmission
of quantum states is, nonetheless, quite daunting. In this paper, we make an attempt to better understand the
underlying structure for efficient codes used in such repeaters, sometimes referred to by third generation quantum
repeaters. Along the way we introduce a class of codes that are inherited from an interesting class of states known as
absolutely maximally entangled (AME) states [6, 7]. We will then explore how such codes can enhance the performance
of quantum repeaters that rely on error correction.
Quantum error correction (QEC) is a promising technique to solve the inherent fragility of quantum systems

interacting with the environment [8, 9]. In the case of third generation quantum repeaters, there are certain types of
errors that can be reduced by the use of quantum error correction codes. One of the key challenges to be addressed
by quantum repeaters is the issue of channel loss, which, in the case of flying quantum states carried by photons, can
result in erasure errors. That corresponds to the cases that the photons that are carrying the quantum information
will get lost before getting to their destination. Resilience to erasure errors is then one of the key requirements for
codes designed to be used in such quantum repeaters. In addition to erasure errors, any quantum circuit that is
used for quantum error correction must deal with the operational gate errors. That would possibly require additional
protection to offer fault-tolerant operation against both erasure and gate errors. Ideally, both features of correcting
possibly a large number of erasure errors and gate errors must be achieved by using a minimum amount of resources.
That is, efficiency is another desirable feature of the codes deployed in quantum repeaters.
While several codes have thus far been proposed to be used in third generation quantum repeaters, a systematic

approach to selecting a code, based on a desirable set of criteria, is missing. Quantum parity codes were studied
first for their simplicity, as they are represented by blocks of several qubits each. Erasure errors can be corrected
in such codes as long as each repeater station receives at least a complete block, and at least one qubit for each of
the remaining blocks [5]. Quantum parity codes belong to the family of Calderbank-Steane-Shor (CSS) codes, which
can be implemented using two-qubit transversal gates. This would allow the use of generic design techniques to find
their fault-tolerant implementations [8]. Detailed calculations on an approach based on teleported error correction
(TEC) [10] were performed later, showing their ability to correct operational errors as well [11]. But quantum parity
codes are not very efficient in terms of the total number of qubits used, and other codes, using fewer resources, were
proposed afterwards, e.g., quantum polynomial codes (QPyC) [12, 13] and quantum Reed-Solomon codes (QRSC)
[14]. An explicit argument on why or when to choose these codes is, however, missing.
In this paper, our objective is to find an overarching framework that identifies codes suitable for repeater applica-

tions. We are particularly interested in the property of being quantum maximum distance separable (QMDS), as a
good indicator of efficiency for our codes. This allows for maximum possible number of error correction given fixed
resources. As in previous proposals, we also associate simplicity to the CSS family of codes. Figure 1 shows a Venn
diagram for the relationship between CSS and QMDS codes, and how each of the above example codes would fit into
the diagram. QPyC and QRSC, in particular, seem to offer both efficiency and relative simplicity as they are both
QMDS and CSS codes. While CSS codes are well studied in the literature, here we turn our focus to a group of
QMDS codes that are related to AME states.
AME states belong to a class of multipartite entangled states that are characterized by having a completely mixed

state in all their balanced bipartitions, hence offering maximum possible average entropy. An interesting point
that connects AMEs to error correction is their usage in quantum secret sharing (QSS). In threshold QSS, a dealer
distributes a secret quantum state among N parties such that a subset K > N/2 of them have to cooperate to
reconstruct the secret, whereas K − 1 parties alone do not get any information about it. But this also means that
K of them are able to recover the secret regardless of what the other parties do, including destroying their shares,
which is an equivalent situation to a code that can correct for a certain number of erasure errors. AME states are
shown to be optimal for threshold QSS [6], as any balanced bipartition of them is a completely mixed state, that is,
no information can be gained about the state if less than N/2 parties join forces. This suggests a relationship between
AME states and erasure errors [7, 15, 16], which could be used among other things in quantum repeaters.
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Figure 1. Venn diagram showing the relations between the different types of codes mentioned in the paper. QMDS codes are
the ones able to correct the maximum number of errors for a fixed amount of resources, and are those related to AME states.
CSS codes are specially simple to implement fault-tolerantly. Therefore the intersection of the two is potentially the best region
to look for optimal codes for repeaters, like QPyC or QRSC. QPC are instead less efficient.

AMEs are linked to QMDS codes as well. In particular, AMEs are shown to be equivalent to a special QMDS code
in Ref. [17], which has only one codeword. Being the only codeword in the code space may not be attractive for
communication purposes as we need to encode different qubits into different codewords. However one can obtain a
family of useful QMDS codes from an AME, as shown in Refs. [18–20]. These families have been studied thoroughly
in a recent paper [21], where they are used to find weight enumerators and bounds of QMDS codes.
QMDS codes that are considered in this work are part of the class of additive codes [18], which can be described

using the stabilizer formalism [22]. Interestingly, all hitherto known AMEs can also be described with stabilizers. In
this work we propose a new convenient way to write AMEs in this language. This form makes it easy to obtain the
families of QMDS codes from their “parent” AME state. We prove with our new construction that the “children”
codes do meet the required conditions for being a QMDS code, in all qudit dimensions that are a prime integer or
power of a prime integer. Note that the existence of such children codes had previously been demonstrated only in the
qubit space [22]. We then show how QMDS codes can be relevant to quantum repeaters, and make some comparisons
between the performance of different types of codes.
The rest of this paper is organized as follows. In Sec. II, we provide our terminology for the commonly used tools

in this paper, including QEC codes, QMDS codes, AME states and the stabilizer formalism. Section III introduces
the idea of obtaining a children code from an AME state with an explicit example. Section IV is the core of the
work: we write AME stabilizers in a convenient way such that the stabilizer representation for children codes can be
found in a straightforward way. A proof of their fulfillment of the requirements of a code is given, in two cases: for
qudit dimensions that are prime, and for dimensions that are power of a prime. Section V explores how QMDS codes
are promising candidates for the implementation of one-way quantum repeaters and shows some comparative results
for key generation rates of a QKD setup and cost coefficients of different types of codes. We conclude the paper in
Sec. VI.

