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Key points

e A seven-gene signature is derived which can identify myeloma patiemtsrespond
better to bortezomib- or to lenalidomide-based therapy.

e Treatment according to the signature is non-inferior to treatment vathbioed
bortezomib, lenalidomide, and dexamethasone.



Abstract

Improving outcomes in multiple myeloma will not only involve development of new
therapies, but better use of existing treatments. We performed RiNlrseng (RNA-Seq)

on samples from newly diagnosed patients enrolled into the phase 1I PADIMAC
(Bortezomib, Adriamycin, and Dexamethasof®AD) Therapy for Previously Untreated
Patients with Multiple Myelomatmpact of Minimal Residual Disease (MRD) in Patients
with Deferred ASCT) study. Using synthetic annealing and the Large-Margin-Nearest-
Neighbor algorithm, we developed and trained a seven-gene signatuediti freatment
outcome. We tested the signature on independent cohorts treated wittorbdrteand
lenalidomide-based therapies. The signature was capable of distingwshich patients
would respond better to which regimen. In the CoMMpass (rel&iirgcal outcomes in
Multiple Myeloma topersonalassessment of genetic profile) dataset, patients who were
treated correctly according to the signature had a better priogrdgse survival (median
20.1 months versus not reached; hazard ratio 0.40; confidence ift&®#).72; p=0.0012)
and overall survival (median 30.7 months versus not reached; hazar@.4dticonfidence
interval 0.21-0.80; p=0.0049) than those who were not. Indeed, thenmutfor these
correctly treated patients was non-inferior to those treated withbioed bortezomib,
lenalidomide, and dexamethasone, arguably the standard of care in &g States, but not
widely available elsewhere. The small size of the signature wilit&teilclinical translation,

thus enabling more targeted drug regimens to be delivered in myeloma



Introduction

Multiple myeloma is a plasma cell neoplasm characterised by lytic bone lesions
hypercalcemia, renal impairment and bone marrow failure. Although oescdmave
improved in recent years with the introduction of novel agents, teastisemains incurable
and clinical responses display considerable heterogerfeiiyrther improvements will not
only come from introduction of new drugs but from better use of existingsdryounger,
fitter patients are usually treated with a drug combination involvipgogeasome inhibitor
(PI) and/or an immunomodulatory drug (IMiD) followed by high-dosepimaan therapy
with autologous stem cell transplant (ASCT). For transplant-ineligiblentgtieecent trial
data suggest that the treatment of choice may be a combination of,therfezomib
(Velcade, Millennium Pharmaceuticals, Cambridge, MA), the IMID, ldoatide (Revlimid,
Celgene, Summit, NJ), and dexamethasone (ViRE)wever, this combination is expensive
and is not funded in most countries outside the United States (US). Furthermveey fioail

patients, three-drug combinations may prove too toxic.

It is possible that treatment outcomes in myeloma might be improved lapphieation of
precision medicine, i.e. the rational selection of drugs based on the biologyhgbageent’s
tumour. Several studies have demonstrated the potential of wamgrriptomic data to
derive prognostic information in myelorfid.Signatures can be usefully combirfeoit are
generally agnostic to treatm&it™? and their main clinical utility is likely to be the
identification of patients who may benefit from trials for high-risk aése We sought to

derive a signature that could predict responses to spdufiagies.

The phase Il study of Bortezomib, Adriamycin, and DexamethasdeA®)(therapy for
previously untreated patients with multiple myelorhazpact of minimal residual disease

(MRD) in patients with deferredSCT (PADIMAC) was designed to examine whether



patients with good responses to PAD could safely avoid upfront ASCTmplewed RNA-
sequencing (RNA-Seq) on available good-quality RNA from enrolled patients aadddar
training dataset from patients with sustained deep responsesainsiiece of ASCT. We thus
generated a signature for predicting bortezomib-responsiveness in mypétraats not
receiving ASCT. When tested in independent datasets, the signattfoemed well,
identifying patients who benefited from bortezomib-based treatmenteirallience of an
IMIiD. Furthermore, when tested on lenalidomide-dexamethasone (B&gdr patients, the
signature performed in a reciprocal fashion, suggesting thatultd de used as a binary
classifier to choose between bortezomib-based treatment and RD. Patientsad been
treated correctly according to the signature classification had a@upenival to those who
had not. Indeed, in the relatinGlinical outcomes inMultiple Myeloma to personal
asessment of genetic profile (CoMMpass) dataset, correctletigadtients receiving either
bortezomib-based therapy (without IMID) or receiving RD (without borteh) had a non-
inferior survival to those treated with VRD. This suggests that oumsign could be
employed to improve the safety and cost-effectiveness of myelomapyhevidhout

compromising outcomes.

