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Abstract

Gene fusion occurs when two or more individual genes with independent open reading frames becoming juxtaposed under the

same open reading frame creating a new fused gene. A small number of gene fusions described in detail have been associated with

novel functions, for example, the hominid-specific PIPSL gene, TNFSF12, and the TWE-PRIL gene family. We use Sequence Similarity

Networks and species level comparisons of great ape genomes to identify 45 new genes that have emerged by transcriptional

readthrough, that is, transcription-derived gene fusion. For 35 of these putative gene fusions, we have been able to assess available

RNAseq data to determine whether there are reads that map to each breakpoint. A total of 29 of the putative gene fusions had

annotated transcripts (9/29 of which are human-specific). We carried out RT-qPCR in a range of human tissues (placenta, lung, liver,

brain, and testes) and found that 23 of the putative gene fusion events were expressed in at least one tissue. Examining the available

ribosome foot-printing data, we find evidence for translation of three of the fused genes in human. Finally, we find enrichment for

transcription-derived gene fusions in regions of known segmental duplication in human. Together, our results implicate chromo-

somal structural variation brought about by segmental duplication with the emergence of novel transcripts and translated protein

products.

Key words: sequence similarity networks, novel genes, segmental duplication, mechanisms of protein-coding evolution,

Great Ape Comparative genomics, transcriptional readthrough.
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Introduction

The emergence of novel protein-coding gene families in ani-

mal genomes has been widely studied from a number of

perspectives and phylogenetic depths (Kaessmann 2010;

Dunwell et al. 2017; Villanueva-Ca~nas et al. 2017; Paps and

Holland 2018). There are many mechanisms of novel gene

genesis that have been elucidated thus far, and they include

de novo genesis from noncoding DNA, retrotransposition,

domain/exon shuffling, mobile elements, noncoding RNA,

reading-frame shifts, gene duplication, and gene fusion/fis-

sion among others (Long et al. 2003). The emergence of new

genes has been associated with the emergence of novel func-

tions and phenotypes through the animal kingdom and be-

yond. For example, independently in both mammals and in a

viviparous lizard, new genes of viral origin derived by retro-

transposition have been shown to be essential for placenta-

tion (Lee et al. 2000; Cornelis et al. 2017). Domain shuffling

has contributed significantly to the evolution of vertebrate-

specific features such as the evolution of cartilage, craniofacial

structures, and adaptive immune system (Kawashima et al.

2009). Duplication (from whole genome duplication to the

duplication of an individual gene) has contributed widely to

the evolution of novel protein-coding genes and this mecha-

nism has had profound effects on the evolution of complexity

and diversity of life (Ohno et al. 1968; Ohno 1970; Crow and

Wagner 2006).

Of course, these mechanisms are not mutually exclusive

and can work in combination to produce new genes, a classic

example of which is jingwei—a processed functional protein-

coding gene (Long and Langley 1993). Jingwei originated �2

Million Years Ago (mya) in African Drosophila species by gene

duplication (of the yande gene) and retrotransposition (of the

Adh gene) to produce a fused gene that underwent intense

positive selection, has preferences for long-chain primary alco-

hols, and has a testis-specific expression pattern (Long and

Langley 1993; Zhang et al. 2004). Overall, these and other

studies suggest that jingwei has evolved a new function for

hormone and pheromone biosynthesis/degradation processes

in Drosophila (Zhang et al. 2004).

Gene fusion can be achieved by transcription mediated

processes such as the readthrough of adjacent genes to pro-

duce a novel transcript, we refer to these as transcription-

derived gene fusion (TDGFs). Alternatively, gene fusion can

occur by a variety of structural rearrangements such as gene

duplication and reinsertion into (or adjacent to) another cod-

ing sequence resulting in a genome encoded fusion event, we

refer to these as DNA-mediated gene fusions (Kaessmann

2010; Latysheva et al. 2016). From detailed studies of a small

number of fused genes, we know they do not necessarily

have to follow the same expression profile as their parents

thereby bringing existing functionality to novel tissues and

subcellular locations, and indeed their functions are not simply

additive of their parents (Thomson et al. 2000; Pradet-Balade

et al. 2002; Akiva et al. 2005; Parra et al. 2005). For example,

the PIP5K1A gene is shared among hominoids and was

formed by TDGF followed by retrotransposition. In compari-

son to its parents, PIP5K1A has a testes-specific expression

pattern and has undergone positive selection and a substrate

affinity shift (Babushok et al. 2007).

For two or more genes to merge by TDGF and become a

single transcript and potentially a single protein product, the

parent genes must occupy a reasonably close position on a

given chromosome. Many structural rearrangement processes

exist that can bring about close proximity of genes on a ge-

nome, for example, inversion, insertion, deletion, transloca-

tion, and segmental duplication (SD). SD (also known as low

copy repeats) are duplicates of 1–5 kb in length and remain

>90% similar to that of the original sequence. Interestingly,

while the overall rate of genomic rearrangement reduced in

hominids, the rate of SD increased in the Great Ape clade

(Marques-Bonet, Girirajan, et al. 2009; Marques-Bonet,

Kidd, et al. 2009). In addition, in human, it has been shown

that some regions of SD are enriched for protein-coding

genes (Lorente-Galdos et al. 2013), data from other great

apes are slowly emerging and chimpanzee (hominoid) seems

to follow a similar trend (Cheng et al. 2005). Regions of SD

tend to cluster near the peri-centromeric or peri-telomeric

regions of chromosomes (Feng et al. 2017) and form complex

clusters due to formation of duplication hotspots at regions of

genomic instability (Ji et al. 2000; Samonte and Eichler 2002;

Armengol et al. 2003). Therefore, it is proposed that genomic

instability brought about by increased gene rich SD activity in

the great ape clade may contribute to the emergence of novel

protein-coding regions by, for example, exon shuffling and/or

gene fusion (Bailey et al. 2002; Akiva et al. 2005; Denoeud

et al. 2007). Indeed, it has been shown that the reshuffling of

genes inside SD regions of hominid genomes led to the for-

mation of an abundance of mosaic gene structures across

these species but until now it has been unclear whether these

novel structures produce novel transcripts and protein prod-

ucts (Bailey et al. 2002; She et al. 2004; Marques-Bonet,

Girirajan et al. 2009).