II. TERMINOLOGY AND NOTATIONS

Here, we summarize the notation used in this paper.
Additive quantum error-correcting code (QECC): A subspace C spanned by a set |ψm〉,m ∈ {1, ..., qk}, of orthonor-

mal states is a [[n, k, d]]q additive QECC, i.e. a code that encodes a logical space of dimension qk into n physical
qudits of dimension q, if it obeys the Knill-Laflamme conditions [23]

∀m,m′ ∈ {1, ...,K} :
〈

ψm

∣

∣E†F
∣

∣ψm′

〉

= f(E†F )δm,m′ , (1)

for all error operators E and F with wt(E†F ) < d, where wt is the weight of an operator, i.e., the number of sites
which have an element different from the identity in its Pauli representation, and the parameter d is the distance of
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the code; see Refs. [22, 23] for full definition of these notions. We will explain in more detail such features of a code
when we give the stabilizer formalism, described later in this section, for additive QECC. In Eq. (1), f is a function
of the error operators and δm,m′ is the Kronecker delta function [23].

Quantum maximum-distance separable (QMDS) code: An additive QECC is a QMDS code if its parameters fulfill
the quantum Singleton bound (QSB), i.e., n − k ≥ 2(d − 1), with equality. They are optimal in the sense that
they achieve the maximum possible distance for a given n − k. Note that when n and k have different parity, it
will not be possible to saturate the Singleton bound. We will call the codes with the maximum possible distance
allowed by the bound in that situation suboptimal QMDS. QMDS codes are not guaranteed to exist for every possible
combination of n, k and q. A list of maximum possible distances for all binary codes of n up to 100 appears in Ref. [24].

Absolutely maximally entangled (AME) state: An AME(n,q) state |ψ〉 ∈ H, for H = (Cq)⊗n, of n qudits of local
dimension q, is a state such that all its balanced partitions A = (Cq)⊗⌊n

2
⌋, H = A⊗ Ā, carry maximal entropy, i.e.,

S(ρA) = ⌊n
2
⌋ log2 q, ∀A , (2)

with ρA = trĀ(|ψ〉〈ψ|). This is tantamount to requiring that the reduced density matrix to r qudits, ρr, to be
proportional to the identity, with r ranging from 1 to ⌊n

2 ⌋. That is,

ρr =
1

qr
Iqr , ∀r ≤ ⌊n

2
⌋ . (3)

AMEs do not exist in all possible Hilbert spaces. For qubits they only exist for 2, 3, 5 and 6 parties, whereas it has
been shown that AMEs do not exist for 4 [25], 7 [26] and more than 8 qubits [17]. A thorough table on the existence
of AMEs for many different Hilbert spaces can be found in Ref. [27] and in Fig. 2 in Ref. [28]. In Hilbert spaces
where AME states do not exist, closest states to an AME state may be defined.
A convenient way to characterize QMDS codes and AMEs is by using the stabilizer formalism [22], which we define

now. It is suspected that AME states can always be described in terms of the stabilizer formalism. This has not been
proven, but it is true for all known examples [29]. In this work we only consider AME states that have stabilizer
representations.

Stabilizer formalism: An operator S is said to stabilize a state |φ〉 if

S |φ〉 = |φ〉 . (4)

In quantum error correction, stabilizer operators are often described as tensor products of Pauli operators, or the
generalization of them to q dimensions, which for the moment we assume is a prime number. The generalized Pauli
operators, Xa and Za, for prime q and a ∈ Zq, act on the computational basis states as follows

Xa |j〉 = |j + a mod q〉
Za |j〉 = ωaj |j〉 , (5)

with ω = e2πi/q. Note that for prime q, X ≡ X1 and Z ≡ Z1 are unitary and traceless, and we have Xa = Xa and
Za = Za. Furthermore, Xq = Zq = I, ZX = ωXZ, and XZ = ωq−1ZX. Any stabilizer operator written as a tensor
product of n elements from this basis defines a subspace of the Hilbert space H = (Cq)⊗n with the states that have
eigenvalue +1 for that operator. Any state in H can be stabilized by a total of qn different stabilizer operators of
this form. Such stabilizers can be generated from a set of n independent operators, known as the generator set, as
products of powers of its elements [22].
An additive QECC is a subspace of states, and an [[n, k, d]]q code can be described by n− k generators, for q prime.

The generators of the stabilizer space of that code must fulfill the following conditions:

1. Independence: gi 6=
∏n−k

j=1,j 6=i g
mj

j ∀mj = 0, 1, ..., q − 1 and i = 1, ..., n− k.

2. Commutation: [gi, gj ] = 0 ∀i, j = 1, ..., n− k

3. Distance: ∀E with 1 ≤ wt(E) ≤ d− 1, ∃i such that [E, gi] 6= 0,

where operators E are also written in terms of Pauli operators, and they represent the possible errors affecting an
encoded state. The weight of an error, wt(E), is the number of sites of the error operator with elements different
from the identity. The distance condition allows us to detect errors with weight smaller than d, the distance of the
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code, by identifying generators that do not commute with that error.

An interesting property of AME states is that an AME(n,q) is equivalent to a [[n, 0, ⌊n
2 ⌋ + 1]]q code [17]. This is

a code with only one codeword, hence it cannot be directly used for reliable communication. In the next section we
give an example of how an AME state can be used as a parent code for a family of QMDS codes. We will then extend
this technique to all AME states with valid stabilizer representations in Sec. IV.

III. OBSERVATION

Let us consider the AME(4,3) state given by [15]

|ψ〉 =1

3

∑

i,j,=0,1,2

|i〉|j〉|i+ j〉|i+ 2j〉

=
1

3
(|0000〉+ |0112〉+ |0221〉+ |1011〉+ |1120〉+ |1202〉+ |2022〉+ |2101〉+ |2210〉)

=
1

3
(|0〉 (|000〉+ |112〉+ |221〉) + |1〉 (|011〉+ |120〉+ |202〉) + |2〉 (|022〉+ |101〉+ |210〉)) , (6)

where the sums i+ j and i+2j are taken modulo q = 3, and the state is written in the standard computational basis.
By proposition 3 in Ref. [17], |ψ〉 is equivalent to a [[4, 0, 3]]3 code. We now try to build a [[3, 1, 2]]3 code by treating
the first qutrit in |ψ〉 as the message part, and encoding it with the projection of |ψ〉 onto the message component.
That is, from Eq. (6), the logical codeword for qutrit i is given by

|iL〉 =
1√
3

∑

j,=0,1,2

|j〉|i+ j〉|i+ 2j〉 for i = 0, 1, 2, (7)

or, equivalently,

|0L〉 =
1√
3
(|000〉+ |112〉+ |221〉)

|1L〉 =
1√
3
(|011〉+ |120〉+ |202〉)

|2L〉 =
1√
3
(|022〉+ |101〉+ |210〉) . (8)

We claim that the codewords in (8) indeed form a [[3, 1, 2]]3 code, which is QMDS. This is an example of a general
construction of reduced codes, whose existence has been proven in Theorem 6, part b, in Ref. [18], Theorem 20 in
Ref. [19], Lemma 70 in Ref. [20] or Theorem 2 in Ref. [21]. In next section, we give an analytical technique that can
be applied to prove this and a much broader set of claims within the stabilizer formalism.

