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Abstract: Optical fiber based twist sensors usually suffer from high cross sensitivity to strain. 

Here we report a strain independent twist sensor based on an uneven platinum coated hollow 

core fiber (HCF) structure. The sensor is fabricated by splicing a section of ~4.5-mm long 

HCF between two standard single mode fibers, followed by a sputter-coating of a very thin 

layer of platinum on both sides of the HCF surface. Experimental results demonstrate that 

twist angles can be measured by monitoring the strength change of transmission spectral dip. 

The sensor�s cross sensitivity to strain is investigated before and after coating with platinum. 

It is found that by coating a platinum layer of ~9 nm on the HCF surface, the sensor�s cross 

sensitivity to strain is significantly decreased with over two orders of magnitude less than that 

of the uncoated sensor sample. The lowest strain sensitivity of ~
52.32 10−

×  dB/航岨 has been 

experimentally achieved, which is to the best of our knowledge, the lowest cross sensitivity to 

strain reported to date for optical fiber sensors based on intensity modulation. In addition, the 

proposed sensor is capable of simultaneous measurement of strain and twist angle by 

monitoring the wavelength shift and dip strength variation of a single spectral dip. In the 

experiment, strain and twist angle sensitivities of 0.61 pm/航岨 and 0.10 dB/° have been 

achieved. Moreover, the proposed sensor offers advantages of ease of fabrication, miniature 

size, and a good repeatability of measurement. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Twist/torsion is a key parameter that is frequently encountered for structure health monitoring 

in numerous applications, such as in evaluating the heath conditions of bridges, buildings, 

tunnels, dams and pipelines [1]. Compared to traditional electromagnetic and electronic 

sensors, optical fiber based twist/ torsion sensors have been attracting intensive interest due to 

their inherent advantages such as compact size, light weight, immunity to electromagnetic 

interference and a remote sensing ability. 

To date, a number of optical fiber based twist sensors utilizing different fiber structures 

have been proposed. In general, those sensors can be mainly categorized into two types 

depending on their operation principles. One type is grating based twist sensors [2�8], while 
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the other type is based on interferometry [9�17]. Fiber grating based twist sensors suffer from 

relatively low twist sensitivity, complex fabrication process and expensive fabrication 

equipment (e.g. Excimer laser and phase masks). Interferometer based twist sensors, on the 

other hand, have advantages of a relatively simple fabrication process and a much higher 

twist sensitivity, hence a variety of fiber structure configurations based on different 

customized and specially designed fibers for monitoring twist have been proposed [9�17]. 

Among them, Mach-Zehnder interferometer (MZI) and Sagnac interferometer (SI) have been 

attracting most of the attention. For example, a square no-core fiber [9], a suspended twin-

core fiber [10] and a tapered single mode-thin core-single mode fiber structure have been 

reported for twist monitoring based on MZI configurations [11]. Polarization maintaining 

fibers (PMFs) and photonic crystal fibers (PCFs) are widely used in SI based twist sensors 

[12�17]. However, most of the optical fiber based twist sensors mentioned above suffer from 

high cross sensitivity to strain, even for the PMFs based twist sensors which have been 

reported with very low cross sensitivities to temperature [14,16]. 

There have been a few strain insensitive twist sensors reported recently. For example, L. 

A. Fernandes et al. [2] reported a stress independent torsion sensor based on a helical Bragg 

grating waveguide structure, but the sensor itself shows a poor repeatability test of 

measurement. O. Frazao et al. [10] proposed a both temperature and strain independent 

torsion sensor based on a fiber loop mirror structure using a suspended twin-core fiber, but 

the sensor shows a very low twist sensitivity of 0.012 dB/°, which may result in a large 

measurement error even for a small intensity variation. J. Wo et al. [5] and B. Huang et al. 

[13] have experimentally demonstrated strain independent high sensitivity twist/torsion 

sensors based on a dual-polarization distributed Bragg reflector fiber grating laser and an 

optical fiber reflective Lyot filter structure, respectively. However, these two sensors suffer 

from disadvantages of long sensor head (over 30 mm) and complex signal interrogation 

systems. 

In our previous work, we have reported a miniature size hollow core fiber (HCF) based 

fiber structure with high Q transmission dips and large extinction ratios [18]. An ultra-

sensitive twist sensor (up to 0.717 dB/°) has been also demonstrated based on dip strength 

modulation by applying a thin layer of partial silver coating on the HCF surface [19]. 