Materials and Methods

Sample accrual and processing and data generation

Sample accrual and RNA isolation

RNA of sufficient quality for RNA-Seq was available from 44 paSetreated on the
PADIMAC trial (ISRCTNO03381785). The trial protocol is described in thep&upentary
Materials. PADIMAC was conducted in accordance with the Deatewadf Helsinki and
Good Clinical Practice guidelines and was approved by the NHS National &e&thics

Service. Participants provided written informed consent. Patienstnagin and trial



management were performed by the Cancer Research UK and UniversageCotindon
Cancer Trials Centre. All patients had newly diagnosed untreated myekasgern Co-
operative Oncology Group performance status 0-3, and were eligtheSCT. Total RNA

was isolated using standard methodology, as described in the Supplementaigidvater

Identification of mutations and gene expression

Standard methods were used to identify mutations and determine geassen. Detailed
methodology is described in the Supplementary Materials and Tablei&fly,Beads were
mapped with TopHat and aligned with Samtoot$.Single nucleotide variants (SNVs) and
small indels were identified usingarScari®*® and RNA fusions were identified using
FusionCatchet’ Read counts were generated with the Rsubread patkddgaw and count
level data have been uploaded to Gene Expression Omnibus (GEO), refer&ideb8&24.
Differentially expressed genes were identified using DE¥&g2and the Gadé and

Pathvievi**® packages were used for pathway analysis.

Machine learning

S ection of test datasets

Test RNA-Seq datasets were derived from CoMMpass (https:fces@mmrf.orgy.

Microarray test sets were obtained for relapsed/refractdigns treated with bortezonffb
(GEO reference GSE9782), plasma cell leukemia (PCL) patients tredtad RD*’
(GSE39925), and newly diagnosed myeloma patients treated with PAvddllby ASCT®
(GSE19784). We refer to these data as the Millennium, PCL, and HOVON(& MHtasets,

respectively.

Data pre-processing, training, validation, and testing
RNA-Seq counts were normalized and corrected for heteroscedasity acdorgiuaiglished

methods>”® Potential signature genes were identified from the PADIMAC dataseinby



empirical Bayes methotf,then selected as described using synthetic anneHliwith an
error rate determined by a support vector machine implemented from the pdfkage

(https://cran.r-project.org/web/packages/e1071/index)html

Signature assignments were made using the Large Margin Nearngstbdts (LMNN)
algorithm?® Performance within the PADIMAC dataset was checked by ten-fold cross-
validation. For external testing, all PADIMAC data were used for trgjnwith an initial
50:50 split into a training and internal validation set that waddfice all testing. R and
Matlab scripts replicating this process have been included keétlstupplementary Materials.

All the CoMMpass, Millennium, PCL, or HOVON/GMMG data were used for tesfling.
determine the robustness of the signature performance in each case,d pmrmutation

testing was used, as described in the Supplementary Materials.

Statistical considerations
Null and observed assignments were compared using the Mann-Whitney-Wilaston t
Survival was compared using the Cox proportional hazards modeluésvat 0.05 or less

were considered significant.

Results

Initial assessment of PADIMAC data excludes a mutation-based classifier

We performed RNA-Seq on purified CD138+ plasma cells from a cohort of #ehfsa
treated on the PADIMAC trial. Clinical data are shown in TableV8&.first explored the
possibility of using a mutation-based classifier for bortezomib-respeness. We identified
fusion and SNV transcripts from the RNA-Seq data (Figures 1A and 1B and Tabled S3 a
S4).There were 0-8 fusions in each sample with a median of one (Figur&xpected IgH-

WHSCL1 fusions were detected from t(4;14) patients (Table S3). There mweadian of nine



SNVs per patient in coding regions, which is lower than seen in previous DNA sequencing
studies®®* This may reflect reduced expression from mutant affelesswell as a failure to
detect mutations in the furthest 5’ regions of some genes. Nevertheless, wedlerany of

the known driver mutations in myeloma (Figure 1B and Table S4). Othemkdiovers were

not mutated in our cohort, which may be related to sample size orreflagt lack of

expression of mutated allel&.

Overall, 45.5% of patients in the cohort achieved very good partial remi@s@RAR) or
better following PAD induction (Table S2). We defined a “bortezomib-goodimgroamely
patients who achieved a VGPR or better and who were progression-free ahométlyeut
ASCT (13/44; 29.5%). We termed the remaining patients “bortezstariard” (31/44;
70.5%). There were no associations between these groups and agmtitmal Staging
System (ISS), or myeloma type (Table S5). We also saw no significant asseckztween
bortezomib-responsiveness and the presence of key cytogenetic, SNWamasidcation
events (Table S6). There were trends towards significant assogialietween the
bortezomib-good group and (a) the presence of any translocation atie ({esence of a
beta2-microglobulin translocation (Table S6). However, we did not fieat these
associations were sufficiently strong for predicting clinical outcomésstherefore turned to

expression profiling.