In this article, we set out to determine those gene families

that have arisen by TDGF across a data set of human, five

nonhuman primates, and mouse, using sequence similarity

networks (SSNs). SSNs are undirected bipartite graphs based

on sequence similarity searches whereby an edge is drawn

between two or more nodes (genes) only if they contain se-

quence similarity above a user-defined threshold namely ei-

ther a percentage identity or e-value (Jachiet et al. 2013). We

employ deconstruction techniques to deconstruct global SSNs

into nontransitive triplets, or fusion gene families (Berry et al.

2010). After the identification of TDGFs across the data set,

we investigate and cross compare their transcriptional and

translational profiles across each species and to nonfused pro-

tein-coding genes in the same species. We also assess the
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ability of TDGFs to acquire alternative splice isoforms (Wang

et al. 2015). Previous investigations of new genes have

revealed a trend toward testes-specific expression

(Kaessmann 2010), by obtaining transcriptional profiles

TDGF expression can be compared with those of new genes

generated by alternative mechanisms. To assess TDGF expres-

sion across the data set, we perform a metadata analysis of

RNA sequencing (Brawand et al. 2011) data for all seven spe-

cies across a panel of six tissues (brain, cerebellum, kidney,

heart, liver, and testis) and we complement this with novel

RT-qPCR data we generated for human across a panel of five

tissues (liver, brain, placenta, lung, and testis) and splice factor

(SF) binding analysis. To investigate TDGF translational pro-

files, we use four ribosequencing data sets across three

human cell types (fibroblast, glial, and skeletal muscle;

Loayza-Puch et al. 2013; Rooijers et al. 2013; Gonzalez

et al. 2014; Michel et al. 2018) and we assess potential func-

tional enrichment using a GO term analysis (Ashburner et al.

2000). Finally, we assess the role for SD in facilitating the

formation of these TDGFs (Khurana et al. 2010).

Materials and Methods

Data Set Assembly and SSNs

Protein-coding DNA genes were downloaded from the

Ensembl Genome Browser API (Version 71) (Flicek et al.

2014) for the following species (and versions): Homo sapiens

(GRCh37), Mus musculus (GRCm38), Pan troglodytes

(CHIMP2.1.4), Gorilla gorilla (gorGor3.1), Macaca mulatta

(MMUL_1), Pongo abelii (PPYG2), and Callithrix jacchus

(C_jacchus3.2.1) (supplementary table S1, Supplementary

Material online). Sequence quality was assessed to ensure

the coding sequences had complete codons, and any coding

sequence containing intermittent stop codons indicative of

sequencing error were removed. Coding sequences were

then translated considering the phase information of each

sequence, and a corresponding amino acid database was

generated. A best reciprocal BLASTp (Altschul et al. 1990)

analysis was carried out with e-value ¼ 1�10�5 and self-hits

were removed. A comparison of methods to detect gene

fusions using SSNs (supplementary fig. S1, Supplementary

Material online) was performed and MosaicFinder (Jachiet

et al. 2013) was chosen as it was the most conservative.

MosaicFinder deconstructs global SSNs into discrete subgraphs

and employs mathematical graph decomposition to identify

clique minimal separators (gene fusions). To accommodate

different rates of change, three thresholds of sequence identity

(SI) (70%, 80%, and 90%) were used in MosaicFinder (Jachiet

et al. 2013). iGraph was used to visually inspect each fusion/

parent gene family. Protein-coding sequences for gene families

associated with each gene fusion event were extracted from

our database. Alignments were constructed using PRANK

(Loytynoja and Goldman 2005) for each fused gene and all

corresponding parent genes. False positives that occur due to

distant homology of parent genes were removed after careful

manual inspection of all alignments (Edgar 2004).

In order to determine the phylogenetic distribution of the

fused genes, an RNA data set was assembled that spanned

the vertebrate phylogeny. The RNA data sets used were taken

from the NCBI database (Sayers et al. 2009) for the following:

bonobo; cat (Felis_Catus_3.2); coelocanth (LatCha1); chicken

(Gallus_gallus4.0); chimp (PanTro4); cow (BosTau4); dog

(CanFam3.1); dolphin (Ttru_1.4); elephant (Loxafr3.0); fugu

(FUGU4.0); gibbon (Nleu_1.0); gorilla (Gorgor3.1); guinea pig

(Cavpor3.0); horse (EquCab2.0); human (GRCm38.p3);

macaque (Mmul_051212); marmoset (Callithrix_jacchus3.2);

brown bat (MyoLuc2.0); mouse (GRCm38.p2);

naked mole rat (hetGla2/hetGla_Female_1.0); olive

baboon (Panu2.0); opossum (MonDom5); orangutan

(P_pygmaeus2.0.2); orca (Oorc1.1); pig (Sscofra10.2); platy-

pus (Ornithorynchus_anaticus5.01); rat (Rnor.6); tarsier

(Tarsius_syrichta1); turkey (Turkey2.01); zebrafish (GRCz10),

and zebrafinch (teaGut3.2.4). Sequence similarity searches

were performed using the fused genes as queries (Altschul

et al. 1990). Results were parsed and alignments generated

using MUSCLE (Edgar 2004). (Note: in this instance, MUSCLE

[Edgar 2004] is used rather than PRANK [Loytynoja and

Goldman 2005] as it had adequate sensitivity and increased

speed). A functional enrichment analysis was carried out using

the software package GOrilla (Eden et al. 2009), the Ensembl

gene identifiers (Flicek et al. 2014) for fused genes and their

parents from human and mouse at each SI threshold (70%,

80%, and 90%) were used. GOrilla calculates an exact P value

and accounts for multiple testing through an FDR q value

calculation. For comparative purposes, this was followed by

a functional enrichment analysis using DAVID (Huang et al.