IV. REDUCTION-FRIENDLY STABILIZER FORM FOR AME STATES

In this section we show how to start from the stabilizer representation of an AME state and obtain the stabilizer
form of all possible children codes, systematizing the observation made in the previous section. All these children
codes turn out to be QMDS as well. This will provide us with a recipe to generate efficient QMDS codes that inherit
strong erasure error correction features. Part of our construction and proof is inspired by Section 3.5 of Gottesman’s
thesis [22]. In there, the author explains how to obtain an [[n− 1, k + 1, d− 1]]2 qubit code from any [[n, k, d]]2 qubit
code, giving in detail the necessary manipulations. In our construction, we extend this technique to non-qubit codes
of prime, or power of a prime, dimensions. We provide a concrete reduction-friendly form for an AME from which it is
easy to automatically obtain the whole family of children codes. The proposed techniques can possibly be generalized
to find the stabilizer form for a [[n− k′, k + k′, d− k′]]q code, with k′ ≤ d− 1, from that of an original [[n, k, d]]q code,
even if the original code is not QMDS.

A. Construction for prime q

For an AME(n,q) state, with q a prime number, there must exist n generators for the equivalent [[n, 0, ⌊n/2⌋+ 1]]q
code, whenever a valid stabilizer representation exists. We will show that the stabilizer generator set for these codes,



6

when n is even, can always be written as in Fig. 2(a), and, when n is odd, as in Fig. 2(b), where an extra generator,
containing identities in all the left ⌊n/2⌋ sites, has been added. In Fig. 2, each generator is represented by the tensor
product of n Pauli operators, whose first ⌊n/2⌋ of them are specified in the given form. The other ⌈n/2⌉ Pauli
operators in each generator would be specific to the particular AME state of interest. The structure in Fig. 2 is of a
convenient form because it easily allows us to obtain whole families of QMDS codes from their parent AME state, as
we show below in Proposition 1. We will refer to the forms in Fig. 2 as the reduction-friendly stabilizer forms of an
AME state. We will show in Proposition 2 that such a reduction-friendly form exists for any AME state with a valid
stabilizer representation. Throughout this subsection, we assume that q is a prime number.

(a) n/2 sites n/2 sites
g1 I I ... I Z .................
g2 I I ... I X .................
g3 I I ... Z I .................
g4 I I ... X I .................
...

...
...

...
...
...

...
...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

gn−3 I Z ... I I .................
gn−2 I X ... I I .................
gn−1 Z I ... I I .................
gn X I ... I I .................

(b) ⌊n/2⌋ sites ⌈n/2⌉ sites
g1 I I ... I I .................
g2 I I ... I Z .................
g3 I I ... I X .................
g4 I I ... Z I .................
g5 I I ... X I .................
...

...
...

...
...
...

...
...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

gn−3 I Z ... I I .................
gn−2 I X ... I I .................
gn−1 Z I ... I I .................
gn X I ... I I .................

Figure 2. Reduction-friendly generator forms of AMEs with stabilizer representations. Each row represents the tensor product
of n Pauli operators that form a generator. For instance, in (a), g1 = I ⊗ I ⊗ ... ⊗ I ⊗ Z ⊗ ḡ1, where ḡ1, represented by dots,
is the tensor product of the other n/2 Pauli operators. (a) Reduction-friendly generator set for an AME(n, q) for n even. The
left part, with n/2 components, guarantees independence of the generators, whereas the remaining n/2 Pauli operators must
be found by imposing the remaining conditions of commutation and distance for a generator set. (b) When n is odd, an extra
generator must be added, containing identities in all the left ⌊n/2⌋ sites, as in g1.

Proposition 1. For an even integer n, if an [[n, 0, n/2 + 1]]q code has stabilizer generators in the form given by
Fig. 2(a), then we can obtain the generator set for its QMDS child code, [[n − 1, 1, n/2]]q, by removing the last two
generators and the first column in Fig. 2(a) of the [[n, 0, n/2+1]]q code. That is, generators g1, . . . , gn−2, once stripped
of operator I in their first site, will form the generator set for [[n− 1, 1, n/2]]q.

Proof. Here, we extend the proof presented in Sec. 3.5 of Ref. [22], for the special case of qubits, to codes of a
prime dimension q. Let us refer to the suggested generators for [[n− 1, 1, n/2]]q by g∗1 , . . . , g

∗
n−2. In order to show that

these operators will form the generator set for [[n − 1, 1, n/2]]q, we have to show that they satisfy the independence,
commutation, and distance criteria. The first two follow from the fact that g1, . . . , gn−2 are independent and mutually
commute. Let us focus on the distance criterion then. Suppose the code generated by g∗1 , . . . , g

∗
n−2 has distance p.

That is, p is the smallest weight for which there is an error E on sites 2 to n that commutes with all generators
g∗1 , ..., g

∗
n−2. By quantum Singleton bound, we know that p ≤ n/2. We now show that p ≥ n/2 as well, which proves

that p = n/2. That is, the code generated by g∗1 , ..., g
∗
n−2 is a QMDS code.

In the following, we search for an error operator E′′ that commutes with g1, . . . , gn. Consider the error operator
E′ = I⊗E, where we remind that E is an error operator of weight p that commutes with g∗1 , ..., g

∗
n−2. E

′ will commute
with generators g1, . . . , gn−2 as they have only identities on their first site. If it also commutes with gn−1 and gn,
then we choose E′′ = E′. This implies that the distance for the original code, n/2 + 1, must be less than or equal
to p. This contradicts the Singleton bound for the truncated code, and cannot be the case. This implies that one or
both of gn−1 and gn would not commute with E′. In fact, given that E′, gn−1, and gn are all tensor products of Pauli
operators, we can find coefficients mn−1 and mn such that

gn−1E
′= ωmn−1E′gn−1, (9)

gnE
′= ωmnE′gn,

where mn−1,mn ∈ {0, ..., q − 1}, and not both equal to zero. We can then define the error operator E′′ =
Xq−mn−1Zq−mn ⊗ E, which commutes will all g1, . . . , gn. This implies that the distance of the original code,
n/2 + 1, must be less than or equal to the weight of E′′, i.e., p+ 1. That is, p ≥ n/2, which completes our proof. �

Corollary 1.1. The above procedure can be iterated up to n/2−1 times to produce a whole family of [[n−k, k, n/2+
1− k]]q codes, with k = 0, ..., n/2− 1.
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Corollary 1.2. The same reasoning can be applied to the AME state of Fig. 2(b) of n odd, to produce a whole
family of [[n− k, k, ⌊n/2⌋+ 1− k]]q codes, with k = 0, ..., ⌊n/2⌋ − 1.