Derivation of a seven-gene bortezomib-response signature

Expression of target genes known to be differentially expressed using mictbamay
qPCR” technologies in the Translocation-Cyclin D (TC) classification eassistent with
that previously described (Figure 1€)confirming the utility of RNA-Seq for measuring
relative gene expression in myeloma. We therefore proceeded to identifg aigeature for

bortezomib-responsiveness. We ranked potential genes using synthetiingih@zigures



S1 and S2). Derived signatures comprising 4-11 genes performed bettepetinamed
assignments in cross-validation of PADIMAC data using the LMNN algorithnu(@&sgS3
and S4; Matthews Correlation Coefficient (MCC) median 0.55 vefs045, Mann-Whitney
U 0, p=0.00090, two-tailed, Figure S4A; F-measure median 0.67 ver&sMag@n-Whitney
U 0, p=0.00090, two-tailed, Figure S4B). Of these signatures, the bé&sthprg was the
seven-gene signature (Figure 2A). As training of the LMNN algorithmnpeteas involves
splitting the training set into a training and internal validation set (Ei§2), we checked
that the seven-gene signature was robust by performing multipl®@@htraining/validation
splits and comparing performance with permuted assignments (n=d0®)g cross-
validation. The observed assignments had higher MCC and F-measures than the null
assignments (MCC median 0.50 versus 0.0054, Mann-Whitney U 8, p=285w406-tailed,
Figure 2B; F-measure median 0.64 versus 0.26, Mann-Whitney U 3, p=2%2x10-
tailed, Figure 2C), confirming that the signature performed well rdégss of the

training/validation split.

The genes comprising the signature are EMC9, FAM171B, PLEK, MYOEZBN3R FLNB,
KIF1C (Table S7). We did not see enrichment of these genes within ttheayagenesets
from the Molecular Signatures Datab®gé
(http://software.broadinstitute.org/gsea/msigdb/annotate.jspolEiion). However, at least
three of the proteins (EMC9, RCN3, and KIF1C) are associated with theplasmic
reticulum and three others (PLEK, MYO9B, and FLNB) interact with actamfnts
Furthermore, three genes (EMC9, MYQ9B, and KIF1C) associate positiwély
proliferation in myeloma’ Despite the lack of objective pathway enrichment in our
signature, supervised analysis of the RNA-Seq data as a whole did reveabysat

upregulated in the bortezomib-good patients (Table S8).



The seven-gene signature is predictive of outcome of bortezomib-treatedtieats in the

independent CoMMpass dataset

To enable testing of our signature in an independent external datasetracteedRNA-Seq

data from CoMMpass. We selected previously untreated patients who tdmraveed to

ASCT, as none of the bortezomib-good patients had received transplant. There were 147 such
bortezomib-treated patients (who had received no IMiD), 40 RD patients, an¥RID8
patients for whom RNA-Seq data were available (Tables S9-S11). There were a f
differences in clinical features between the groups. PADIMACeptt being transplant-
eligible, were younger than all the CoMMpass cohorts (Figures S5-S7)t\Riad patients

in CoMMpass were younger than the bortezomib-treated and RD cohortse§~ig@rand

S10). RD-treated patients had higher rates of del13 than PADIMAC tezbarib-treated
patients and a lower rate of t(4;14) than bortezomib-treated patienise¢f S6 and S8).

There were no differences in ISS stage between the groups (figurd955-S

We trained our seven-gene signature on the PADIMAC data and tested ijstabdientify
patients who would benefit from bortezomib-based therapy within CoMMpagsr¢ S11).
Patients who received bortezomib-based therapy and were assigiedbortezomib-good
group had a better progression-free survival (PFS) than those assigtiex tortezomib-
standard group (Figure 2D; Table 1, row 1). The randomization seetiefdPADIMAC
training/validation split had been fixed prior to testing. To ensure thatréakctive ability of
the signature was robust, we performed multiple additional tggiratidation splits of the
PADIMAC training set and compared the resulting assignments iCohMpass test set
with permuted assignments that formed a null dataset. As expecteddbust signature,
hazard ratios (HRs) for the predicted bortezomib-good patiemtslawger than the HRs from

random predictions (Figure 2E; Table 2, row 1).
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The seven-gene signature has reciprocal performance in RD-treated patientadahas

the potential to select therapy

To distinguish between the signature acting as a general predictor epgapubsis disease
and as a specific predictor of bortezomib-sensitive disease, wesl tésin RD-treated
patients. We reasoned that, if the signature were bortezomib-specifigriinvalsof RD-
patients assigned to the bortezomib-good would be no better than thageedds the
bortezomib-standard groups. To our surprise, RD-treated patientseastighe bortezomib-
good group in fact had an inferior PFS to those assigned to the bortezomib-sgnodard
(Figure 3A; Table 1, row 2). Whilst the difference was not significansettassigned to the
bortezomib-good group across repeated training/validation splits tagistently lower
survival, with higher hazard ratios (HRs) than those obtainecebwmyging the assignments

(Figure 3B; Table 2, row 2).