2007). GO terms for each fused gene were obtained

(Ashburner et al. 2000) (supplementary table S2,

Supplementary Material online).

Analysis of Regions of SD

To assess the frequency of occurrence of fused genes and

parent genes in regions of SD, simulations were carried out

as follows: Human chromosomal positions were obtained for

all fused genes and their parents from Ensembl (Version 74)

(Flicek et al. 2014). SD coordinates for the human genome

were taken from the Segmental Duplication database (She

et al. 2006). Overlap between human fused/parent gene

chromosomal coordinates and the human SD coordinates

was assessed. The coordinates for all human protein-coding

sequences were downloaded from the Ensembl Genome

Browser (Version 74) (Flicek et al. 2014). Randomly sampled

data sets of fused and parent genes were generated. This was

done by generating data sets of 37 genes in size by random

sampling from the entire set of protein-coding genes without

McCartney et al. GBE
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any restriction on chromosomal location. For each randomly

sampled data set, the number of genes that located to regions

of SD were recorded. This simulation was carried out on

10,000 replicate sets and P values were obtained.

Gene Expression Analysis from Previously Published RNA
Sequence Data Set

To determine the level of expression of the unique break-

points of the fusion genes, we used previously published

RNAseq data sets as follows: Illumina Genome Analyser IIx

sequence reads were downloaded from the SRA archive on

the NCBI browser, project number SRP007412 (Brawand

et al. 2011). This data set was chosen as at the time of analysis

it represented the highest quality transcript sequencing infor-

mation from six primates from a range of six tissues. Reads

were predominantly 76 base pair single-end sequences

(paired-end sequences were discarded due to poor quality).

Sequences were downloaded for all seven species in the data

set (i.e., human, chimpanzee, macaque, marmoset, gorilla,

orangutan, and mouse), and for all six tissues (i.e., brain, cer-

ebellum, kidney, heart, liver, and testis) (Brawand et al. 2011).

SRA files were converted to SAM format using the SRA toolkit

(Leinonen et al. 2011) and then to FASTQ format using

SAMtools (Li et al. 2009). Reads were quality checked using

FASTqc (Patel and Jain 2012). The following characteristics of

sequence reads were determined per base: sequence quality,

quality scores, sequence content, GC-content, N content, and

per sequence for GC-content, length distribution, overrepre-

sented sequences, and kmer content. Phred scores were low

for all reads because of the IBIS base caller had been used in

the initial study (Kircher et al. 2009). Reads with phred scores

<20 were removed. The leading 10–13 bases of each se-

quence read were also of poor quality (supplementary fig.

S2, Supplementary Material online), possibly due to presence

of adaptor sequences, and they were trimmed using

TrimGalore (v0.3.3) (http://www.bioinformatics.babraham.

ac.uk/projects/). Finally, reads were again inspected by

FASTqc.

Reference genomes for human, chimpanzee, macaque,

marmoset, orangutan, and mouse were downloaded from

the Ensembl Genome Browser (Version 74) (Flicek et al.

2014). The filtered reads for each species were mapped

onto the corresponding reference genome using STAR

(Dobin et al. 2013). In the case of fused genes, only reads

that span the junction/breakpoint of both parents were

mapped (supplementary fig. S3, Supplementary Material on-

line). Reads that mapped successfully were then counted on a

species-by-species basis. For each species, the genome anno-

tation file (“.gtf”) was downloaded from the Ensembl

Genome Browser (Flicek et al. 2014). HTseq Count software

package (Version 0.5.3p3; http://www-huber.embl.de/users/

anders.HTSeq) was used to identify the reads that mapped to

annotated transcripts and to count the number of reads

mapped per transcript (the union overlap resolution method

was used to deal with overlapping sequences). Transcripts

containing >1 mapped read were considered to be

expressed; however, analyses were also carried out at >3,

and at >5, mapped reads (supplementary file 5,

Supplementary Material online). As expected, and across all

species examined, the most stringent threshold of >5 reads

resulted in the least number of reads mapping to fusion

breakpoints and using the most lenient threshold of >1

yielded the largest number of confirmed fusion breakpoints.

As we were only mapping across the 50-bp fusion break-

point—the number of reads that would map to this small

region were already limited. In addition, “new” genes are

generally thought to have a lower expression level.

Therefore, we present the results from the >1 category as

evidence that this region is transcribed and not the result of an

annotation error. Fused genes identified at 90% identity

threshold were then assessed for expression patterns.

As justified earlier, we considered a fused gene to be

“expressed” (in a given species and tissue) when the region

spanning the junction of the fused gene was mapped by at

least one read. Reads that mapped to fused gene families at

each percentage identity (70%, 80%, and 90%) were

extracted. In this way, we calculated the percentage of fused

genes and parent genes expressed in each species and each

tissue. To test whether there were significantly more fused

gene families expressed in a particular tissue in comparison to

other tissues, we calculated the Z-score, one tailed, and two

tailed P values. An analysis of the TPM (transcript per million)

values for fusion breakpoints as compared with the rest of the

transcriptome, confirms that the rates of mapping to the fu-

sion gene breakpoints is higher than background mapping

rates (supplementary file 5, Supplementary Material online).