Corollary 1.3. Note that in the proof of Proposition 1, we did not make any use of the particular format of
g∗1 , ..., g

∗
n−2 as given by Fig. 2(a). We only used the particular form of the first column in Fig. 2(a). The claim in

Proposition 1 still holds so long as the first column has the desired form. This observation is important as we later
use it in the proof of Proposition 2.

We are now going to prove that it is always possible to bring an AME state with a stabilizer representation to the
reduction-friendly forms in Fig. 2, and, in such cases, it is always possible to apply Proposition 1 to obtain a whole
family of [[n− k, k, ⌊n/2⌋+ 1− k]]q codes for k = {1, ..., ⌊n/2⌋}.

Proposition 2. For a stabilizer AME(n, q) state, or its equivalent [[n, 0, n/2+1]]q code, with n ≥ 2 even and q prime,
we can find stabilizer generators such that, for j = {1, ..., n/2},











gi,j = Z if i = n+ 1− 2j

gi,j = X if i = n+ 2− 2j

gi,j = I elsewhere

where gi,j refers to the Pauli operator on site j of generator gi, as shown in Fig. 2(a).

Proof. We will proceed in a similar fashion to Gaussian elimination over Zq×Zq. If AME(n, q) is a stabilizer state,
then it should have n generators. Let us denote these generators by g1, . . . , gn.
Claim 1: There are at least two generators in the set whose first Pauli element is not identity. Let us see why: if for

all g1 to gn, the first site is the identity operator, then the error operator X ⊗ I⊗n−1 commutes with all generators.
This implies that the distance of the code is 1, whereas n/2 + 1 ≥ 2. Suppose gn is an operator with non-identity
operator in its first site. If gn is the only generator with this property, then the error operator gn,1 ⊗ I⊗n−1 would
commute with all generators, and we again reach the same distance contradiction. It follows that there are at least two
generators with non-identity operators in their first site. For the rest of the proof, we assume that we have relabelled
the generators so that gn−1 and gn are two such operators.
Now, consider the most general case for the first column of gn−1 and gn:

gn−1,1= XaZb (10)

gn,1= XcZd

where a, b, c, d ∈ Zq. We take the following four steps to reach the form given in Fig. 2(a).

Step 1: Elimination of Zd to obtain g′n,1 = Xc′ . As we are free to substitute a generator by a power of itself
multiplied by powers of the others, let us make the following transformation

g′n = (gn−1)
β(gn)

δ, (11)

where β, δ ∈ Zq. To achieve g′n,1 = Xc′ , up to a constant factor in power of ω, we need to find a solution to the
following equation

βb+ δd = 0 (mod q), (12)

which is equivalent to finding an integer m such that

βb+ δd = mq. (13)

According to Bézout identity [30], β and δ will always exist provided that mq is a multiple of the greatest common
divisor of b and d. But this is easy to fulfill, as m can be chosen such that the equation has a solution.
If this first step produces c′ = 0, and, therefore, g′n,1 = I, this means that gn−1 and gn are not independent on the

first site. We then have to permute generators and select another gn that is independent with gn−1 on the first site.
It is guaranteed to exist, otherwise the stabilizers would not define a code of distance larger than 1, as we showed
under Claim 1.
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[[2, 0, 2]]2
g1 Z Z
g2 X X

,

[[3, 0, 2]]2
g1 I Z Z
g2 Z I Z
g3 X X X

,

[[5, 0, 3]]2
g1 I I X X X
g2 I Z Z I Z
g3 I X Z I XZ
g4 Z I Z Z I
g5 X I Z XZ I

→

[[4, 1, 2]]2
g1 I X X X
g2 Z Z I Z
g3 X Z I XZ

[[6, 0, 4]]2
g1 I I Z X Z Z
g2 I I X Z XZ XZ
g3 I Z I Z X Z
g4 I X I XZ Z XZ
g5 Z I I Z Z X
g6 X I I XZ XZ Z

→

[[5, 1, 3]]2
g1 I Z X Z Z
g2 I X Z XZ XZ
g3 Z I Z X Z
g4 X I XZ Z XZ

→
[[4, 2, 2]]2

g1 Z X Z Z
g2 X Z XZ XZ

Figure 3. Examples of reduction-friendly forms for AME states in the qubit space: AME(2, 2), AME(3, 2), AME(5, 2), and
its child code [[4, 1, 2]]2, as well as AME(6, 2), and its two QMDS children codes.

Step 2: Transformation of Xc′ to X. That means we need to find γ such that c′γ = 1. Therefore an inverse for
c′ 6= 0 is needed. Given that q is prime, Zq is a field, meaning that every element in it has a multiplicative inverse.

Step 3. Transformation of the rest of the first column. The same procedure can be carried to transform
gn−1,1 = XaZb to g′n−1,1 = Zb′ and then to g′′n−1,1 = Z, all up to a constant factor, which can be ignored.
Then, we can easily make all the other generators to have identities on the first site by taking products of themselves
with the last two generators, now using the fact that every element in Zq has an additive inverse, which is true for any q.

Step 4. Iteration over the rest of the sites. Now that the generator table has the same form to Fig. 2(a) in its
first column, we can apply Corollary 1.3 to remove the last two generators (gn−1 and gn) and the whole first column,
and obtain an [[n − 1, 1, n/2]]q code. We can then repeat Steps 1–3 for the truncated code, generating g∗n−3,1 = Z
and g∗n−2,1 = X, and all other g∗i,1 = I. We can then go back to the original code and obtain gn−1,2 = I and
gn,2 = I using powers of gn−3 and gn−2, without worrying about changing the first column as those generators have
identity operators in their first site. This will bring the first two columns and the last four rows of the code in the
reduction-friendly form of Fig. 2(a). One can then iterate this procedure until column n/2, transforming the whole
code to its reduction-friendly form. �

Corollary 2.1. In the above proof, the main property of the AME state that we use is that the distance for the
corresponding code is given by n/2 + 1. This allows us to apply the iteration in step 4 for n/2 times. The other
property that we used is that Zq is an additive group. The above procedure can therefore be applied to other sta-
bilizer codes of distance d and dimension q, with q prime, to obtain a reduction-friendly form for the the first d−1 sites.