However, it is found that the twist sensitivity of the HCF structure is dependent on the change 

of strain applied on it. To address the challenge of strain introduced variations in twist 

sensitivity, in this work, we propose a strain independent twist sensor based on an uneven 

platinum coated hollow core fiber structure. In addition, the proposed sensor is demonstrated 

to be able to measure strain and twist angle simultaneously by monitoring a single dip�s 

wavelength shift and dip strength change, respectively. Usually, for optical fiber based 

sensors simultaneous measurement of multi-parameters is realized with multiple sensors by 

monitoring two or more dips� spectral responses, establishing a characteristic matrix and then 

the measurement result for each parameter is obtained by solving this matrix [20,21]. 

Compared to the complex sensor configurations and data acquisition systems used before, our 

proposed sensor is simpler and easier to use in real applications because only a single sensor 

is required to be monitored, when both strain and twist are applied to the same sensor.. 

2. Theoretical model and analysis 

Figure 1 illustrates a schematic diagram of the proposed HCF based fiber structure with 

uneven platinum coating (double-sided coating as shown in Fig. 1(b)) at the outer cladding 

surface of HCF. Light transmission inside the fiber structure is illustrated in Fig. 1(a) only for 

the top half of the structure for the sake of clarity. A schematic diagram showing the cross-

section of the HCF based structure after double-sided platinum coating is given in Fig. 1(b). 

Due to the multiple beams interferences introduced by the silica cladding, periodic 

transmission dips are obtained [18]. 
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Assuming the incident light ray (L) has an amplitude A. The reflection coefficients at the 

interface between the inner air/cladding and cladding/ platinum /outer air are denoted as 1r  

and 2r  respectively. Then the light amplitude at the end of the hollow core fiber can be 

expressed as follows [19]: 
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where δ  is the phase difference between the two adjacent reflected light rays inside the air 

core of the HCF (L1, L2, L3�) which can be calculated by 
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where ș2 is the refraction angle at the interface between the air core and silica cladding, d  

and n  are thickness and refractive index of the silica cladding, λ  is the incident light 

wavelength. The light intensity transmistted in the HCF is hence can be described as: 
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As can be seen from the above equations, if the incident light and the physical parameters of 

the HCF are fixed, the transmitted light intensity is dependent on the reflection coefficients at 

the interfaces between the air core/cladding and cladding/platinum/outer air. 1r  and 2r  can be 

calculated by the Fresnel equations: 
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Fig. 1. (a) A schematic diagram of the proposed HCF structure, showing the light transmission 

and multiple beams interference inside the hollow core; (b) a schematic diagram of the HCF 

cross-section after coating with platinum layer. 

                                                                                        Vol. 27, No. 14 | 8 Jul 2019 | OPTICS EXPRESS 19728 



3. Experimental setup 

Here we report the experimental investigation of the influence of strain and twist on the 

transmission spectral of the uneven platinum-coated HCF structure. In the experiment, a short 

section of HCF (inner air core diameter ~30 µm, outer cladding diameter ~126 µm) with a 

length of ~4.5 mm was fusion spliced between two single mode fibers (SMFs). A 4.5 mm-

length HCF is chosen based on our previous report, which has demonstrated that this 

particular HCF length produces transmission spectrum with a relatively high Q factor and low 

loss [17]. A sputter-coating machine (Quorum Technologies Q150RS) was used for the 

coating of platinum layer on the outer surface of HCF. During the coating process, the HCF 

fiber was fixed horizontally in the sputtering chamber and coated for a short period of time. 

Then the fiber sample was 180° turned over and coated for the same period of time. When the 

coating process is finished, a double-sided coating of platinum on the outer surface of HCF is 

successfully fabricated. Since the fiber surface is cylinder shaped, the coating thickness was 

unevenly distributed over the HCF surface, with the maximum thickness at the top/bottom of 

the cylinder�s cross-section, decreasing towards both sides (Fig. 1(b)). In our experiment, 

different coating thicknesses were studied. However, it is difficult to measure the actual 

thickness of the platinum coating unless using a high resolution SEM because only a very thin 

layer of platinum (around 10 nm) was coated on the HCF surface. Therefore, the coating 

thickness claimed in this work is a calibrated value on a glass slide. Given that the sputter-

coating machine has a platinum coating rate of ~6 nm/minute, the coating thickness is 

calculated as 6 nm/minute × Time. In the experiment, five fiber samples (S1 to S5) were 

fabricated and then coated using different time intervals of 0 seconds (s) (bare fiber sample), 

30 s, 60 s, 90 s and 120 s (equivalent to calibrated coating thicknesses on a glass slide of 0 

nm, ~3 nm, ~6 nm, ~9 nm, and ~12 nm), which are labeled as S1-0, S2-30, S3-60, S4-90, and 

S5-120, respectively. 