Mapping Fused Genes in the Context of Phylogeny

Using the fused genes for which we had evidence of tran-

scription, we blasted other available reference transcriptomes

in order to determine whether these breakpoints were tran-

scribed in other species outside of the great apes and/or hu-

man lineages. Fused gene sequences identified were obtained

from the Ensembl Genome Browser (Flicek et al. 2014)

(Version 73) and pairwise alignments against each individual

parent were prepared using MUSCLE (Edgar 2004) in order to

obtain breakpoint locations. “Fusion breakpoint” reads were

constructed by cleaving each fused gene sequence, incorpo-

rating only the region spanning the fusion junction (50 bp

both sides of fusion breakpoint). RNA sequence reads of

Opossum, Lizard, Putterfish, Frog, and Chicken (Brawand

et al. 2011) were then mapped onto their corresponding ref-

erence genomes (Flicek et al. 2014). BlastN (Altschul et al.

1990) was used to search the RNA sequence reads for

matches to the “fusion breakpoint” read (supplementary

fig. S3, Supplementary Material online). BlastN allows more
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mismatches than other local alignment tools—a property that

is preferable in this case due to divergence times between the

species under consideration.

Gene Expression Analysis

Htseq count results were used to carry out a differential

gene expression analysis using the EdgeR package in R

(Robinson et al. 2010). Here, both fusion and parent gene

expressions were investigated for each tissue sample within

each species.

Qualitative RT-PCR

To complement the RNAseq data analyses, we carried out RT-

qPCR analyses to investigate expression of the unique fused

gene breakpoints in a range of tissues. Total human RNA was

purchased from Life Technologies and RNA was extracted

from the following tissues: liver (AM7960), brain (AM7962),

placenta (AM7950), lung (AM7968), and testes (AM7972).

About 5 mg was digested with DNAseI (Sigma AMP-D1) for

15 min at room temperature (RT). cDNA was synthesized

from the DNAse-free RNA using the Tetro cDNA synthesis

kit (Bioline BIO-65042) as per manufacturer’s instructions.

Quantitative real-time PCR was carried out on the cDNA using

ABI fast SYBR-green qPCR kit (4385616) and on the 7900 HT

ABI thermal-cycler. Each reaction contained 20 ng/ml cDNA

amplified with 0.2mM of each primer, this was carried out

in triplicate. Primer sequences and their targets can be found

in supplementary file 4, Supplementary Material online, and

ACTB was used as an internal reference. Expression was

assessed in two ways: 1) The primer pair displayed a single

reproducible dissociation curve in at least one tissue analyzed,

and 2) The delta CT value for a given primer pair compared

with ACTB >0.1, which we determined was our detection

limit of a true positive.

Ribosome Profiling Data Analysis

To determine whether there is evidence for translation of

these fused genes from existing ribosome profiling data, we

carried out the following analysis: Human ribosomal profiling

data sets were selected from the GWIPS Web Browser (Michel

et al. 2018). SRA files were downloaded (Leinonen et al. 2011)

(GSE45833, Loayza-Puch et al. 2013; GSE51424, Gonzalez

et al. 2014; GSE48933, Rooijers et al. 2013; GSE56148,

Wein et al. 2014). These data sets were selected as they

were the most recent high-quality ribosomal profiling data

sets available. FASTq file conversions were carried out using

fastq-dump package from the SRAtoolkit (Leinonen et al.

2011). Adaptors were removed and reads were trimmed using

the Fastx-toolkit’s (http://hannonlab.cshl.edu/fastx_toolkit/in-

dex.html) fastx_trimmer function and cutadapt (Martin

2011), and reads of >25 nucleotides were retained (supple-

mentary fig. S2, Supplementary Material online). Data quality

was assessed using the FASTQC package (Andrews 2015) af-

ter each cleaning step. rRNA depletion of each data set was

carried out using BowTie2 (Langmead and Salzberg 2012)

against a human rRNA data set (Quast et al. 2013). About

16bp fusion gene reads were constructed, each read span-

ning the fusion breakpoint equally. Reads were mapped to

each cleaned ribosequence data set using the Bowtie2

(Langmead and Salzberg 2012) function to allow for split

read mapping. Reads hitting each data set where then further

mapped to the latest human RefSeq genome (Hg19) (O’Leary

et al. 2016) available on the UCSC Genome Browser (Tyner

et al. 2017) again using the BowTie software package

(Langmead and Salzberg 2012) in order to obtain the chro-

mosomal coordinates of each positive read hit. Positive hits

were also confirmed visually on the IGV Web Browser

(Robinson et al. 2011).

Transcriptional Motif Enrichment

To investigate if there were specific transcription factor bind-

ing sites (TFBSs) associated with fused genes, we carried out

an analysis of the regions around the transcription-mediated

fusion genes using the JASPER CORE data set (Mathelier

et al. 2016). The JASPER CORE data set consists of experi-

mentally validated and manually curated TFBS across eukary-

otic species. TFBS analyses were carried out using JASPAR’s

profile inference package which firstly calculates a position

frequency matrix for the TFBS of its corresponding TF and

from this a position weight matrix can be calculated for each

TF located within each input sequence (Stormo 2013). The

calculation of each position weight matrix is based on an

additive probabilistic model which assumes independence

between nucleotides in the TFBS sequence motif (Stormo

2013). This analysis is complemented by a transcription fac-

tor flexible motif (TFFM) analyses which does not assume

nucleotide independence but rather uses HMMs to calculate

dinucleotide dependences and length flexibility of each TFBS

(Stormo 2013). This algorithm predicted a panel of TFBS for

each TDGF. The frequency of each TFBS was summed and

from this the most a barplot constructed to highlight the

most prominent TFBS per gene fusion (Stormo 2013). The

expression profile of the TF corresponding to each TFBS was

assessed using the Expression Atlas’ ENCODE data set

(Kapushesky et al. 2010), this was to identify any potential

TF driven expression profile of TDGFs across human tissues.