The implication of these findings is that patients predicted to do well with bantedy our
signature do poorly when treated with RD and vice versa. Hence thegawersignature
could be used as a binary classifier to rationally choose betwetazdraib-based therapy
and RD. To test this, we selected CoMMpass patients treated withdmoitbelzased therapy
or with RD and assigned each to a bortezomib-best or lenalidomidetoest. We then
compared survival between those patients who received the predicted kestrireaith
those who did not. Patients who received the correct therapy hgekaos PFS (Figure 3C;

Table 1, row 3) and overall survival (OS; Figure 3D; Table 1, rpWHe incorrectly treated

patients had a median PFS of 20.1 months and a median OS of 31.2 months, thieereas

median PFS and OS were not reached for correctly treated patients. Tduisgops were
again robust to the initial training/validation split of the PADIMAC dataset (Figl& S

Table 2, rows 3 and 4).
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We excluded the possibility that the signature was acting asayate for clinical features.
We saw no association between signature assignment and key cytmgeeets (p=0.13;
Fisher's exact test; Table S12) and in multivariate Cox ssge, ideal treatment according
to the signature retained significance for survival when age, ISS, or mmy/elobtype were

taken into account (Tables S13, rows 1 and 2).

Because of the finding of proliferative genes in our signature, we alsodimantbeck that it
was not acting as a surrogate for the gene-expression based profifenaex (GPIS0)
signaturé® or other prognostic signatures. As these signatures have not, to our dg@wle
been applied to RNA-Seq data previously, we first tested that they coulcpledap the
CoMMpass dataset. Indeed, when all of the GPI50, University of Arkansas for alledic
Sciences (UAMS70), Erasmus University Medical Centre (EMC92), andgtatpe
Francophone du Myélome (IFM15) signatdie® were applied to CoMMpass, the
distribution of scores was similar to that seen in microarray datd&sres S13A, S13C,
S3E, and S13G). Furthermore, all signatures retained prognostfaigre using thresholds
equivalent to those previously publisfefFigures S13B, S13D, S13F, S13H). Having
established that these prognostic signatures were effective inJeijAlata, we examined
whether there was any association between their assignments and the exgsigsfnour
seven-gene signature. None was seen (Table S14). Furthermoreingeaigal treatment
according to the seven-gene signature retained its prognostic cgigndi even in a

multivariate analysis including these signatures (Table S15).

A recent trial reported the superiority of VRD over RD in transplant-iredighatients, but

VRD treatment is not currently funded widely outside the US. We wondereatherh
rationally selected therapy could be a cost-effective alternative to gtilisstandard
treatment. We first demonstrated that VRD was superior to unsklbortezomib-based

treatment or RD in CoMMpass (Figure S14; Table 1, rows 5 and 6). We then cortiygared
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survival of patients treated correctly according to our signature Wwéhstrvival of all
patients treated with VRD in CoMMpass. There was no statistically signifdifference in
OS (Figure 3E; Table 1, row 7) or PFS (Figure S15A; Table 1, row 8) betweentpatie
treated correctly with bortezomib or RD and those treated with VRD. Tlisalsa true in a
multivariate analysis incorporating clinical features (Table,Sb®&s 3 and 4). We also
compared the outcome of CoMMpass patients treated correctlywrittzomib according to
the signature (without transplant) and all patients receivingebamiib-based induction
followed by ASCT. Interestingly, there was no significantedénce in survival between the
two groups (Figure S16; Table 1 rows 9 and 10), although there was weakcevafean

effect implying longer OS with transplant.

We hypothesized that the seven-gene signature should have minedadtipe ability in
VRD-treated patients. As expected, we saw no difference betweenttmenes for patients
assigned to the bortezomib-best or lenalidomide-best groups when thiestspeere treated
with VRD. This was true both for OS (Figure 3F; Table 1, row 11) and for (PigBre
S15B; Table 1, row 12). This lack of predictive ability was also seemultivariate analyses

incorporating clinical features (Table S13, rows 5 and 6).

The seven-gene signature performs well in other independent datasets

We were keen to test how our signature would perform in other non-sahsgktings, such
as relapsed disease. However, being limited by the availability diciyedovailable RNA-
Seq data, we turned to microarray data. There were two suitabletslaga#gable. One
comprised samples from patients with relapsed-refractory myelontadredh single-agent
bortezomiB® (the Millennium dataset). The second contained transcriptomic faata a
small series of patients with PCL treated with?RQthe PCL dataset). We reasoned that,

within the Millennium dataset, patients assigned to the bortezomib-best dladd shve a
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better survival, whereas within the PCL dataset, those assigned énafliddmide-best class

should have the superior outcome.

Signature assignments behaved as predicted. In the Millennium datadetrtitzomib-best
group had a superior PFS (Figure 4A; Table 1, row 13) and OS (Figuiiea® 1, row 14)
to the lenalidomide-best group. These results were robust to trainingiealidplits (Figure
4C; Table 2, rows 5 and 6). In the PCL dataset, those predicted to lkedenahdomide-best
group had a superior PFS (Figure 4D; Table 1, row 15) and OS (Figure Bl&;1ITaow 16)
than patients assigned to the bortezomib-best group. Again, theus@gmats robust, with

little influence from the training/validation split (Figure 4F; Table 2,9GWand 8).

