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Monte Carlo Simulations of Diffusion Weighted
MRI in Myocardium: Validation and

Sensitivity Analysis
Joanne Bates,∗ Irvin Teh, Darryl McClymont, Peter Kohl, Jürgen E. Schneider, and Vicente Grau

Abstract— A model of cardiac microstructure and diffu-
sion MRI is presented,and compared with experimental data
from ex vivo rat hearts. The model includes a simplified rep-
resentation of individual cells, with physiologically correct
cell size and orientation, as well as intra- to extracellular
volume ratio. Diffusion MRI is simulated using a Monte Carlo
model and realistic MRI sequences. The results show good
correspondence between the simulated and experimental
MRI signals. Similar patterns are observed in the eigenval-
ues of the diffusion tensor, the mean diffusivity (MD), and
the fractional anisotropy (FA). A sensitivity analysis shows
that the diffusivity is the dominant influence on all three
eigenvalues of the diffusion tensor, the MD, and the FA.
The area and aspect ratio of the cell cross-section affect
the secondary and tertiary eigenvalues, and hence the FA.
Within biological norms, the cell length, volume fraction of
cells, and rate of change of helix angle play a relatively small
role in influencing tissue diffusion. Results suggest that
the model could be used to improve understanding of the
relationship between cardiac microstructure and diffusion
MRI measurements, as well as in testing and refinement of
cardiac diffusion MRI protocols.

Index Terms— MRI, diffusion weighted imaging, heart,
tissue modelling.
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I. INTRODUCTION

D IFFUSION MRI measures the direction and magnitude
of diffusion by assessing the net loss of phase coherence

in diffusing molecules (water protons in the heart) in the
presence of spatially-varying field gradients. Acquiring MRI
images with diffusion weighting in at least 6 directions allows
the diffusion to be represented by a three-dimensional (3D)
diffusion tensor (DT). From this DT, quantitative descriptors
of the diffusion can be calculated, including the apparent
diffusion coefficient (ADC) or the mean diffusivity (MD), both
measures of the magnitude of diffusion, and the fractional
anisotropy (FA, a measure of the degree of directionality of
diffusion).

In healthy hearts, the long axes of cardiac myocytes are
orientated in a helical arrangement through the ventricular
wall [1]. The cells are further organized in laterally-reinforced
layers (sheetlets) of a few cells in thickness. The sheetlet
arrangement allows the myocardium to undergo large shear
deformations during the cardiac cycle, and for the heart
wall to thicken substantially during systole, which would not
be possible based solely on the isovolumetric contraction
of myocytes [2]. This microstructure is essential for the
heart’s efficient function; in diseased hearts remodeling of this
microstructure can lead to impaired function [3]–[5].

Since diffusion within tissue tends to be greatest in the
direction of the cell long-axis, diffusion MRI can be used
to non-invasively infer information about tissue microstruc-
ture [6]. In myocardial infarction, diffusion is more isotropic
and is increased in all directions, as shown by the eigenvalues
of the diffusion tensor; in addition there is greater variation
in cell orientation [7]. Diffusion tensor imaging (DTI) has
been used to show angular differences in hypertrophic cardiac
myopathy compared with controls [8]. FA and mean ADC
have been shown to be reproducible between centers [9] and
have been suggested to relate to the amount of disarray, which
could be fundamental in assessing disease.

Computational modelling allows for the investigation of
the dynamic effects of microstructural remodeling on dif-
fusion MRI, which is hard to explore experimentally [10].
Analytical solutions to the diffusion equations exist only for
simple geometries, such as the diffusion between parallel
plates [11]; Monte Carlo (MC) models can be used to inves-
tigate more complex geometries. In the brain, MC models of
diffusion have been used to investigate the effects of neuronal
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swelling [10], to assess the effect of changes in microstructure
following traumatic brain injury on DTI measurements [12],
or to verify the use of a fiber phantom [13].

From the only group who has, to our knowledge, published
MC models of cardiac dMRI, Wang et al. [14] firstly created
an MC model of parallel myocytes using hexagonal cross-
sections. They investigated the effect of the ratio of water
content in the intracellular (IC) and extracellular (EC) space.
In their follow-up paper [15], they modelled myocytes as
cylinders. They distributed 8000 myocytes in different orienta-
tions in a cube with sides 2 mm and only placed molecules in
the IC space, with a volume fraction of cells much lower than
reported physiological values (c. 3%). They then expanded
this model to the whole heart at different stages of the cardiac
cycle [16].