Splice Factor Binding Sites across Fusion Genes Using
Sfmap

To predict potential SFs across TDGFs, the Sfmap software

package (Paz et al. 2010) was used. The Sfmap data set con-

sists of known SF binding sites (SFBS). The frequency of each

SFBS predicted with a score >90 was calculated across each

fusion gene. The expression profile of each SF was analyzed

using Expression Atlas’ ENCODE data set (Kapushesky et al.
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2010) to assess SF over/under expression across human tis-

sues. An additional, more specific, SF analysis was carried out

on the fusion breakpoint sequence of each TDGF. Fasta for-

matted sequences of the intron and two exons (one from

each parent) where the fusion occurred were downloaded

from the Ensembl Genome Browser (Version 90) (Aken

et al. 2017). Results were analyzed and interpreted in the

same fashion as per previous SFmap experiment.

Epigenomic Marker Analysis Using 127-Epigenomes

To determine whether the histone markers present in the

fused genes corroborate the transcriptional profiles we ob-

serve from RNAseq and RT-qPCR analyses, we carried out

an analysis of the epigenomic profile of these regions.

Epigenomic profile data sets across a panel of human tis-

sues were selected for five of the following histone markers:

H3k27me3, H3k36me3, H3k9ac, H3k4me1, and H3k4me3

(Bernstein et al. 2010). These five markers were selected as

they had the most data available across the broadest num-

ber of human tissues, as well as being associated with both

transcriptional activation (e.g., H3k36me3) and repression

(e.g., H3k9me3). Histone markers in TDGFs across the fol-

lowing epigenomic data sets were assessed: H3k36me3,

GSM409312, GSM428296, GSM433176, GSM450268,

GSM1013143, GSM956014, GSM906402, GSM669982,

GSM910570, for H3k9ac GSM410807, GSM433171,

GSM434785, GSM537705, GSM670021, GSM772811,

for H3k4me1, GSM409307, GSM433177, GSM466739,

GSM1013148, GSM1127129, GSM537706, GSM670015,

GSM610025, GSM773001, GSM910575, GSM910576, for

H3k4me3 GSM409308, GSM410808, GSM433170,

GSM469970, GSM537967, GSM773005, GSM910561,

GSM915336, and h3k27me3, GSM428295, GSM433167,

GSM434776, GSM537698, GSM772833, GSM908952,

GSM910563, and GSM112713 (Bernstein et al. 2010).

These data sets contain epigenomic profiles from human

tissues spanning embryonic stem cells, liver, brain frontal

lobe, heart, placenta, kidney, ovary, lung, and pancreas.

In-house software was used to obtain the subset of epige-

nomic data for transcription-derived fusion coordinates

(obtained by Ensembl Genome Browser; Aken et al.

2017). The frequency of each marker across each tissue

per gene was then analyzed and individual barplots

constructed.

After this epigenetic profiles of all activation (e.g., tran-

scriptional start sites and enhancers) and repressive (e.g., het-

erochromatin regions and repressive polycombs) motifs were

assessed across 127 epigenomes (Bernstein et al. 2010). These

data were based on a 15-state chromatin model implemented

on 127 epigenomes available from the Roadmap Epigenomics

Browser (Bernstein et al. 2010). The frequency of each motif

was assessed in order to investigate transcriptional activation/

repression across TDGF sequences.

Motif Enrichment Analysis

Fused genes identified at the 90% similarity threshold were

investigated for regulatory motif enrichment using the AME

function in the MEME software suite (Bailey et al. 2009).

Transcripts were obtained using Ensembl Biomart (Version

83) (Herrero et al. 2016). Default settings were used with a

threshold of significance of P< 0.05 and shuffled input

sequences were used as controls. Fused gene sequences

were analyzed against a eukaryote DNA database (Herrero

et al. 2016).

Branch Length Estimation

We wished to determine whether there is a significant differ-

ence in the rate of change in fusion genes in comparison to

nonfused. The branch length for each fused gene was esti-

mated using the heterogeneous phylogenetic modeling ap-

proach implemented in P4 (Foster 2004). We estimated the

branch lengths for all 24 alignments (12 fused genes each

with 2 parents). For each estimate, we supplied P4 with an

alignment and its associated precalculated composition vector

and exchange rate matrix (e.g., JTT), and a fixed topology

(species tree) (Thomson and Shaffer 2010; Morgan et al.

2013; Tarver et al. 2016). P4 was run for two million gener-

ations with sampling every ten generations. Parameters were

assessed during the MCMCMC process and were accepted

between 10% and 80% of the time. Finally, we compared

the standard deviation between the checkpoints of the

MCMCMC process, where a low standard deviation between

checkpoints indicates convergence. To test if the model (com-

position vector and exchange rate matrix) used on each align-

ment was appropriate for the data, we carried out posterior

predictive simulations. The simulations were generated during

the MCMCMC process for each alignment. Each simulated

data set was compared with the input data. The real data

should look characteristically similar to the simulated data in

instances where the model of evolution is adequate for the

given data. This simulated data were then compared with the

real data using a v2 test to determine whether the fused

genes were evolving at a faster rate on an average. For

each analysis, P values were calculated based on the degrees

of freedom for that analysis.

Results

TDGFs Are Detectable Using Graph Theory and RNAseq
Data

Protein SSNs (supplementary fig. S1, Supplementary Material

online) were created using a best reciprocal BLAST (Altschul

et al. 1990) search of human, five nonhuman primates, and

mouse (supplementary table S1, Supplementary Material on-

line). The sequence similarity searches were performed at

three levels of SI between parent and fused gene: 90%,
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80%, and 70%, where the percentage value refers to the

level of shared SI between the parent gene and the corre-

sponding region of the fused gene (supplementary fig. S1,

Supplementary Material online). The results for the 90% SI

threshold are described here (for results for 80% and 70% SI

thresholds see supplementary file 1, Supplementary Material

online). Fused genes detected at 90% SI were compared with

seven nonprimate vertebrates (mouse, opossum, platypus, liz-

ard, chicken, frog, and fugu) using RNAseq data (Brawand

et al. 2011; Coordinators 2016) allowing us to place the origin

of fused genes more precisely in on the phylogenetic tree

(fig. 1).