The seven-gene signature loses predictive power in patients proceeding to ASCT

The bortezomib-good patients in the PADIMAC training set avoided ASCause of their
good response, accordirto trial protool. We had thus far confined testing in external
datasets to patients who had not had ASCT. We wondered whether thersigratld retain

its predictive power in patients proceeding to ASCT or whether transplant wouttbimesr
the survival differences between correctly and inatlyetreated patients. The HOVON-
64/GMMG-HD4 phase I tridf compared patients with newly diagnosed myeloma treated
with conventional chemotherapy versus those treated with PAD. Both groupgieite

proceeded to ASCT.

We used our signature to make bortezomib-best and lenalidomide-bestmasggynn
patients who had received PAD. We reasoned that, if the signature retairgddictive
power in the ASCT setting, we would see superior survival in thosengatissigned to the
bortezomib-best group. This was not the case, however, and we sawificasigdifference
in either PFS (Figure 5A; Table 1, row 17) or OS (Figure 5B; Tablewi 18) between the

different signature assignments.
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As a further check for the specificity of the signature, we also téstpcedictive value in the
dexamethasone-only arm. As anticipated, there was no difference in PFS bdtasen t
patients predicted to be bortezomib-good and those predicted to be lemaddicmod
(Figure S17A). However, patients predicted to be bortezomib-good hadreos@e in this
arm (Figure S17B). This is likely to be because patients receiving dexamethasene

eligible to receive cross-over bortezomib upon disease progress

Discussion

If it can be realized, precision cancer medicine will benefit patientsrinst of improved
efficacy and reduced toxicity and will benefibciety in terms of better management of
limited drug budgets. Transcriptomics has considerable promise in &S’ ahere are

signatures that predict for overall prognosis in cafc&r,including myelomd;*?

and
signatures that predict response to individual ther&pfésdowever, we are not aware of any
published signature that can be used to rationally select betweererdifestive cancer
therapies. Remarkable improvements in myeloma outcome over recent yealeba seen
thanks to the introduction of multiple novel agents, but this has been asbositite
increasing costs of treatméfitTherefore, precision medicine is arguably of particular

importance in this disease to help navigate through the increasingnantaaium of

available therapies.

Herein, we describe the derivation and testing of a seven-geneusgtiat can be used to
select between bortezomib-based or RD therapy in myeloma patientsdesgoing ASCT.
Patients treated correctly according to the signature in the CoMMptesetdhad a 69.7
months 3-year OS, similar to the outcome of patients treated with WRDably the current
standard care for transplant-ineligible patiehese comparisons have to be viewed with

caution, as CoMMpass is not a clinical trial. Nevertheless, the @&sisehe VRD group
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(74.5 months) is similar to that of the VRD-treated patients inrikleaf Durie et al. (75.0

months)® Furthermore, there was no evidence that VRD-treated patientsemr@ees: poor-
prognosis cohort in CoMMpass; there were no significant differences betheenates of
poor-risk cytogenetics or ISS in the VRD group and the bortezomib- ard@iled groups,

and non-inferior survival was maintained in a multivariate modefpurating ISS.

If the outcome of rationally selected bortezomib- or lenalidomide-lzasedpy is equivalent
to that of VRD, it would be important to consider why this might be. It may benthay
patients treated with VRD are predominantly benefiting from just the bantbzor the
lenalidomide. Alternatively, it might be that any gains in combining thgsdaue offset by
increased toxicity, particularly in older or frailer patients. lingortant to note that the
reciprocal performance that we observe is an intrinsic property of the wsigraatd not
simply because bortezomib-sensitivity is automatically associatgd lenalidomide-
resistance (and vice versa). This is clearly not the case in clingziqgey, nor is it consistent

with the existence of multiple treatment-agnostic prognostic sigrgainmyeloma.

Although PADIMAC was a trial for transplant-eligible patients, the signatusetkained on
patients who had had a good response in the absence of ASCT. Therefomiiabtest set
comprised patients who were transplant-ineligible (there were no daflesetsransplant-
eligible patients who did not proceed to transplant). Transpiafigible patients would be
the most obvious to benefit following successful translation of the signatuhe tdlinic.
When tested in transplant-eligible patients who had received PAD andl A$Che
HOVON-64/GMMG-HD4 trial, the signature lost its predictive ability, implyinigat
transplant can overcome the effect of receiving the “wrong” treatment. Anesting
guestion would be whether receiving the correct predicted treatmerdutvitfansplant is
equivalent to ASCT. We saw no survival difference between tramispieligible patients

treated correctly with bortezomib and all transplant-eligible patiee¢ted with bortezomib
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followed by ASCT. However, there was weak evidence of an effect suggbstier OS for

patients who had a transplant.