In this work, we present and evaluate a new MC
model of cardiac microstructure. In previous papers by
Wang et al. [14], [15], two models are proposed, one including
IC and EC space with parallel cells, and a second with cells
at different orientations but including only intracellular space,
due to its effect on volume ratio. Our model attempts at repre-
senting both IC and EC, with variable orientations, in a single
geometry, and is designed to be a flexible, adaptable model,
which will allow the introduction of myocardial disarray as
well as other pathological changes such as fibrosis and cell
hypertrophy. We also produce, in what we believe is the main
contribution of the model, a comprehensive comparison of
model results with experimental measurements on ex vivo rat
hearts.

The contributions of this work are firstly to demonstrate a
flexible modelling methodology of diffusion MRI in the heart,
the results from which are validated by experimental diffusion
MRI data. This model helps isolate specific structural contri-
butions to the diffusion signal, and disentangle complex and
often ambiguous variation arising in experimental data. It will
ultimately facilitate investigation of the effect of pathological
changes in cardiac microstructure on the diffusion MRI signal.
Second, the model will streamline MRI sequence optimization
and exploration of parameter space beyond experimental lim-
its. Third, a sensitivity analysis of the relative importance of
the model parameters shows that the diffusivity has the greatest
effect on the model outcomes. The sensitivity analysis and
a simple comparison of the model’s FA and MD to experi-
mental data from one rat heart were presented at the FIMH
conference [17]. This current paper expands substantially on
that work, with enhanced validation against new experimental
data, including analysis of eigenvalues and MRI signals.

II. MATERIALS AND METHODS

A. Model of Myocardial Tissues

A model of a simplified volume of left ventricular
myocardium was created as shown in Fig. 1. Cells were
modelled as cuboids with a defined length, cross-sectional area
and aspect ratio of the cross-section (thickness/width). The
model consisted of layers of cells where each layer is parallel
to the epicardium and endocardium, that is, transverse angles
(those between the circumferential axis and the projection of

Fig. 1. Schematic of model geometry (note model sizes may differ from
those in the Figure). (A) Cells are cuboids and are arranged in parallel
layers, angled from the adjacent ones. (B) The voxel to be analyzed is the
turquoise cube at the center of the total model volume. Molecules (pink)
are randomly distributed across the whole model volume. (C) Confo-
cal image of cardiomyocytes in long section from Bensley et al. [18]
(CC BY 4.0).

the cell long-axis onto the radial-circumferential plane [19])
were set to 0°. Cells within each layer were parallel to each
other. The gaps between cells within and between layers was
equal and was chosen to give the desired volume fraction of
cells, that is, the proportion of the tissue made up of myocytes.
Fig. 1C shows a confocal image of myocytes where it can be
seen that they are regularly packed and similar in size. To aid
interpretation of the simulation data, the model is simplified
and the cells are modelled as all the same size and evenly
packed within each layer.

The helix angle (that between the cell long-axis projected
onto a plane parallel to the epicardium, and the radial-
circumferential plane [19]) varied linearly across the voxel at
a rate based on the ratio between the range of helix angles
found across the myocardium and typical left ventricular (LV)
wall thickness (see Table I). The LV wall thickness in the
literature ranged from 1.73 mm to 2.67 mm [20]–[22], and
the total helix angle variation ranged from 130° to 180° [8],
[19], [23]. For the comparisons with experimental data, the
resultant angle between cells in adjacent planes is 1.0°; it is
variable for the sensitivity analysis due to its dependence on
the cell size, volume fraction and angle rate.

A single cubic voxel was analyzed. To avoid boundary
effects a cube with sides 200 μm larger than the required
voxel was modelled. Molecules were randomly distributed,
from a uniform density law, across the simulation volume in
both the IC and EC space; at every time step each molecule’s
displacement along each of the three axes is taken from a
normal distribution with a mean of zero and the standard
deviation equal to the 1D step length of

√
2Dδt where D is

the diffusivity and t is the timestep. If a molecule reaches any
boundaries, it reflects elastically off those boundaries. Colli-
sions between molecules are not modelled. Initial experiments
showed that a minimum density of 1×108 molecules/mm3 and
a maximum timestep of 2 μs were required for accurate and
repeatable results.

The diffusivity was assumed to be isotropic, and to be the
same in the IC and EC space. The restrictions to diffusion from
surfaces other than the cell membranes were not modelled
explicitly, but assumed to be incorporated in the diffusivity,
which is lower than the self-diffusivity of water.