Figure 2 shows a schematic diagram of our twist and strain sensing setup. An appropriate 

and fixed force was applied to different sensors to make them straight and to ensure that the 

same strain was applied to different fiber structure samples during the twist measurement. 

Twisting of the fiber structures was carried out using the fiber rotator with a twist angle 

resolution of circa one degree, and the axis strain was applied using the translation stage with 

a resolution of 10 ȝm. The distance between the translation stage and the fiber rotator is ~20 

centimeters. Before applying the strain/twist, the polarization state of the input light was 

adjusted using a manual polarization controller (PC) to achieve the largest dip strength. This 

initial spectrum with the largest dip strength was then labeled as a �0� twist angle state. In our 

experiment, a clockwise twist is defined as a negative angle twist while a counter clockwise 

twist is defined as a positive angle twist. Light from a broadband light source (BBS) was 

launched into the HCF based structure through a PC and the transmitted light was measured 

by an optical spectrum analyzer (OSA). 

 

Fig. 2. Schematic diagram of the experimental setup for twist and strain measurement. 
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4. Results and discussion 

The influence of the platinum coating thickness on the sensor�s spectral response has been 

studied and the results are illustrated in Fig. 3, where the largest transmission dips for all the 

five samples (S1 to S5) are shown before and after coating with platinum by adjusting the 

polarization state of the input light using a PC. As can be seen from the figure, all the five 

bare HCF based fiber structure samples have similar transmission dips with a maximum 

central dip wavelengths variation of 0.25 nm and dip strengths variation of 2.18 dB, which 

demonstrates good reproducibility of the sensor. With the increase of the sputtering time from 

30s to 120s, corresponding to an increased platinum coating thickness from ~3 nm to ~12 nm, 

the normalized transmission dips gradually move toward longer wavelengths, while the dips 

strengths show a trend of decrease. When the coating thickness is ~12 nm (S5-120), the dip 

strength decreased to around ~4 dB. Since the operation principle of our proposed twist 

sensor is based on intensity modulation, for which the twist sensitivity is highly dependent on 

the dip strength, hence samples from S1-0 (without coating) to S4-90 were chosen for twist 

experimental demonstration in the following experiment. 

 

Fig. 3. Measured spectral responses of the HCF based fiber structures before and after coating 

with platinum layers of different thicknesses. 
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Fig. 4. Measured spectral responses of the HCF based fiber structures without platinum coating 

(S1-0) under different stains when the input light polarization state is (a) fixed and (b) 

changed; (c) Measured spectral dip strength change when twist is applied to the HCF structure 

at three different strain values of 0, 600 航岨, and 1200 航岨, respectively. 

The effect of strain on the HCF sensor without platinum coating (S1-0) was firstly 

investigated and the experimental results are presented in Fig. 4. Before applying strain to the 

HCF, the transmission spectral dip was adjusted to the largest dip strength using PC. If the PC 

is fixed and hence the input light polarization state is maintained constant before the light 

enters the twist fiber section during the strain test, the spectral dip moves monotonically to a 

shorter wavelength with a significantly decreased dip strength (>7.5 dB ) as the strain 

increases from 0 to 1200 航岨 as shown in Fig. 4(a). However, a much smaller variation in the 

dip strength (<1.5 dB ) is observed in Fig. 4(b) when PC is adjusted to achieve the strongest 

dip strength during the strain test. Ideally, a bare HCF based structure has isotropic properties, 

no spectral dip strength variations would be expected under strain and twist. However, this 

situation changes due to the existence of residual stress and core ellipticity originating from 

the practical fiber fabrication process, resulting in anisotropic properties and hence 

birefringence in the fiber structure (Birefringence is an optical property of a material in which 

index of refraction depends on the polarization and propagation direction of light). 

Birefringence induces the changes of the polarization state of the input light [22], and 

accordingly leads to the change of the reflection coefficients at the silica/air interface (Eqs. 