There are limitations of our signature that need to be overcome befpleyarant in a
clinical trial. The signature assigns approximately one-quarter tohadeef patients to the
bortezomib-best group and the remainder to the lenalidomide+oest gy default. It may be
that this larger group is heterogeneous, with some patients having poorer prognosis or multi-
clonal disease and thus requiring VRD or the addition of other novel agehéss @tay
benefit equally from bortezomib- or lenalidomide-based treatmesgardless of signature
assignment. Our signature was not capable of identifying th&fleeedt groups (data not
shown). Our external test cohorts were fairly small, owing to the lagkiloticly-available
and appropriate test datasets, and prospective validation dfpatuse will be needed. This
will probably require the development of a quantitative PCR orsetisequencing panel,
though the small number of genes in the signature means that thi$ sbdeasible. Finally,
it is not clear to what extent our signature represents a drug effect os affdas, because of
the lack of publicly available test datasets involving pdsig¢reated with alternative Pls or
IMiDs. Future data may become available from clinical trials in Wwiggpression profiling

has been incorporated into the protocol.

We believe that our signature has the potential to move theomadield towards rational
therapy decisions for transplant-ineligible patients in the futtiis.dssential that myeloma
genomic datasets with relevant clinical outcome data continue to be mialddypavailable
to allow refinement and prospective validation of these approacheswilhigquire the

ongoing support of the myeloma research community.
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Tables
Row | Treatment Comparison nl | n2 | Median Median HR (CI) p-value
(dataset) survival 1 | survival 2
(months) | (months)
1 Bortezomit-basec | Bortezomil-standard vs | 10€ | 39 | 21.€ 36.2 0.37 0.006:
© bortezomib-good (PFS) (0.17-0.81)
2 RD (C) Bortezomil-standard vs | 29 11 Not 18.¢ 2.3¢ 0.1¢€
bortezomib-good (PFS) reached (0.76-7.63)
3 Bortezomit-basec | Incorrectlytreated vs 11¢ | 68 | 20.1 Not 0.4C 0.001:
or RD (C) correctly-treated (PFS) reached (0.23-0.72)
4 Bortezomil-basec | Incorrectly-treated vs 11¢ | 68 | 30.7 Not 0.41 0.004¢
or RD (C) correctly-treated (OS) reached (0.21-0.80)
5 Bortezomil-basec | All VRD vs. all nor- 20¢ | 187 | 43.7 26.C 1.5C 0.0z
or RDor VRD (C) | VRD (PFS) (1.06-2.13)
6 Bortezomil-basec | All VRD vs. all nor- 20¢€ | 187 | Not 37.€ 2.05 0.0008:-
or RD or VRD (C) | VRD (OS) reached (1.34-3.13)
7 Bortezomit-basec | All VRD vs. nor-VRD 20¢€ | 68 Not Not 1.1C 0.74
or RD or VRD (C) | correctly-treated (OS) reached reached (0.58-2.13)
8 Bortezomit-basec | All VRD vs. nor-VRD 20¢ | 68 | 43.7 Not 0.86 0.57
or RD or VRD (C) | correctly-treated (PFS) reached (0.50-1.47)
9 Bortezomit-basec | Bortezomib correcth 47 | 39 | 36.€ 36.2 1.1¢ 0.7%
+/- ASCT treated vs. ASCT (PFS)
1C Bortezomit-basec | Bortezomib correcth 47 | 39 | 437 Not 3.1C 0.0¢
+/- ASCT treated vs. ASCT (OS) reached
11 VRD (C) Lenalidomidebest vs 164 | 44 Not Not 1.41 0.3€
bortezomib-best (OS) reached reached (0.69-2.90)
12 VRD (C) Lenalidomidebest vs 164 | 44 | 43.7 454 1.11 0.7¢
bortezomib-best (PFS) (0.62-1.92)
13 Bortezomib alont Lenalidomidebest vs 135 | 38 | 4.14 4.77 0.6¢€ 0.0
(M) bortezomib-best (PFS) (0.43-1.0)
14 Bortezomib alont Lenalidomid¢best vs 14¢ | 40 15.2 25.¢ 0.57 0.01
(M) bortezomib-best (OS) (0.53-0.91)
1t RD (PCL) Lenalidomid«best vs 8 10 Not 1.C Not defined' | 2.52x1C°
bortezomib-best (PFS) reached
1€ RD (PCL; Lenalidomid«best vs 8 10 Not 12.5 Not defined | 0.001:
bortezomib-best (OS) reached
17 PAD/ASCT (H; Lenalidomidebest vs 84 |57 | 26. 31.¢ 0.91 0.6
bortezomib-best (PFS) (0.60-1.37)
18 PAD/ASCT (H Lenalidomidebest vs 85 58 Not Not 0.7: 0.3C
bortezomib-best (OS) reached reached (0.40-1.34)