All anatomical and physiological parameters in the model
were adopted from the literature, with their ranges for the
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TABLE I
MODEL PARAMETERS

sensitivity analysis chosen to match the range of values
reported in different publications, and the model parameters
for the comparison with experimental data in the middle of
this range, as listed in Table I.

B. Diffusion Simulations

The total phase shift, ϕ, for each molecule was a function of
the gradient strength that it experienced over every timestep j ,
dependent on its location at that time, and was calculated as
[37]:

ϕ =
N∑

j=0

ϕ j =
N∑

j=0

γ 〈G(t j ), r(t j )〉t (1)

where N is the total number of timesteps, G(t j ) is the magnetic
field gradient at timestep j , r(t j ) is the molecule position at
timestep j , t is the timestep, and γ is the gyromagnetic ratio
(267.5rad/μs/T for protons).

The MRI sequence modelled was the standard Stejskal-
Tanner sequence [38], with rectangular diffusion gradient
pulses assumed. The gradient strength at the location of the
molecule at each timestep was summed for the duration of
the two pulses of spatially-varying gradients, with the second
pulse given a negative sign.

Only those molecules which finished in the central voxel
were used to calculate the MRI signal. The MRI signal,
S/S0, for M molecules for each gradient direction is:

S

S0
= 1

M

M∑

i=1

cos (ϕi ) (2)

C. Calculation of MRI Measurements

In DT imaging, the b-value is the diffusion weighting
which combines the properties of the applied gradient pulse

into a single factor. In the idealized free diffusion state for
rectangular pulses, this is given by:

b = (Gγ δ)2
(

� − δ

3

)
(3)

where G is the magnetic field gradient strength, δ is the
diffusion gradient pulse duration, and � is the time between
gradient pulse onsets. For experimental data cross terms
between the diffusion and imaging gradients, and nonzero
ramp times also contribute to the b-value. In this work, we
achieve a range of b-values by varying both the gradient
strength and pulse timing parameters.

The diffusion tensor was calculated for each voxel using
linear fitting, and from this the commonly used measures FA
and MD were calculated as [6]:

M D = λ1 + λ2 + λ3

3
(4)

F A =
√

3

2

√√√√
(
λ1 − λ̄

)2 + (
λ2 − λ̄

)2 + (
λ3 − λ̄

)2

λ2
1 + λ2

2 + λ2
3

(5)

where λn is the nth eigenvalue and λ̄ is the mean of the
eigenvalues.

D. Simulation of Noise

MRI acquisition noise was added to the simulated data using
a Rician noise model [39]:

S = ∣∣S∗ + N1 + i N2
∣∣ (6)

where S is the noisy MRI signal and S∗ is the noise-free
MRI signal. N1 and N2 are random numbers taken from a
normal distribution with a mean of 0 and a standard deviation
of 1/SNR. The SNR is relative to the non-diffusion weighted
images (b = 0). For the effect of gradient strength data, simula-
tions were matched to that measured in the diffusion weighted
experimental data, which had a variable SNR since the receiver
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TABLE II
DTI SEQUENCE PARAMETERS

gain was optimized for each diffusion-weighting [40]. For
the simulations, noise was added to the noise-free signal for
100 repetitions, which was shown in initial experiments to give
stable results. The DT was then calculated for each repetition,
and the mean and standard deviation over all the repetitions
is reported.

E. Experimental Data

Hearts from five healthy Sprague-Dawley rats were isolated,
fixed with isosmotic Karnovsky’s fixative with 2 mM Gd
(Prohance, Bracco, MN, USA), rinsed and embedded in 1%
agarose gel comprising PBS and 2 mM Gd [41]. Experimental
investigations conformed to the UK Home Office guidance on
the Operations of Animals (Scientific Procedures) Act 1986
and were approved by the University of Oxford’s ethical
review board.

Diffusion spectrum imaging (DSI) data were acquired on
a 9.4T horizontal bore MRI scanner (Agilent, CA, USA)
with shielded gradients (maximum gradient strength = 1T/m,),
rise time = 130 μs, and a transmit/receive quadrature-driven
birdcage coil (inner diameter = 20 mm; Rapid Biomedical,
Rimpar, Germany). We used a 3D fast spin echo sequence:
TR/TE = 250/15 ms, echo train length = 8, echo spac-
ing = 4 ms, FOV = 20×16×16 mm, matrix = 100×80×80,
isotropic resolution = 200 μ m, diffusion duration (δ) = 5 ms,
diffusion time (�) = 9ms, number of non-DW images = 4,
number of DW directions/b-values = 257, b-value (max) =
10,000 s/mm2, acquisition time = 14:30 h.