Corollary 2.2. In the case of n odd, given by [[n, 0, ⌊n/2⌋ + 1]]q code, we can use Corollary 2.1 to obtain the corre-
sponding form for generators g2, . . . , gn in Fig. 2(b). We need however an extra generator g1, which can be set to
have identities in all sites of the first half, as in Fig. 2(b), as we do not need it to have any special form to guarantee
the distance criterion.

Corollary 2.3. Given that each generator should be of weight d, the total number of sites with identity operator is
limited to n − d. In our reduction-friendly form of Fig. 2(a) for even n, we have already used that many identity
operators, which means that there will be no additional identity operator on the second half of the generators. For
AME states with odd n, by the same argument, there can be exactly one identity operator on the right hand side,
except for the first row, where there can be none.

Figure 3 gives all families of QMDS codes obtained from a parent AME state of q = 2. We have applied our
technique to find the reduction-friendly form for AME(2, 2), AME(3, 2), AME(5, 2) and AME(6, 2). In the latter
two cases, we have then obtained the generator set for the corresponding children codes as well.

It must be noted that this technique of suppressing generators and columns from our reduction-friendly generator
set of Fig. 2 is mathematically equivalent to the procedure for finding the partial trace of a stabilizer state in what is
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called the row-reduced echelon form in Ref. [31]. This shows that the children codes from an AME state can also be
interpreted as the support of their mixed stabilizer states obtained from successive partial traces of the original state.

Also note that other QMDS codes of k 6= 0 might exist even if their parent code with k = 0 does not. In the table
of Ref. [24], it can be checked that there are some binary QMDS codes, e.g., [[6, 4, 2]]2 code, that do not have an AME
parent. Another example is for qutrits: whereas the AME of 12 qutrits does not exist, the [[8, 4, 3]]3 code, as shown in
Theorem 14 of Ref. [32], does exist. It is however worth mentioning that a very recent paper shows that the existence
of a [[n− 1, 1, n/2]]q code implies the existence of the [[n, 0, n/2 + 1]]q for n even [21].

An important discussion that has been left out so far is how to obtain the original stabilizer expression for the
AME state, or another parent code. Such stabilizer representations are known for certain cases, but there is no known
systematic and/or efficient way to find all of them. An attractive idea is to take our reduction-friendly form of Fig. 2
for a desired AME(n, q) state and find the right-hand side operators by imposing the commutation and distance
criteria for the code, as the first condition, i.e., independence, is guaranteed by the left-hand side. Although this
is better than searching for AME states blindly, without a smart strategy to find the right hand side of the code,
the computation time will still increase very quickly with n and q. Another possibility, not necessarily efficient but
which provides valuable insight, goes along the way of using the equivalence between graph states and stabilizer states
[33, 34]. In the end, it amounts to check that a certain number of determinants, with the number of operations
growing exponentially with n and q, are different from zero. Reference [35] provides a systematic method to find new
AME states using graphs.

B. Extension to power-prime q

In this section, we extend the results obtained in Sec. IVA to the case of q = pm for a prime number p and a positive
integer m. There are several reasons that the previous treatment may not work for non-prime q. At the core of them
is the mathematical fact that ring Zq is not a field when q is not a prime number. In particular, this implies that not
all elements in Zq have a multiplicative inverse, and that, for example, invalidates Step 2 in the proof of Proposition
2. Different ways have been proposed to circumvent the difficulties of the stabilizer formalism for non-prime q. Here,
we adopt the approach in Refs. [20, 36–38], which give a solution for the special case of q = pm, where Galois field
GF (pm) can be used instead of Zq. We will not deal here with the more general case of q 6= pm.
The first step to define stabilizer operators for a power-prime q is to extend the definitions in Eq. (5) for generalized

Pauli operators. Suppose α is a primitive element of GF (pm) [39], such that αpm−1 = 1. We can then write
GF (pm) = {0, 1, α, α2, ..., αpm−2}. In such a setting, and for j, a ∈ GF (pm), the generalized Pauli operators Xa and
Za satisfy the following relationships

Xa |j〉 = |j + a mod q〉 ,
Za |j〉 = ωtr(aj) |j〉 , (14)

where ω is now defined as ω = e2πi/p, instead of ω = e2πi/q, and tr : GF (pm) → Zp is the trace function for a Galois
field element given by

tr(x) = x+ xp + xp
2

+ ...+ xp
m−1

, x ∈ GF (pm). (15)

The above expressions may result in a different behavior for X = X1 and Z = Z1 operators as compared to the case
of prime q. For example, X and Z will commute whenever m is a multiple of p, as in GF (4). More detail on above
definitions can be found in Refs. [20, 36, 38].
It can be shown that for the above generalized Pauli operators, the number of generators needed to build the

stabilizer space of an [[n, 0, d]]pm code is mn [36]. The key reason for this is that GF (pm) has the structure of a vector
space of dimension m over the field of Zp. The group of tensor products of n q-dimensional Pauli operators, as defined
in Eq. (14), is then isomorphic to the corresponding Pauli group for mn p-dimensional parties, where p is prime.
The latter is similar to the case considered in Sec. IVA, for which mn generators would be needed to describe the
stabilizer space for mn qudits of dimension p. It follows then mn generators will also be needed to define [[n, 0, d]]pm .

Now, let us speculate a reduction-friendly form for the stabilizer representation in the case of power prime q. In
Claim 1, for prime q and d ≥ 2, we showed that there were at least two generators in the set whose first Pauli element
was not identity. We can extend this claim to the case of power-prime q in the sense that now in every site there
must be at least 2m generators with elements different from identity. This follows from distance property with respect
to error operators of weight one, as well as the isomorphism we mentioned above, where q-dimensional qudits can
be broken into m p-dimensional qudits. For each of the latter qudits, we have already shown in Claim 1 that two
non-identity operators are required on each site of their generator table. We can then argue that there would be at
least 2m non-identity operators for m p-dimensional qudits.
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Here is another observation that leads to the same conclusion. Let us focus on the first site. An error of weight
one, on the first site, will take the form of XaZb, with a, b ∈ GF (pm). Consider all generators of [[n, 0, d]]pm with
non-identity operators on their first site. Let us make a subgroup of Pauli operators by taking these generators to the
power of all numbers in Zp and multiply by each other. The resulting subgroup, let us call it Gp, will also contain
elements in the form XaZb, with a, b ∈ GF (pm). Let us define A and B to be, respectively, the set of numbers a and
b for which XaZb ∈ Gp. We can show that, unless A and B are equivalent to GF (q), there is always an error operator
with weight one that commutes with all generators. To show this, let us find dual bases {αi} and {βi}, i = 1, . . . ,m,
for GF (q). That is, tr(αiβj) = δij , with δij being the Kronecker delta function. Suppose the dimension of A is strictly
less than m. Then there exists an element αk that does not belong to A. Operator Zβk

would then commute with all
operators in Gp, and this violates d ≥ 2.