Table 1 — Cox regression results for survival comparison\ll signature assignments were based on the
seven-gene signature. Correctly-treated patients (rows 3-@& these predicted by the signature as
lenalidomide-best and who were treated with RD or those predistdxbrtezomib-best and treated with
bortezomib-based therapy. The datasets are CoMMpass (C), Milleidiyrmplasma cell leukemia (PCL),
or HOVON/GMMG (H). The numbers in the first group in the comparison &ntl) second group in the
comparison (n2) are given. The hazard ratio (HR) is that of twndegroup versus the first group. Cl —
confidence interval. *The HR for the PCL group is not defined because all patiegoup 2 progressed
before any progressions in group 1 (row 11) or because there were no deathp ih(gooul?2).
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Row | Treatment (dataset Comparison Median HR | Median HR | Mann- p-value
observed null Whitney U
1 Bortezomit-based (C | Bortezomit-standard vs 0.4¢ 0.9¢ 34¢ 5.67x10
bortezomib-good (PFS)
2 RD (C) Bortezomit-standard vs 2.01 0.9t 152¢ 1.91x10Y
bortezomib-good (PFS)
3 Bortezomil-based 0 | Incorrectly-treated vs. correct- | 0.4€ 0.9z 18E 5.44x10°%
RD (C) treated (PFS)
4 Bortezomit-based o Incorrectly-treated vs. correct | 0.4¢€ 0.8t 3 2.52x10%
RD (C) treated (OS)
5 Bortezomib alone (V | Lenalidomidebest vs 0.6¢ 0.97 48¢ 2.75x1(%
bortezomib-best (PFS)
6 Bortezomib alone (V | Lenalidomidebest vs 0.5¢ 1.0C 10¢ 5.67x1(=
bortezomib-best (OS)
7 RD (PCL) Bortezomil-best vs 0.2¢ 0.8¢ 133¢ 2.84x1(™
lenalidomide-best (PFS)
8 RD (PCL Bortezomi-best vs 0.2( 0.9€ 1117 1.98x1(*
lenalidomide-best (OS)

Table 2 — Mann-Whitney-Wilcoxon results testing the robustness ofhe seven-gene signature to

assignments across multiple (n=100) training/validation data spit Each dataset is from CoMMpass (C),
Millennium (M), plasma cell leukemia (PCL), or HOVON/GMMG (H). One hundissignments were made
in each dataset by the seven-gene signature following random grealidation splits (observed). Each of
these assignments was then permuted to maintain assignment ratiosTfreufperformance of the observed
and null assignments for predicting progression-free survival (PFESp\&rall survival (OS) was compared
in terms of hazard ratios (HRs) by the Mann-Whitney-Wilcoxon test. Thedchaato (HR) is that of the

second group versus the first group.
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Figure Legends

Figure 1 — Fusion events, key single nucleotide variations (SNVs), atrdnslocation-
cyclin D (TC) classification of PADIMAC data. Each column represents a single sample.
Samples are arranged into and color-coded by their TC classes (shtdvenbattom). (A)
Numbers of fusion events in each sample. (B) Key SNVs in each sg@plexpression of

genes whose dysregulation is associated with TC classificateacmsample.

Figure 2 — A seven-gene signature accurately predicts response to bortewo-based
therapy in PADIMAC and the independent CoMMpass datasets.(A) Matthews
correlation coefficients (MCCs) and F-measures of bortdz@ood assignments by 4-11
gene signatures derived from synthetic annealing, following crossatrahdwithin the
PADIMAC dataset. (B) and (C) MCCs and F-measures of bortezomith-gegignments by
the seven-gene signature following multiple (n=100) cross-validations wit@iR ADIMAC
dataset (Signature) compared to the MCC and F-measures of permuted agsigNuién
The p-values are those of the Wilcoxon-Mann-Whitney test, under the nulihlegpothat
the distributions of observed and null performances are the sam&afilan-Meier plot
showing the progression-free survival of patients who receiagtezomib-based therapy
within CoMMpass (n=147) and who were predicted to benefit (n=3%ebr line) or not
(n=108; solid line) from bortezomib-based therapy by the seven-ggnatwie following
training in PADIMAC. The p-value and hazard ratios (HRs) are those obtam@dCox
regression analysis. (E) HRs for disease progression of bortegowdbversus bortezomib-
standard patients who received bortezomib-based therapy in Cas4MPredictions were
made by the seven-gene signature, trained in PADIMAC, and folloegehted (n=100)
training/validation splits (Signature). The HRs are compared withlladataset of HRs

obtained following permutations of the assignments (Null). The p-valueais oththe
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Wilcoxon-Mann-Whitney test, under the null hypothesis that the distributibodserved

and null performances are the same.