TDGFs Can Be Lineage-Specific and Can Evolve Alternative
Splice forms

Using SSNs, we identified a total of 45 fused genes across our

data set (Human, Chimp, Gorilla, Orangutan, Macaque, and

Marmoset and Mouse) using the 90% SI threshold (unsurpris-

ingly 80% and 70% SI thresholds yielded a greater number of

fused genes—68 and 98, respectively) (supplementary file 1,

Supplementary Material online). To place each fused gene in a

phylogenetic context and to investigate their RNA expression

profiles, we searched the fused genes against high-quality

transcriptome data for human, chimp, bonobo, gorilla, orang-

utan, mouse, fugu, frog, and lizard (Brawand et al. 2011;

Coordinators 2016) (fig. 1). In total, 35 TDGFs could be tested

using available RNAseq data and 32 of these produce RNA

transcripts (Brawand et al. 2011), three of which only have

transcripts in mouse. Nine TDGFs have subsequently evolved

annotated alternatively spliced transcripts in human (Herrero

et al. 2016). Interestingly, four of the nine human-specific

genes and all three of the mouse-specific genes have anno-

tated alternative transcripts (Herrero et al. 2016)

(supplementary file 2, Supplementary Material online). To

test if the evolutionary rate of fused gene families was differ-

ent across the great apes—branch lengths were compared.

We found no significant difference in branch lengths of

TDGFs across species suggesting that TDGFs are evolving at

similar rates across the Great Apes.

TDGFs Are Enriched for Specific Functions

An analysis of the function of parent genes using GOrilla

(Eden et al. 2009) reveals they are functionally biased.

Sufficient power exists for a statistical test of the fusion genes

from the 70% SI (fused genes ¼ 98, parent genes ¼ 1,615)

and 80% SI (fused genes ¼ 68, parent genes ¼ 417) set

(supplementary file 3, Supplementary Material online). The

results indicate that the parent genes showed enrichment

for DNA binding (70% SI: P value ¼ 7.41e-37, FDR ¼
2.32e-34), (80% SI: P value ¼ 1.02E-16, FDR ¼ 2.65E-14)

and nucleic acid binding (70%: P value ¼ 1.30e-31, FDR ¼
2.03e-31), (80%: P value ¼ 3.20E-13, FDR ¼ 4.16E-11) (sup-

plementary table S2, Supplementary Material online).

Interestingly, for TDGFs, there is a bias for enzymatic functions

and mediation of protein interactions.

Genomic Location of SDs and TDGFs Overlap

Of the 45 fused genes (90% SI), 26 have been mapped to

specific loci in the human reference human genome (GRCh38)

(Smedley et al. 2015) and 8 out of 26 map to known regions of

SD (She et al. 2006) (fig. 1). To investigate whether the co-

occurrence of fused genes and SD breakpoints was signifi-

cantly higher than expected, we randomly sampled protein-

coding gene sets of the same size (i.e., 26 genes) 10,000 times,

and assessed their frequency of co-occurrence with SD

FIG. 1.—Phylogenetic distribution of transcription-derived gene fusions (TDGFs). (a) The species sampled are represented in the phylogeny on the left

with their estimated divergence times—Mya. Numbers on branches represent the number of gene fusions at those nodes. (b) Deep and pale pink cells in the

matrix on the right correspond to the presence (deep pink) or absence (pale pink) of the gene fusion in that species. The “Seg Dup” row in the matrix shows

the fused genes present at known segmental duplication breakpoints from human (dark gray), in pale gray are gene fusions for which there is missing

information and in white are the gene fusions that are not found in human.
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breakpoints and compared results. If SD drives gene fusion, we

would expect to see gene fusions localizing to SDs. Indeed, we

find fused genes are significantly more likely to occur at known

SD regions (P value ¼ 0.0282). Though 26 genes is a small

sample size, taken together, these results suggest a role for SD

in the emergence of new genes by TDGF.

TDGFs Are Not Tissue-Specific in Expression

To determine the range of human tissues where the 45 fused

genes are expressed, we analyze RNAseq data for seven spe-

cies: human, chimpanzee, gorilla, orangutan, macaque, mar-

moset, and mouse (Brawand et al. 2011) (fig. 2a). The RNA

expression of fused genes is determined from the RNAseq raw

reads that map specifically to the fusion breakpoint.

Expression of the fused genes across all seven species is com-

pared with the average gene expression in liver, heart, cere-

bellum, kidney, and testis, and we find no significant

enrichment of fused gene expression in any single tissue (sup-

plementary table S3, Supplementary Material online).

However, on analyzing the expression on a species-by-

species basis, we find elevated numbers of fused genes

expressed in the brain, liver, and heart in four species (supple-

mentary file 2, Supplementary Material online).

Previous analysis of expression patterns of 1:1 protein-

coding orthologs (Brawand et al. 2011) revealed, perhaps un-

surprisingly, that brain and cerebellum share a more similar

expression profile than either does with liver, kidney, testes, or

heart tissues in all seven species (Brawand et al. 2011).

Although brain and cerebellum are more similar when com-

pared with other tissues, comparative transcriptome studies

have shown differential gene expression patterns between

these two tissues (Chen et al. 2016). We find between one

and seven fused genes have signatures of DE between cere-

bellum and brain across the five Great Apes tested (Human,

Chimp, Gorilla, Gibbon, and Macaque) (supplementary table

S3, Supplementary Material online). Intriguingly, out of the

seven fused genes in human, DE is manifest between the

following tissues (number of fused genes in parentheses):

brain* (*includes cortex and temporal lobe) and cerebellum

(3); brain and testes (5); between brain and heart (2); brain

and kidney (1), and brain and liver (1). Therefore, although 1:1

orthologs generally tend not to have DE between brain and

cerebellum, the human fused genes do display DE patterns

between these tissues, highlighting variation in expression of

these new fused genes.