(4) and (5)), which eventually resulting the dip variations. It is widely reported in literature 

that both strain and twist produce birefringence in optical materials [22], Bigger strain applied 

on the HCF structure introduces larger birefringence variations and thus bigger changes in 

reflection coefficients at the silica/air interface, and hence a higher twist sensitivity is 

observed in Fig. 4(c). The average twist sensitivity measured at 1200 航岨 is over three times 

higher than that measured at 0 航岨 when the twist angle is changed from 0° to 100°. The 

maximum twist sensitivity at 1200 航岨 is up to ~0.18 dB /° between 10° and 40°. 

Next, the effects of strain and twist on the uneven platinum coated HCF sensors were 

investigated. Figures 5(a) and 5(b) show the dips strength changes and their normalized dips 

strength change with the increase of strain for sensor samples S1-0, S2-30, S3-60, and S4-90 

when the input light polarization is constant. As one can see from the figures, when the 

platinum coating layer thickness increases, the dip strength variation is getting smaller and 

smaller as the strain increases from 0 to 1200 航岨. Sensor�s cross sensitivity to strain is 

decreased by over two orders of magnitude to 
52.32 10−

×  dB /航岨 as the coating thickness 

                                                                                        Vol. 27, No. 14 | 8 Jul 2019 | OPTICS EXPRESS 19731 



increases from 0 to ~9 nm, which is, to the best of our knowledge, the lowest cross sensitivity 

to strain for twist sensors based on intensity modulation [4,13]. It is hence concluded that in 

the case of the HCF structure coating with platinum helps to decrease the dependence of light 

polarization on the axial strain. The underlying cause of the observed strain independent 

properties after coating with platinum is not yet fully clear, however the decreased dip 

strength following coating with platinum certainly contributed to the strain independent 

behavior. In our previous work [19], we have theoretically demonstrated that the dip�s 

strength decreases significantly as 2r  deviates from 1r  further (as a result of platinum layer) 

but with a reduced dip strength changing rate. Thus, for an uncoated HCF structure, a small 

variation in the reflection coefficients at the air/silica interfaces introduced by strain will 

produce a large dip strength change since 2r  is very close to 1r . On the other hand, when the 

HCF is coated with platinum, the difference between 2r  and 1r  is increased, which leads to a 

much smaller dip strength change for the same reflection coefficients variations when strain is 

applied. Figure 5(c) shows an example of the corresponding spectral response under different 

strains for sample S4-90, which gives a spectral shift based strain sensitivity of 0.61 pm/ 航岨. 

 

Fig. 5. (a) Measured spectral dip strength changes and (b) Normalized dip strength change 

when different strains are applied to sensor samples S1-0, S2-30,S3-60 and S4-90, 

respectively; (c) Examples of measured spectral responses of S4-90 under different stains. 

Figure 6(a) shows an example of a spectral dip strength changes as the twist angle varies 

from 0° to 110° under applied strains of 0 航岨 and 1200 航岨 for sensor samples S2-30, S3-60 

and S4-90. It can be seen that the measured deviation of the dip strength change is getting 

smaller and smaller with the increase of the platinum coating thickness, which matches well 

with the results shown in Fig. 5(a). Sensor S4-90 which shows the smallest dip strength 

change variation at 0 航岨 and 1200 航岨 is then chosen for a more detailed investigation of twist 

measurement. An example of changes in the transmission dip strength at different twist angles 

for S4-90 is shown in Fig. 6(b). As the twist angle increases (in both clockwise and counter-
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clockwise directions), the transmission dip strength decreases monotonically while the central 

wavelength of the dip remains almost unchanged. 

The twist sensing effect could be understood as follows. Light polarization could be 

described as the vector sum of S-polarized and P polarized light components. When the light 

incidence angle at the interface between the air core and cladding is less than the critical angle 

of total internal reflection, the S-polarized light is always more strongly reflected than P-

polarized light [23]. Twist will introduce changes in P and S components, hence the change of 

reflection coefficients, and will eventually result in the dip strength change. Furthermore, a 

pre-designed uneven platinum coating and the actual uneven coating in all the directions 

introduce an asymmetric RI distribution over the outer surface of the HCF (Fig. 6(c)), leading 

to a large variation on the reflection coefficient at the outer silica cladding/platinum/air 

interface, and consequently resulting in a large power variation as illustrated in Fig. 6(b). 