For each b-value, the MRI signals for each voxel were
calculated and normalized to the S0 signal. The MRI signals
were analyzed in two ways. Firstly, the mean, median and
interquartile ranges of these MRI signals were calculated
across all the voxels and gradient directions for each of the
b-values.

Secondly, the MRI signals were analyzed in the directions
of the DT’s eigenvectors. Since the DSI gradients are in a grid
layout aligned with the co-ordinate system axes, there are five
b-values acquisitions along each of the co-ordinate axes. The
DT was calculated for all b-values up to 3000 s/mm2. All
voxels where the eigenvectors of the DT aligned to within 8°
of the co-ordinate system axes were identified, and the largest

continuous volume of these voxels was taken to avoid noisy
voxels. The MRI signals for the gradient directions along the
co-ordinate system axes were averaged over all those voxels
for each b-value.

In addition, the data were divided up into sets by b-value,
where the b-value has a range of no more than 400 s/mm2,
and DT analysis carried out. A 3D region of interest (ROI)
was manually defined within the left ventricle, with reference
to high-resolution anatomical images. Care was taken to avoid
regions containing buffer, gel or residual blood, thus avoiding
the unwanted influence of these non-representative areas. The
ROIs had a volume of at least 1.6 mm3 (200 voxels).

A second 3D echo planar DTI dataset was acquired with
four different diffusion times and five b-values to investigate
the effect of different diffusion times: TR/TE = 250/10 ms,
echo train length = 16, FOV = 20 × 16 × 16 mm,
matrix = 40 × 32 × 32, isotropic resolution = 500 μm,
δ = 2.5 ms, � = 10, 20, 30 and 40 ms, number of non-
DW images = 5, number of DW directions = 6, b-value =
400, 800, 1600, 3200 and 6400 s/mm2, acquisition time =
1:20 h. For each combination of diffusion time and b-value,
the MRI signals were analyzed over all voxels and gradient
directions and the DT analysis was carried out. Due to the
poorer spatial resolution of the second dataset, the heart was
segmented from the background by thresholding on the b0
image and the whole heart was analyzed.

F. Analysis of Simulation MRI Signal

The settings for the simulations were chosen to match the
settings for the experimental data, and are listed in Table II.
The MRI signals from the experimental data were analyzed
over all of the gradient directions and all of the voxels,
each of which will have had a different microstructure and
orientation of that microstructure compared to the gradient
directions. In the simulation, there was only a single voxel.
To mimic the experimental variation of gradient directions
in relation to the microstructure, the number of gradient
directions was set to 100.

For the analysis of the MRI signals in the directions of the
eigenvectors, the DT of the simulated data was calculated. The
gradient directions closest to the eigenvectors of the DT were
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Fig. 2. Eigenvalues as b-value is changed by gradient strength from the
5 hearts in the experimental data. Pink line indicates the average of all
5 hearts. Data are the mean ± standard deviation over all voxels.

identified (the difference between eigenvector and gradient
direction was less than 8°), and the MRI signals in these
directions were compared to the experimental data.

G. Membrane Permeability

The cell membranes in the studies up to here are assumed
to be impermeable. However, cell membranes are not com-
pletely impermeable to water molecules and the inclusion
of permeability in modelling has been shown to affect the
results, especially the FA [14], [42]. To test whether permeable
membranes affect the results in this model, we performed a
series of experiments with the membrane permeability set to
15 μm/s [43]. All other parameters were as for the effect of
gradient strength in Table II.

H. Sensitivity Analysis

For the sensitivity analysis, the modified Morris method [44]
was used. This is a simple and economic type of sensitivity
analysis, which screens the input factors to determine which
are the most important, and was therefore chosen for this
study. It takes interactions of factors into account and is model
independent. It assumes no stochasticity in the model, which
is not strictly true for this model; however, the variation due to
stochasticity is much smaller than that due to the changes in
the input factors. It produces two sensitivity measures for each
input factor: μ∗ is the estimated mean of the elementary effects
and estimates the overall effect of the factor on the output,
and σ is the standard deviation of the elementary effects and
estimates non-linear effects and interactions with other fac-
tors. The parameters were varied between the maximum and
minimum values shown in Table I.