Based on the above observation, the non-identity operators on the first site must contain a basis for {XaZb}, with
a, b ∈ GF (pm). Such a basis set must contain 2m elements as shown above. A simple way of generating all elements
in the form XaZb, with a, b ∈ GF (pm), is to use a set of basis numbers {si}, i = 1, . . . ,m, in GF (q). Xa can then be
written as the product of powers in Zp of Xsi . The same holds for Zb and Zsi . For our reduction-friendly stabilizer
form, we choose si = αi−1, i = 1, . . . ,m. That is, we speculate that the generators of [[n, 0, d]]q can be written in the
form given by Fig. 4. We now prove by construction that it is indeed possible to achieve this.

n/2 sites n/2 sites
g1 I I ... I Z .................
g2 I I ... I Zα .................
... I I

...
...
... I

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

gm I I ... I Zαm−1 .................
gm+1 I I ... I X .................
gm+2 I I ... I Xα .................

... I I
...
...
... I

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

g2m I I ... I Xαm−1 .................
...

...
...
...
...
...
...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

gn−2m+1 Z I ... I I .................
gn−2m+2 Zα I ... I I .................

...
... I

...
...
... I I

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

gn−m Zαm−1 I ... I I .................
gn−m+1 X I ... I I .................
gn−m+2 Xα I ... I I .................

...
... I

...
...
... I I

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

gn Xαm−1 I ... I I .................

Figure 4. Reduction-friendly generator set for an AME(n, q) for n even and q = pm for p prime: The left part, of length n/2,
is set in this way and guarantees independence of the generators, whereas the remaining blank part, of length n/2, on the right
must be found by imposing the remaining conditions of commutativity and distance. α is a primitive element of the Galois
field GF (pm).

Proposition 3. For an AME(n, q) state, the generators of the stabilizer representation of the equivalent [[n, 0, n/2+
1]]q code, with n ≥ 2 even and q = pm, with p prime, can be brought to the following form











gi,j = Zαk if i = 2m(n/2− j) + (k + 1)

gi,j = Xαk if i = 2m(n/2− j) + (m+ k + 1)

gi,j = I elsewhere

for j = {1, ..., n/2} and k = {0, 1, ...,m− 1}, as shown in Fig. 4.

Proof. We proceed in parallel to the proof of Proposition 2, indicating the places where the treatment is different.
Note that the structure in Fig. 4 reduces to that of Fig 2 for m = 1. Let us assume that the last 2m generators are
the non-identity ones responsible for correcting weight-one errors on the first site. Consider the most general case, up
to a constant factor, for those generators:

gn−r,1 = Xar
Zbr , r = 0, 1, ..., 2m− 1, (16)
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where ar, br ∈ GF (pm).

Step 1: Elimination of Zbr to obtain gn−r,1 = Xa′

r
, for r = 0, . . . ,m − 1. As with the case of q prime, we are free

to substitute a generator by a power of itself multiplied by powers of the others, where all powers are in Zp. Let us
make the following transformations sequentially starting with r = 0, and then moving up to r = m − 1. For r = 0,
we obtain

g′n =

2m−1
∏

l=0

(gn−l)
β0l , (17)

with β0l ∈ Zp. In order to eliminate Zb0 , we then require that

2m−1
∑

l=0

β0lbl = 0 (mod p). (18)

Given that bl’s are elements of GF (q) of dimension m, there exists a non-trivial solution for β0l to satisfy the above
equation, otherwise we would get a contradiction with the existence of 2m independent non-identity operators in the
first place. Now that we removed Zb0 , we can move to r = 1, and repeat the same procedure using gn−1 to gn−2m+1.
Continuing to higher values of r, at each step, we obtain 2m− r > m equations of the form

2m−1
∑

l=r

βrlbl = 0 (mod p), r = 1, ...,m− 1, (19)

with 2m − r > m variables, βrl ∈ Zp, and known elements bl ∈ GF (pm). Now, again given that GF (pm) is a vector
space over Zp with dimension m, Eq. (19) will have non-trivial solutions, as it is effectively a linear combination of
more than m vectors, which have therefore to be linearly dependent.
As in the prime case, if this first step produces a′r = 0 and therefore gn−r = I, that means that we have to permute

generators and select another set of gn−r (with r = 0, 1, ..., 2m− 1) generators that are independent on the first site,
which must exist for the stabilizer set to define a code of distance larger than 1.
Step 2: Transformation of Xa′

r
to Xαm−1−r . Here we state that as both the obtained Xa′

r
elements and the desired

Xαm−1−r , for r = 0, 1, ...,m − 1, both form valid bases for the {Xa} operators, with a ∈ GF (q), there must exist a
change of basis that takes us from one to another. Such a change of basis can be applied sequentially by starting from
the bottom and then move up to the top.
Step 3: Transformation of the rest of the first column. As with the prime case, the same procedure can be carried

to transform gn−r,1 = Xar
Zbr to g′n−r,1 = Zb′r and then to g′′n−r,1 = Zα2m−1−r , for r = m,m+ 1, ..., 2m− 1. Then, we

can easily make all the other generators to have identities on the first site by taking products of themselves with the
last 2m generators, which form a basis of the Pauli group, each of appropriate power.

Step 4: Iteration over the rest of the sites. This step is also equivalent to the prime case, but now we have to
eliminate each time the last 2m generators to obtain the child code. By iterating the procedure until reaching column
n/2, we get the desired reduction-friendly form. �

Corollary 3.1. In the above proof, the main property of the AME state that we use is that the distance for the
corresponding code is given by n/2 + 1. This allows us to apply the iteration in step 4 for n/2 times. The other
property that we used is that GF (q) is an additive group. The above procedure can therefore be applied to other
stabilizer codes of distance d and dimension q, with q being power of a prime, to obtain a reduction-friendly form for
the the first d− 1 sites. This is an extension of Corollary 2.1.