Figure 3 — The seven-gene signature can be used as a classifier to select dmrtw
bortezomib-based therapy and lenalidomide/dexamethasone (RD) in thedependent
CoMMpass dataset.(A) Kaplan-Meier plot showing the progression-free survival (PFS) of
patients who received RD therapy (n=40) within CoMMpass and who predicted to
benefit (n=11; broken line) or not (n=29; solid line) from bortezom#rebdaherapy by the
seven-gene signature following training in PADIMAC. The p-valueleamhrd ratios (HRS)
are those obtained from Cox regression analysis. (B) HRs for disease gioogres
bortezomib-good versus bortezomib-standard patients who receidedh RCoMMpass.
Predictions were made by the seven-gene signature, trained in PADIsIAI followed
repeated (n=100) training/validation splits (Signature). The HRs ampared with a null
dataset of HRs obtained following permutations of the assignments (Null). Vdleepis that
of the Wilcoxon-Mann-Whitney test, under the null hypothesis that the distributibns
observed and null performances are the same. (C) Kaplan-Meteshowing the PFS of
patients who received bortezomib-based therapy or RD within CoMMpa487) and who
received the correct (n=68; broken line) or incorrect (n=119; sokd threrapy predicted by
the seven-gene signature following training in PADIMAC. Theafue and HR are those
obtained from Cox regression analysis. (D) Kaplan-Meier plotwsiy the overall survival
(OS) of patients who received bortezomib-based therapy or RD withiMipass (n=187)
and who received the correct (n=68; broken line) or incorrect (n=119; Iswidtherapy
predicted by the seven-gene signature following training in PADIMAC. Thayswand HR
are those obtained from Cox regression analysis. (E) Kaplan-Meiempletng the OS of
patients (n=276) who received bortezomib/lenalidomide/dexasw@teaVRD; n=208; solid

line) or who received bortezomib-based therapy or RD within CoMMpasw/hodeceived
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the correct therapy predicted by the seven-gene signature (n=68; birekermollowing
training in PADIMAC. The p-value and HR are those obtained from Ggression analysis.
(F) Kaplan-Meier plot showing the OS of patients who received VRDbMMpass (n=208;
solid line) and who were predicted to benefit from RD (n=164; solid) lore from
bortezomib-based therapy (n=44; broken line) by the seven-ggmedigie following training

in PADIMAC. The p-value and HR are those obtained from Cox regressaysemn

Figure 4 — The seven-gene signature accurately predicts bortezomitr lenalidomide-
responsiveness in further independent dataset§A) Kaplan-Meier plot showing the
progression-free survival (PFS) of patients who received singhg-agetezomib within the
Millennium studies (n=173) and who were predicted to benefit flmrtezomib-based
therapy (n=38; broken line) or from RD therapy (n=135; solid line) by the seven-gen
signature following training in PADIMAC. The p-value and hazeatios (HRs) are those
obtained from Cox regression analysis. (B) Kaplan-Meier plot stgpwie overall survival
(OS) of patients who received single-agent bortezomib withen Nhllennium studies
(n=188) and who were predicted to benefit from bortezomib-basedyh@ra40; broken
line) or RD therapy (n=148; solid line) by the seven-gene signature foljotxaining in
PADIMAC. The p-value and HRs are those obtained from Cox regressitysianéC) HRs
for PFS and OS of patients predicted to benefit from bortezomib-basegyhwho received
bortezomib in the Millennium studies. Predictions were made bgdlhen-gene signature,
trained in PADIMAC with repeated (n=100) training/validation sp{ignature). The HRs
are compared with a null dataset of HRs obtained following permutations ofstgerasnts
(Null). The p-values are those of the Wilcoxon-Mann-Whitney tesewiig null hypothesis
that the distributions of observed and null performances asathe. (D) Kaplan-Meier plot
showing the PFS of patients who received RD within the plasma cell lealstucly (n=18)

and who were predicted to benefit (n=8; solid line) or not (n=10; brokeh fiom RD
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therapy by the seven-gene signature following training in PADIMAC. Thalye is that
obtained from Cox regression analysis. (E) Kaplan-Meier plot stgpitie OS of patients
who received RD within the plasma cell leukemia study (n=18) and wh® pvedicted to
benefit (n=8; solid line) or not (n=10; broken line) from RD therapy by tlwvensgene
signature following training in PADIMAC. The p-value is that obtained from (@gxession
analysis. (F) HRs for PFES and OS of patients predicted tdibé&oen lenalidomide-based
therapy and who received RD in the plasma cell leukemia study. Prediceoasnade by
the seven-gene signature, trained in PADIMAC with repeated (D=tt&8@ing/validation
splits (Signature). The HRs are compared with a null dataset of HRs obfailvedng
permutations of the assignments (Null). The p-value is that of the WilcommWhitney
test, under the null hypothesis that the distributions of observeaudiqzerformances are the

same.

Figure 5 — The signature loses predictive ability in the transplansetting. (A) Kaplan-
Meier plot showing the progression-free survival (PFS) of patientsredeved bortezomib,
adriamycin, and dexamethasone (PAD) within the HOVON-65/GMMG-HD4 study (n=143)
prior to autologous stem cell transplant (ASCT) and who were prddiotdenefit from
bortezomib-based therapy (n=58; broken line) or from RD therapy (n=B&lise) by the
seven-gene signature following training in PADIMAC. The p-valueteamhrd ratios (HRS)
are those obtained from Cox regression analysis. (B) Kaplan-Meieshmpwing the overall
survival (OS) of patients who received PAD within the HOVON-65/GMMG-HD4 study
(n=143) prior to ASCT and who were predicted to benefit from baméd®rbased therapy
(n=58; broken line) or RD therapy (n=85; solid line) by the seven-genetgigriallowing
training in PADIMAC. The p-value and HRs are those obtained from Cox remuessi

analysis.
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