I. Software

The model was created in Smoldyn [45]. Custom-written
MATLAB (MathWorks, Massachusetts, USA) code was used
to calculate the diffusion MRI signals, and to carry out the dif-
fusion tensor analysis. The sensitivity analysis was performed
using the modified Morris method software implemented in
MATLAB and provided by Campolongo et al. [44].

III. RESULTS

The eigenvalues of the experimental data are shown in
Fig. 2. Visual inspection shows consistent results across the
five hearts; the average of them was therefore used when
comparing with the simulated data.

Fig. 3. Effect of b-value changed by gradient strength on MRI signals.
Boxes are inter-quartile ranges with the median as a horizontal line and
the circle indicating the mean; whiskers are 1.5 times the interquartile
range, and outliers are beyond that. Dashed line indicates the
approximate noise floor.

Fig. 4. Effect of diffusion time (Δ) on MRI signals for experimental
and simulated data for b-values of 400 and 1600s/ mm2. Boxes are
inter-quartile ranges with the median as a horizontal line and the circle
indicating the mean; whiskers are 1.5 times the interquartile range, and
outliers are beyond that.

The simulation voxel sizes were chosen to match the differ-
ent voxel sizes in the experimental data; however, the voxel
size makes only a small difference to the simulated results.

A. MRI Signals

Fig. 3 shows the effect of changing the b-value by gradient
strength on the MRI signals for the simulated and experimental
data. The difference between the experimental and simulated
means and medians is no more than 17% across the whole
range of b-values, and the MRI signal attenuation increases
for both as the b-value increases. The experimental data
has a smaller inter-quartile range than the simulated data.
The simulated data has fewer very small values than the
experimental data, and its mean is larger than the median,
especially at higher b-values.

Fig. 4 shows the effect of changing the diffusion time on
the MRI signals for the simulated and experimental data for
b-values of 400 and 1600 s/mm2. For the b=400 s/mm2 data,
the simulated signals are slightly higher than the experimental
ones across the range of diffusion times and both increase
by 12% from the shortest to longest diffusion times. For the
b=1600 s/mm2 data, for the shortest diffusion time, the mean,
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Fig. 5. Effect of b-value changed by gradient strength on MRI signals
in the directions of the eigenvectors (ev) of the DT for experimental
(dotted line) and simulated (solid line) data. Solid dark line indicates the
approximate noise floor. Colors are used to differentiate primary (blue),
secondary (beige) and tertiary (pink) eigenvector directions.

Fig. 6. Effect of b-value changed by gradient strength on eigenvalues (λ)
for the simulated (solid lines) and experimental (dotted lines) data.
Data points are mean values over all voxels and all hearts (expt), and
all repetitions (sim); error bars are ±1 standard deviation. Colors are
used to differentiate primary (blue), secondary (beige) and tertiary (pink)
eigenvalues.

median and inter-quartile range of the MRI signals are very
close to the experimental data. The mean, median and inter-
quartile range increases slightly for the experimental data as
the diffusion time increases; the simulated data also increase
but more quickly leading to a maximum difference in the mean
values of 43%.

Fig. 5 shows the effect of changing the b-value by gra-
dient strength on the MRI signals in the directions of the
eigenvectors of the DT for the simulated and experimental
data. The simulated signals in the direction of the primary
eigenvector are no more than 10% different compared with
the experimental data. The simulated signals in the directions
of the secondary and tertiary eigenvectors are higher than
the experimental data, but decrease in a similar manner with
b-value.

B. Diffusion Tensor and Derivatives

Fig. 6 shows the comparison of the experimental and sim-
ulated results for the effect of b-value by gradient strength on
the eigenvalues of the diffusion tensor. Both the experimental
and simulated eigenvalues decrease with increasing b-value.

Fig. 7. Effect of b-value changed by gradient strength on MD (left) and
FA (right) for the simulated (solid lines) and experimental (dotted lines)
results. Data points are mean values over all voxels and all hearts (expt),
and all repetitions (sim); error bars are ±1 standard deviation.

Fig. 8. Effect of diffusion time (Δ) on eigenvalues for simulated
(solid lines) and experimental (dotted lines) data for b = 1600 s/ mm2.
Data points are mean values over all voxels and all hearts (expt), and all
repetitions (sim); error bars are ±1 standard deviation.