As an example, Fig. 5 shows the reduction-friendly form for [[5, 1, 3]]9 [37]. By removing the last four rows, we can
then easily obtain the stabilizer form for the child code [[4, 2, 2]]9

V. APPLICATION TO QUANTUM REPEATERS

A one-way or third generation quantum repeater makes use of quantum error correction codes for correcting both
loss and operational errors [3]. Quantum parity codes were studied first in this context [5, 11], but later quantum
polynomial codes (QPyC) [12, 13] and quantum Reed-Solomon codes (QRSC) [14] were shown to be more efficient.
This improvement mainly comes from the fact that the latter two codes are QMDS codes, as shown in Fig. 1. Being
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[[5, 1, 3]]9
g1 I Z XZ−1 Z−1 X−1Z
g2 I Zα XαZ−α Z−α X−αZα

g3 I X Z X−1 Z−1

g4 I Xα Zα X−α Z−α

g5 Z I Z−1 XZ−1 ZX−1

g6 Zα I Z−α XαZ−α ZX−α

g7 X I X−1 Z Z−1

g8 Xα I X−α Zα Z−α

→

[[4, 2, 2]]9
g1 Z XZ−1 Z−1 X−1Z
g2 Zα XαZα Z−α X−αZα

g3 X Z X−1 Z−1

g4 Xα Zα X−α Z−α

Figure 5. Transformation from code [[5, 1, 3]]9 to its child code [[4, 2, 2]]9

also CSS codes, there are known encoder/decoder circuits, which rely only on transversal operations on a maximum
of two qudits at a time.
In this section, we investigate the importance of QMDS codes, especially those obtained from an AME state, in

one-way repeater setups. We do not consider the gate errors and only focus on the erasure errors, which result
because of photon loss in the system and the channel. We calculate the number of equivalent qubits that can be
transferred by a chain of r repeater stations in which two adjacent nodes are apart by a distance L0. In the first
node, k qudits of dimension q are encoded to a codeword of length n using a [[n, k, d]]q code. Such a codeword is then
transmitted by n photons to the next node, at which point, the codeword is decoded back to k qudits, with errors
hopefully corrected, and then re-encoded again into an n-qudit codeword for transmission to the next node. The same
procedure is repeated until we reach the final node.
For such a repeater, the rate at which, in qubit per unit of time, quantum states are transferred via our repeater

chain of r links is given by

R = k
(Psuccess)

r

t0
log2 q, (20)

where t0 is the time taken for local operations at encoder-decoder modules, and [3, 11, 13, 14]

Psuccess =

d−1
∑

j=0

(

n

j

)

pjl (1− pl)
n−j , (21)

where pl = 1−ηce−
L0

Latt is the probability of losing a physical qudit over a link of length L0, and Latt is the attenuation
length of the channel, here assumed to be 20 km for current optical fibers. Parameter ηc models the coupling efficiency
in-and-out of encoder-decoder modules, which is assumed to be one in this section. Equation (21) is the probability
of successfully recovering the transmitted logical codeword encoded in the [[n, k, d]]q code space, from one station to
the next, taking only loss effects into account. We have assumed the codeword is transmitted using n photons, each
in one of q possible modes. In Eq. (21), we use the fact that for a code of distance d, we can correct d − 1 erasure
errors.
To have a fairer comparison between different code structures used in a quantum repeater, it is common to define

normalized cost factors that account for the amount of resources needed to get a particular rate, as, e.g., R in Eq. (20).
Conventionally, this cost factor is defined as the number of qubits needed normalized by the rate R. Here, we are going
to dig deeper into the issue of cost and define more practical cost parameters by distinguishing between short-term
and long-term costs for a repeater system. We identify the short term cost as what is typically attributed to the
initial investment cost, Cinitial, of a repeater setup i.e., the cost of the infrastructure that needs to be put in place
to have a functioning repeater, whereas we attribute the long-term costs to the running cost of the system, Crunning.
The total cost over a time period T could then be written as

CT = Cinitial + Crunning(T ), (22)

during which RT qubits have been transferred across the repeater chain. Note that Cinitial is not a function of T as
it represents the initial cost of setting up the repeater set up at a reference point.

In the absence of real estimates for the above cost functions, here we attempt to approximate their order of
magnitude in terms of certain system parameters. We approximate Cinitial by Nrepr log2(q)Cqubit, where Nrep is the
number of qudits at each repeater station, which is expected to be proportional to n and will depend on the concrete
model of the repeater stations used, and Cqubit is the nominal cost for deploying the hardware corresponding to one
qubit at the encoder/decoder modules. Similarly, we estimate the running cost, Crunning(T ), by nrqCphotonT/t0,
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where Cphoton is the cost associated with processing and transmission of a single photon over an elementary link
of length L0. Here, we have made two assumptions. First, that we have used the system at its maximum possible
rate by sending one codeword through the system every t0 unit of time. Secondly, we have assumed that the cost is
proportional to q, as, in our model, we need that many modes (channels) to transmit a single photon.
Using the above estimates, the total cost over a running time of T , per RT transmitted qubit, per unit of distance

is given by

CT

RTrL0
≈ Nrep log2(q)

L0R
Cqubit/T +

nq

L0R
Cphoton/t0. (23)

Assuming that Cqubit ≫ Cphoton, for small values of T , the first term in the above equation is the major source of
cost, but as T becomes larger and larger, one may ignore the first term, as the second term would contribute most to
the total cost. Based on this observation, here we introduce two cost coefficients:

CST = min
L0

n log2(q)

L0Rt0
, (24)

which represents the short-term investment cost factor, whereas

CLT = min
L0

nq

L0Rt0
, (25)

which represents the long-term running cost factor. In (24), we have assumed Nrep ∝ n, and have normalized the
coefficient by the constant time t0 to have the same dimension as CLT. Also note that CST is independent of q, as
R ∝ log2(q). We use the above cost coefficients to compare different codes used in quantum repeater setups taking
into account both the generated rate and the amount of resources needed. Note that if we are comparing codes of the
same dimension q, it is indifferent which cost factor is used for comparison.

Figure 6. (a) Average number of qubits transferred over a time period t0, Rt0, at L0 = 1 km, and (b) short term cost coefficient,
CST, at the optimal value of L0, versus total channel length for the children codes of AME(6,2) in comparison to the non-QMDS
Steane code [[7, 1, 3]]2 .