To precisely assess RNA expression of the TDGFs, we un-

dertook RT-qPCR on the breakpoint of suitable fusion tran-

scripts in the following five human tissues: testis, liver, lung,

brain, and placenta (table 1 and supplementary file 2,

Supplementary Material online). TDGF suitability for this test

was judged based on the ability to generate unique primers

that span the fusion breakpoint for each fusion transcript—26

out of 33 human transcripts met this criterion. The RNA

FIG. 2.—Expression profiles for transcription-derived gene fusions (TDGFs) and their parent genes. (a) Comparison of the expression profiles between the

orthologs of the human-specific fusion genes and their respective orthologous parent gene counterparts in each vertebrate shown. RNAseq data (Brawand

et al. 2011) of each organism from the cerebellum, brain, heart, kidney, liver, and testis* (*not available for Pan troglodytes and Macaca mulatta data sets)

were analyzed for the presence of>1 read that maps the breakpoint for each gene fusion. Sample sizes were as follows: Homo sapiens (20); P. troglodytes

(34); Gorilla gorilla (34); P. pygmaeus (34), M. mulatta (34), and Mus musculus (34). ND, no expression detected; SB, same expression as both parent genes;

SO, same expression profile as one parent gene; RP, reduced breadth of expression compared with parent genes; IP, increased breadth of expression

compared with parent genes. (b) RT-qPCR to determine the expression of each fused gene across a panel of five human tissues. Darker cells represent

amplified product and presence of the gene fusion in that human tissue, pale squares represent no evidence for the gene fusion transcript in that tissue.
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expression of 24/26 fused transcripts in these human tissues

can be confirmed (fig. 2b). Similar to the findings from our

RNAseq metadata analysis (Brawand et al. 2011), we see no

distinct tissue-specific expression pattern for fused transcripts:

three transcripts are expressed in a single tissue, whereas ten

fused transcripts are expressed in all five tissues. In total, 13

fused transcripts are expressed in brain, 19 in testes, 17 in

placenta, 19 in liver, and, 16 in lung (fig. 2b). Therefore, unlike

other new genes the expression of transcription-mediated

fused genes is not confined to a single tissue—and certainly

not just to the testis although testis is usually represented as

one of the tissues in which expression is detected.

TDGFs Have Evidence of Translation from Ribosome
Profiling Data

Subsequently, to investigate the translation of novel RNA

products (Ingolia et al. 2009; Aspden et al. 2014), we assessed

the translatomic profiles of fusion transcripts across fibroblast,

skeletal muscle, and glioma ribosome profiling data sets

(Loayza-Puch et al. 2013; Rooijers et al. 2013; Gonzalez

et al. 2014; Wein et al. 2014). In total, there were 19 fused

genes out of the 45 that had unique sequence spanning the

breakpoint of the fusion, and in total 3 fusion genes had

ribosome footprints in fibroblasts (2 of these were expressed

in all tissues from qRT-PCR analysis). Features of these three

TDGFs with evidence of translation have been summarized in

table 2. Expression of TDFG ENST00000446072 was detected

in human testes and liver tissues from RNAseq data analysis

(Brawand et al. 2011) and across all tissues in our RT-qPCR

(fig. 2). A single NOVA1 SF binding site was found to be

located in the intron spanning the fusion breakpoint which

may suggest increased expression in human (supplementary

fig. S4, Supplementary Material online) (Ule et al. 2005). The

expression of TDFG ENST00000567078 (supplementary fig.

S5, Supplementary Material online) is ubiquitous and the SF

analysis again identified a NOVA1 domain within intron 2

(supplementary fig. S5b, Supplementary Material online)

(Paz et al. 2010). Predominant HMGI/Y transcription factor

use is also predicted for this TDGF which is indicative of an

activated gene. We did not detect expression of TDFG

ENST00000529564 using RT-qPCR; however, the SF and

TFBS predictions indicate a broad expression pattern as

does the analyses of 127 epigenomes (Bernstein et al. 2010)

(fig. 3).

Discussion

Regions prone to nonallelic homologous recombination in

genomes have shown that they are enriched with transcripts

particularly in primate species. Nonallelic homologous recom-

bination can be caused by clustered repeated sequences, such

as SDs. The range of duplicated blocks varies from species to

species; however, some general trends have been described,

for example, mice contain less SDs in comparison to tandem

duplications, whereas the converse is true in primates. It has

previously been proposed that regions of SD may contain a

high proportion of fusion transcripts (Marques-Bonet, Kidd,

et al. 2009). Indeed, we observe that 8/26 of our TDGFs that

we could map precisely are present at known SD breakpoints

which provides empirical support for enrichment of fusions at

SD breakpoints; however, our sample size is small.

Investigations of ENCODE data have revealed that �4–5%

of genes have the potential to generate readthrough tran-

scripts of this nature (Nacu et al. 2011). Regardless of the

overall number of TDGFs present, it is widely understood

that they contribute to proteome diversity and regulatory

functions.

Fusion genes that have previously been validated tend to

be associated with receptor and enzymatic functions (Akiva

et al. 2005). For example, CCL14/CCL15 is a chemokine re-

ceptor (Stone et al. 2017), CYP2C18/CYP2C19 is an enzyme

involved in drug metabolism (Lofgren et al. 2008) and the

SBLF-ALF fusion is a leutinizing hormone receptor (Xie et al.

2002). Our analysis of GO terms from the parents of the

TDGFs in our data set revealed a bias toward binding activities

(cation/ion, heterocyclic compounds, and nucleic acids) and

endopeptidase activity but the small sample size of our TDGF

data set make it difficult to draw comparisons about func-

tional trends.