The primary eigenvalue is higher for the noisy simulated data
than the experimental data, while the secondary and tertiary
eigenvalues are lower than the experimental data, leading to
a good estimation of the MD in the simulated data, and an
overestimation of the FA, as seen in Fig. 7.

Fig. 8 shows the effect of the diffusion time on the eigenval-
ues of the diffusion tensor for the simulated and experimental
data for a b-value of 1600 s/mm2. All of the experimental and
simulated eigenvalues decrease as the diffusion time increases.
The simulated primary eigenvalue matches the experimental
data well. The secondary and tertiary eigenvalues are lower
than the experimental ones, especially at longer diffusion
times.

Fig. 9 shows the effect of permeable membranes on the
eigenvalues, MD and FA. The simulation with permeable
membranes results in a slightly lower FA. Figure 10 shows
the effect of permeable membranes on the MRI signals. As the
diffusion time is increased, the permeable membranes lead to
lower MRI signals than impermeable membranes.

C. Sensitivity Analysis

Fig. 11 shows the sensitivity analysis results. For all three
eigenvalues, the MD and the FA, the diffusivity is the most
important factor as its μ∗ is much higher than the other factors.
The σ is small so there is primarily a linear effect with
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Fig. 9. Effect of permeability on eigenvalues, MD and FA. b-value is
changed by gradient strength. Values are mean ±1 standard deviation.

Fig. 10. Effect of permeability on MRI signals for experimental and
simulated data for a b-value of 1600 s/ mm2 as diffusion time (Δ) is
changed. Boxes are inter-quartile ranges with the median as a horizontal
line and the circle indicating the mean; whiskers are 1.5 times the
interquartile range, and outliers are beyond that.

little interaction with the other factors. For the secondary and
tertiary eigenvalues, the FA and the MD, the cross-sectional
area is the next most important factor. The aspect ratio is
important for the secondary and tertiary eigenvalues and the
FA. The length, angle rate and volume fraction have only very
small effects on all the outcomes.

D. Computing Time

For an isotropic voxel of 200μm, with a 200μm border
(i.e. a volume of 400μm × 400 μm × 400μm), the total com-
putational time on a desktop PC for a diffusion time of 44 ms
is 300 h. Simulation of the diffusion in Smoldyn takes a total
of 180 h, in 50 separate simulations of 3.5 h. Converting the
text output files from Smoldyn into MATLAB format takes a

Fig. 11. Sensitivity analysis results for primary, secondary and tertiary
eigenvalues (left, top to bottom), MD (right, top) and FA (right, middle).
μ∗. estimates the overall effect of the factor; μ∗ estimates non-linear
effects and interactions with other factors.

total of 100 hours (7 minutes per file for a total of 800 files).
Calculation of the MRI signal in MATLAB takes 20 h.

IV. DISCUSSION

The first aim of this study was to demonstrate a modelling
methodology for the acquisition of diffusion weighted images
of myocardial tissue, and to assess its results compared with
experimental data. The model reproduces the MRI signals
well compared with the experimental data. The DT and its
derivatives also correspond well with the experimental data.

The simulated MRI signal in the direction of the primary
eigenvector is very close to the experimental data, while for
the secondary and tertiary directions the simulated signal is
less attenuated than the experimental data. The eigenvalues of
the DT show similar results to the MRI signals. The noisy
primary eigenvector is similar to the data, while the simulated
secondary and tertiary eigenvalues are lower than the exper-
imental ones. These eigenvalues lead to a similar MD in the
noisy simulated and experimental data, while the FA is higher
in the simulations than the experiments at lower b-values and
then decreases more rapidly than the experimental FA.

The differences between the experimental and simulated
data can probably be attributed to the structural homogeneity
of the model. The regular geometry of the model ensures
that almost all intracellular diffusion perpendicular to the cell
orientation is restricted, whereas almost all diffusion parallel
to the cell orientation is unrestricted. There is therefore a
greater difference in the MRI signals in the three eigen-
vector directions in the simulated data compared with the
experimental data, and the MRI signals in the secondary and
tertiary directions are less attenuated in the simulation than the
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experiment. This leads to greater differences in the eigenvalues
of the DT, and therefore a higher FA in the simulated data.

The MRI signal attenuation decreases with increasing dif-
fusion time as a result of increased interactions with cell
restrictions. This effect is more pronounced in simulation than
in the experimental data (the mean MRI signal in simula-
tions / experiments were 55% / 19% higher at � = 40 ms
compared with � = 10 ms). Incorporation of membrane
permeability in the simulations reduced the signal differences
from 55% to 48%. In addition to permeability, the differences
in diffusion time dependence between the simulated and
experimental data are likely to arise from the highly ordered
arrangement of simulated cells.