Figure 6(d) summarizes the changes of the spectral dip strength and their standard 

deviation in two rounds of increase-decrease cycles tests (four times test) as the twist angle 

varies from −110° to 110°. The maximum measured standard deviation is ~0.08 dB , which 

clearly demonstrates that the sensor has a very good repeatability of measurement considering 

the resolution of the rotator is around 1° only. The maximum twist sensitivity is ~0.10 dB /° 

appears for twist angles between 20° and 40°. It is noted that the twist sensitivity is relatively 

low compared to our previously reported twist sensor based on a partial silver coated HCF 

due to a much decreased dip strength [19]. However, it is still eight times higher than a 

suspended twin-core fiber based twist sensor [10], six times higher than a normal FBG based 

twist sensor [4], three times higher than an Au-coated tilted FBG twist sensor based on 

surface plasmon resonance [8]. Most importantly, the proposed sensor in this work shows 

very low cross sensitivity to strain. 

 

Fig. 6. (a) Measured spectral dip strength changes under twist for sensor samples S2-30, S3-60 

and S4-90 at 0 航岨 and 1200 航岨, respectively; (b) An example of the measured spectral 

response of S4-90 under twist; (c) Schematic diagram shows the E-field orientation at different 

twist angles; (d) Measured spectral dip strength changes and the corresponding standard 

deviation in two rounds increase-decrease cycles test when twist is applied to the HCF 

structure. 
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Figures 7(a) and 7(b) illustrate standard deviation plots of the measured dip strength 

change under a counter clockwise twist when different strain and temperature are applied on 

the sensor S4-90. As can be seen from Fig. 7(a) the sensor S4-90 shows a very good 

performance repeatability under different strain values from 0 航岨 to 1200 航岨, with a 

maximum standard deviation of only ~0.04 dB  which is even smaller than that measured in 

the repeatability test at 0 航岨, indicating that S4-90 can be used as a strain-independent twist 

sensor. Sensor�s temperature dependence varies in the range from 22.8 °C to 47.4 °C is also 

investigated and shown in Fig. 7(b). The standard deviation of the measured dip strength 

change at different temperature values from 22.8°C to 47.4°C, increases to ~0.09 dB , which 

demonstrates that the temperature has a small effect on the dip strength and hence the twist 

sensitivity. Figures 7(c) and 7(d) show examples of the measured spectral dip strength 

variations at specific twist angles with different strains and temperatures applied. Considering 

a twist sensitivity of ~0.10 dB/° for twist angles between 20° and 40°, the corresponding cross 

sensitivities to strain and temperature at 40° are calculated to be ~ 49.64 10  / ȝİ−
× °  and 

21.89 10  / C−
× ° ° , respectively. It is noted that given that the central wavelength of the dip is 

almost fixed during the twist test while the dip strength also does not change with the strain, it 

is possible to achieve simultaneous measurement of strain and twist angle by measuring the 

spectral shift and dip strength change, respectively. 

 

Fig. 7. Measured spectral dip strength changes and the corresponding standard deviation at (a) 

different axial strains applied to the HCF structure of 0 航岨, 200 航岨, 400 航岨, 600 航岨, 800 航岨, 

1000 航岨 to 1200 航岨, and at (b) different temperatures of 22.8 °C, 27.6 °C, 32.2 °C, 36.8 °C, 

41.4 °C, and 47.4 °C when twist is applied to the HCF structure. Examples of measured 

spectral dip strength variations at specific twisted angles for (c) different strains and (d) 

temperatures. 

5. Conclusion 

In conclusion, a strain independent twist sensor is proposed and investigated based on an 

uneven platinum coated hollow core fiber structure. Experimental results show that strain 

introduces additional birefringence for the uncoated hollow core fiber structure and hence 

higher twist sensitivity under larger strain is observed. Sensor samples with different platinum 

coating thicknesses have been studied. It is found that a thin layer of platinum coating 
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significantly decreases the proposed twist sensor�s cross sensitivity to strain. An extremely 

low strain sensitivity to the sensor� spectral dip strength change is demonstrated of only 
52.32 10−

×  dB /航岨 when the coating thickness is ~9 nm. In addition, simultaneous 

measurement of strain and twist angle is achieved by monitoring the spectral dip wavelength 

shift and dip strength variation, with sensitivities of 0.61 pm/ 航岨 and 0.10 dB /°, respectively. 
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