The TDGFs we identify in this study have the capacity to

produce alternative transcript isoforms. In general, gene dupli-

cates or members of large gene families tend to have a low

number of alternative transcripts with similar expression pro-

files, while single copy genes are more likely to have a higher

number of alternative transcripts with more heterogeneous tis-

sue expression profiles. It has been shown that older gene

duplicates tend to have more alternative transcripts than youn-

ger duplicates. These general trends may suggest that the num-

ber of alternative transcripts present for a given gene is an

indicator of the length of time the gene has been in the ge-

nome (Iniguez and Hernandez 2017), and that TDGFs

with multiple isoforms may have appeared earlier. However,

the presence of multiple isoforms for TDGFs may be attribut-

able to their location in the genome rather than age, that is,

there may be a higher probability of transcriptional slippage in

Table 1

Results of RT-qPCR on 26 TDGFs in 5 human tissues

Tissue Number of Fusions Expressed

Brain 13

Testis 19

Liver 19

Placenta 17

Lung 16

Out of the 26 testable TDGFs, we display the number that are detected as
expressed following RT-qPCR in each of the five human tissues assessed.
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regions of genomic complexity such as in regions of SD (Ritz

et al. 2011), and alternative transcripts across human protein-

coding genes tend to not be shared among even closely related

species (Iniguez and Hernandez 2017). Not all isoforms will

produce protein products, indeed TDGFs ENSG00000250151

and ENSG000002500021 each have transcript isoforms that

have been shown to regulate gene transcription through non-

sense mediated decay (Reyes and Huber 2018).

In total, we determined differential gene expression

patterns in three TDGFs in our data set. TDGF

ENSG000000137878 (or GCOM1) which is known to have

multiple fused transcripts (processed and unprocessed) has

differential expression across all tissues sampled. The proc-

essed transcripts are known to be involved in intracellular sig-

nal transduction in the nucleus while the unprocessed

transcripts control the expression of POLR2M through non-

sense-mediated decay (Roginski et al. 2004). TDGF

ENGS00000185304 (RANBP2-like and Grip domain-

containing protein 2) has differential expression between

brain and testes and between heart and cerebellum and is

located in the nucleus. It plays a role in GTPase binding which

has been shown to control nucleocytoplasmic transport,

FIG. 3.—Splice Factor Binding site profiles for fusion transcript ENST00000529564 and the corresponding parent genes. (a) Transcription-derived gene

fusion transcript ENST00000529564 is displayed along with parent genes PRSS53 and VKORC1. Splice Factor binding sites for splice factor “SF2ASF” (in

pink), “MBNL1-3” (in gray), “SFp20” (in red), and “NOVA1” (in blue). Each square represents a single SFBS present. (b) Expression level of each Splice factor

binding site across ENST00000529564 across a panel of tissues on the x axis (left to right): Adipose tissue; Adrenal gland; Brain; Heart; Kidney; Liver; Lung;

Ovary; Pancreas; Sigmoid colon; Small intestine; Spleen, and Testis. Expression data are given in RPKMs. Expression data were obtained from the expression

atlas ENCODE data set (Kapushesky et al. 2010). (c) Expression profile of Splice factor binding sites of each of the parent genes PRSS53 (gray bars) and

VKORC1 (black bars). Tissue panel on the x axis (left to right): Adipose tissue; Adrenal gland; Brain; Heart; Kidney; Liver; Lung; Ovary; Pancreas; Sigmoid colon;

Small intestine; Spleen, and Testis. Expression data are given in RPKMs. Expression data were obtained from the expression atlas ENCODE data set

(Kapushesky et al. 2010).

Table 2

Splice factor and transcription factor binding sites predicted for 3 of the TDGFs

Transcript_ID RT-qPCR Predicted Parents SFBS TFBS

ENSG00000446072 Ubiquitious N/A NOVA1 N/A

ENSG00000567078 Ubiquitious ARL6IP1 and RPS15A NOVA1 HMGI/Y

ENSG00000529564 No expression PRSS53-201 and VKORC1-206 SFASF, SRp20, mbnl, NOVA1 Sp1, Zfx, YGR067C

only those transcription derived gene fusions for which we had evidence of translation from ribosome profiling datasets were used in this analysis
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nuclear organization and both nuclear and spindle assemblies

(Ciccarelli et al. 2005). Finally, TDGF ENSG00000283154

(IQJC-SCHIP1) is differentially expressed in the brain in com-

parison to all other tissues examined and it is known to have a

role in contributing to the maintenance of neuronal polarity

through the Ca2þ and Kþ channels found in the axon initial

segment (Papandreou et al. 2015).

The open chromatin structure in testes, the increased ex-

pression of transcriptional machinery, and the selective pres-

sures acting on the male germline all contribute to permissive

transcription of new transcripts in the testes (Nyberg and

Carthew 2017). Therefore, new genes are thought to be

expressed initially solely in the testes and over time more

broadly as described by the “out of testes hypothesis”

(Marques et al. 2005; Vinckenbosch et al. 2006; Kaessmann

et al. 2009; Kaessmann 2010). However, the TDGFs identified

here have a broader expression signature most likely due to

the fundamental nature of their formation from established

genes and corresponding regulatory motifs. Our results indi-

cate that TDGFs do not follow the same trend as would be

expected of new genes that have emerged by other processes

in the genome.

Conclusion

Our network-based analysis of seven genomes has focused

on a highly conservative subset, that is, PI of >90%. Due to

sequence quality, divergence times and availability of alterna-

tive transcript data, the reported number of fused genes in

nonhuman primates is most likely an underestimate. TDGFs

are enriched in regions of human SD suggesting that the ge-

nomic instability typical of these regions aids in rearrangement

of genes into neighborhoods that facilitate TDGF. Unlike

other new genes, fused gene transcripts appear to have a

broad RNA expression profile across tissues and cell types.

We have provided evidence for the active translation into

proteins for three of these TDGFs.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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