The addition of permeable membranes had only a small
effect on the dMRI results. This is in agreement with
Wang et al. [14] for physiologically realistic values of per-
meability, but Hall and Clark [42] found much greater effects
from the inclusion of permeability. Our experiments up to this
point have only included a single value of permeability, and
have not explored the relationships between permeability and
volume fraction. Further exploration of these aspects might
help clarify differences between studies.

Even though the model does not explicitly include sheetlets,
the secondary and tertiary eigenvalues are clearly distinct in
the simulated data, as seen in Figs. 6 and 8. This difference in
eigenvalues is likely to derive from two factors: the difference
in the width and depth of the cross-section of the cells, and
the dispersion of cell orientations within a voxel. It may
therefore be that some of the difference in eigenvalues in the
experiments derives from the shapes of the cells in addition
to the sheetlets.

The second aim of this study was to determine which of six
factors concerning simplified cell shape and tissue structure
have the greatest influence on cardiac DTI results. This is
important for two reasons: firstly, as there is a large range
of values in the literature for each parameter, it allows us
to understand for which parameters the choice of value is
critical to the model output. Secondly, as these parameters
may change with pathology, it helps understand the effect
of pathological changes in microstructure in diffusion MRI
signals, and design MRI sequences that respond to changes in
particular parameters.

The diffusivity was by far the most important factor,
especially for the primary eigenvalue and the MD. As the
diffusivity increases, the mean squared displacement of water
in a given time increases thus increasing the eigenvalues.
In free space, this would be a linear relationship, but in the
restricted case, as the step distance increases, the likelihood of
interaction with a surface (cell membrane) increases, resulting
in reduced phase dispersion and apparent diffusivity. As car-
diomyocytes are long narrow structures, these interactions tend
to preferentially decrease the secondary and tertiary eigen-
values, compared to the primary eigenvalues, in a nonlinear
manner. There is a wide range of values available for the diffu-
sivity in the literature since the diffusivity is dependent on the
measurement technique and the temperature: this uncertainty
is a significant limitation to the model. However, since the σ is
low, there is little non-linearity or interaction with other factors

and therefore the relative results of simulations should not be
affected significantly by the diffusivity. Diffusivity is assumed
to be a single value, which is the same in all directions within
the cell and outside it. IC structures and the EC matrix will
affect the rate of diffusion. This may not be the same intra-
and extra- cellularly, as suggested by Garrido et al. [34], nor
the same in each direction in the cell. Disease may affect the
IC and EC environments and thus the diffusivity. Experimental
investigation of these effects, especially in pathology, would
enhance the model and the understanding of DTI in disease.
A further implication of these findings is that dMRI analysis
models which assume a fixed diffusivity value may be sensitive
to the value selected which could affect the model fitting.

The cross-sectional area has an effect on the secondary and
tertiary eigenvalues, the MD and the FA, although its effect is
much smaller than the diffusivity. A smaller cross-sectional
area leads to an increase in molecule-surface interactions
which will decrease the mean squared displacement within the
cross-sectional plane and therefore the secondary and tertiary
eigenvalues. The aspect ratio is as important as the CSA for
the secondary and tertiary eigenvalues, and the FA. A smaller
aspect ratio (greater difference between thickness and width)
will cause a greater difference in the diffusion in the direction
of the thickness compared with the width and hence a larger
secondary and smaller tertiary eigenvalue for the same CSA,
and a higher FA.

The length, volume fraction and rate of helix angle change
have negligible effects on all three eigenvalues. The VF
changes the size of the gaps between cells in the simulation but
even though this makes the EC space more restrictive than the
IC space, since the proportion of EC space is small, changes
in the VF do not significantly affect the DT. Since the cells
are much longer than they are wide or thick, molecule-surface
interactions with the ends of the cells are infrequent compared
with those with the sides and hence the length does not have
a large effect on the results. The ANG is small over a single
voxel and therefore has little effect.