Based on the above figures of merit, we have compared several QMDS families that emerge from the children codes
of AME states. In Fig. 6, we have considered the AME(6,2) state and have compared its two children codes in terms
of the achievable rate (Fig. 6(a)) and the short-term cost factor (Fig. 6(b)). In our comparison, we have also included
the non-QMDS Steane code. It is clear that, except for very short distances, the QMDS code [[5, 1, 3]]2 offers the best
performance. This is the code with maximum distance possible at n = 5, hence the minimum value of k = 1. It is
interesting that this is not necessarily the case for all values of n. In fact, as shown in Fig. 7, for children codes of
AME(14,7), [[12, 2, 6]]7 and [[11, 3, 5]]7 offer the lowest cost factors at all distances considered. They also beat the sibling
code with maximum distance, [[13, 1, 7]]7, in terms of achievable rate. This behavior can be attributed to the fact
that, when n is sufficiently large, the optimal code just needs to have a sufficiently large d to combat erasure errors.
Once d reaches that level, we can maximize k, while satisfying QMDS condition, to improve the achievable rate in our
system. It is also noteworthy that, at very short distances, the optimal code could be different from that obtained at
long distances. This could be an important observation for applications in distributed quantum computing, where,
initially, the objective is to connect several few-qubit quantum processors at short distances from each other.
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Figure 7. (a) Average number of qubits transferred over a time period t0, Rt0, at L0 = 1 km, and (b) short term cost coefficient,
CST, at the optimal value of L0, versus total channel length for the children codes of AME(14,7).

n
q

2 3 4 5 6 7 8

4 - 1,1 1,1 1,1 ? 1,1 1,1
5 1,1 1,1 1,1 1,1 1,1 1,1 1,1
6 1,1 1,1 1,1 1,1 1,1 1,1 1,1
7 - 1,1 ? 1,1 ? 1,1 1,1
8 - - ? 1,1 ? 1,1 1,1
9 - 1,1 1,1 1,1 ? 1,1 1,1
10 - 2,1 2,1 2,1 ? 2,1 2,1
11 - ? ? ? ? 2,1 ?
12 - - - ? ? 3,2 3,2
13 - - ? ? ? 3,2 ?
14 - - ? ? ? 3,2 3,2

Table I. The optimal value of k that minimizes CLT for children codes originated from AME(n, q). For each n and q, the
number on the left of the respective table cell corresponds to the optimal k for a total channel length of 1,000 km, whereas the
one on the right corresponds to 10,000 km. The optimal code is then given by [[n− k, k, ⌊n/2⌋+1− k]]q. Cyan coloured codes
indicate the best ones of each row, light red coloured codes indicate the best of the column, and purple coloured ones indicate
the best in both their column and row. A dash (-) indicates that an AME state does not exist for those parameters, and a
question mark (?) indicates that it is not known whether an AME state exists.

One can generalize the above comparison and carry it out for all known AME states. In Table I, we have done this
for all AME states with n ≤ 14 and q ≤ 8, taken from Refs. [27, 28], according to their long-term cost coefficients.
For each AME state, we have first found, among all children codes of that AME state, the code that gives the
minimum long-term cost at a total channel length of 1000 km and 10,000 km. Note that the same code would also
offer a minimum short-term cost factor as parameters n and q are the same for all children codes. We have specified
the value of k that corresponds to the optimal code for each cell in the table. In each cell, the number on the left
corresponds to a channel length of 1000 km, and the number on the right is for the 10,000 km case. The optimal
value of k for each row n and column q would then specify the code [[n − k, k, ⌊n/2⌋ + 1 − k]]q as the best within
its family. We have also identified the optimal code for a fixed q, as well as for a fixed n. These codes have been
highlighted, respectively, by light blue and light red colors. If the optimal code in a row and a column coincide, we
have highlighted it with purple.

There are several observations that can be made from Table I. First, note that, as pointed out before, for small
code lengths n, the optimal code only encodes one qudit, i.e., k = 1. This starts to change when n ≥ 10, especially,
first, at shorter distances. The other interesting point is that the optimal code in each column is the one with largest
n, which suggests that the overall cost would be lower if we have the technology to reliably generate larger codewords.
Interestingly, with the exception of the rows corresponding to n = 5, 6, which are the only ones for which a family
of QMDS qubit codes exist, the best code for a fixed n happens at lowest value of q possible. This is important as
practically it is harder to work with high-dimensional systems. The function q/ log2(q), for an integer q, takes its
minimum value at q = 3, and is monotonically ascending for q > 3. This is why q = 3, or the minimum possible q,
minimize the long-term cost factor for n > 6.
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Before finishing this section, let us revisit the results reported in Ref. [14], in which the short-term cost coefficients
for QPC, QPyC and QRSC codes are compared in the absence of operational errors. There, the authors conclude
that QRSC are the best ones by a large factor, without specifying which codes in particular have been used in their
analysis. As QPyC codes have k = 1 and QRSC codes have k ≥ 1, and both of them are QMDS, we believe the above
conclusion would hold only if sufficiently large codewords are in use. Their finding would then be in agreement with
what we find in our analysis with respect to the code size n, and the encoded number of qudits, k.

Finally, note that we have kept here the analysis simple by not considering operational errors. If we want to include
them, we should consider a concrete repeater model to estimate the global error ǫ out of the individual sources of error.
For TEC stations and CSS codes, ǫ ≃ (3ǫg+4ǫd+ǫm) [14], where ǫg stands for gate errors, ǫd for depolarization errors
and ǫm for measurement errors. For non-CSS codes with a different implementation, ǫ could be significantly different.
Error analysis for non-CSS codes is beyond the scope of this paper, however, and shall be addressed separately.

VI. CONCLUSIONS

In this work, we provided construction techniques by which we could start with the stabilizer representation of
an AME state, and obtain the stabilizer form for all its QMDS children codes. This was achieved by introducing a
reduction-friendly form for the stabilizer generators in the case of systems with prime or power-prime dimensions.
Such a reduction-friendly form could, in principle, help with finding new AME states and QMDS codes as half
of the columns of the generators are specified by our construction technique. We then used the new AME-based
classification of the resulting QMDS codes and studied the applicability of such codes in one-way quantum repeaters.
We specifically considered short-term and long-term cost factors that accounted for both the performance and the
required resources of quantum repeaters. We came up with general guidelines on how to choose the optimal code for
repeater applications. In particular, we found that, so long as the major source of error is the loss-driven erasure
errors, we should choose codes with largest possible size and lowest possible dimension (with minimum three). The
optimal number of qudits to encode, k, would then be specified by the length of the code and the distance at which
we need to communicate. The larger the former and the shorter the latter, the higher the optimal value of k would
be. We note that, in our analysis, we did not consider the effect of processing errors. This is particularly subtle
because the more efficient QMDS codes may not have a CSS form, in which case their encoding and decoding would
be non-trivial, especially, in higher dimensions. This requires us to develop new techniques to perform complete error
analysis on such systems.
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