The model geometry is intentionally simplified compared
with biological tissue, with only helix angles modelled, uni-
formly sized cells, all layers parallel to each other, cell
membranes as the only restriction to diffusion, and IC and
EC compartments with identical diffusivities. This is to allow
the understanding of the separate effects of changing these
parameters. Transverse angles are not modelled, but these
would be expected to only have a small effect on the results
of a single voxel due to the relatively small changes in
transverse angle across the myocardium, compared to helix
angles [40]. Gaps between layers may vary in real tissue, but
our studies separating IC from EC space contributions show a
substantially larger contribution from the IC space due to the
high volume fraction, and thus variations in EC space have
a modest effect on final signals. Since the model shows such
a dominating effect of the diffusivity, we believe secondary
changes to the model are unlikely to change this conclusion.
Likewise, we rotate each layer of cells relative to the next by a
constant value, as for our analysis it is one we estimate to have
a comparably modest effect. We base this simplification on the
sensitivity analysis findings showing a minor contribution of
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the rate of angle change (i.e. the angle between cell layers),
which is the parameter that would be affected by such noise.

The model does not yet include myocardial disarray, which
can be found in disease. The introduction of myocardial
disarray into the model would assist in the understanding of the
effect of disease on DTI results. At this stage we model only
a single voxel and do not therefore generate MRI images for
comparison with experimental data. Future work could include
simulations of multiple voxels or even a whole heart model,
following on from Wang et al. [16]. At that stage, analysis of
helix angles would also become interesting.

The sensitivity analysis results are interesting when consid-
ered in the context of pathological changes, which include
disarray, fibrosis, cell hypertrophy and IC changes [46].
In hypertrophy, the CSA of cells increases and this may
therefore be detected through changes in MD or FA. Fibrosis
is characterized by a proliferation of fibroblasts and the
formation of connective tissue, and leads to a smaller vol-
ume fraction of myocytes. However, the current model only
represents myocytes, and thus does not yet allow an accurate
representation of fibrosis. It is possible to introduce these
pathological changes into this model and we hope therefore
to use the model to further understanding of the relationship
between disease and the MRI signal that is produced.

The noise model is of MRI acquisition noise; biological
variation is not included in the model. The sensitivity analysis
suggests that variation in the cross-sectional area and aspect
ratio of the cells would have an effect on the results, whereas
the length, helix angles and volume fraction would make a
comparably small difference. Future work should therefore
focus on introducing variability in those parameters likely to
make a significant difference on the results.

The current model is computationally expensive and this is
a limitation to further work with the model. There are several
ways in which this could be improved. Reducing the boundary
around the voxel would speed up the two most intensive parts
of the process: the generation of the data in Smoldyn and the
conversion of the data into MATLAB. The implementation
of the pipeline in a single framework, in which the particle
diffusion results could be directly read by the MRI signal
generation software without writing and reading them from
the hard drive would also represent a significant reduction in
computational time. Combining analytical signals for appro-
priate structures with MC simulation would be another way to
reduce the computation time.

We acknowledge that modelling high b-value data with the
DT model violates the model’s assumption that the O(b2)
term is negligible relative to noise. However, we found that
this model is nevertheless useful in comparing the experimen-
tal and simulated MR signals. While non-Gaussian models
such as the diffusion kurtosis [47], bi-exponential [48] or
anomalous diffusion [49] models may be more appropriate
for the comparison of high b-value data, the application of
such models is outside the scope of this work. In addition, we
note that in order to minimise TE and achieve sufficient SNR
experimentally at the specified b-values and spatial resolution,
δ was necessarily non-negligible. However, simulations by
Balinov et al. with δ ∼ � show that the accuracy of both

the short gradient pulse limit and Gaussian phase distribu-
tion estimates of the diffusion signal improves with larger
sphere radius or separation between parallel planes [37]. We
considered the finite δ to be reasonable given the relatively
large ∼14 μm diameter of cardiomyocytes in our simulations.

We have demonstrated a modelling method of DTI in the
heart which provides an excellent match of MRI signals to
experimental data, and can therefore be considered to be a
useful tool in investigating cardiac diffusion MRI. Further
validation against data where the exact structure is known
could be valuable, for example for cardiac tissue where his-
tology and DTI data are both available, or against a phantom
model such as that used by Teh et al. [50]. While DTI
can be a sensitive marker of pathological changes, it is not
particularly specific. By better understanding the dominant
tissue properties that affect the DTI results, we can prioritize
development of models and acquisition strategies that enable
estimation of such properties from DTI data. Improving the
specificity of DTI measurements could augment the potential
of DTI as an early biomarker of pathology in the heart, and
our ability to distinguish between subtler forms of disease,
such as different forms of disarray. Further work will introduce
myocardial disarray into the model and investigate other output
measures.
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