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Introduction. Inflammation is associated with obesity condition and plays a pivotal role in the onset and progression of
many chronic diseases. Among several nutraceutical foods, hazelnuts (Corylus avellana L.) are considered an excellent
anti-inflammatory and hypolipidemic food being the second richest source of monounsaturated fatty acids among nuts
and because they are rich in vitamins, minerals, and phenolic compounds. Materials and Methods. A prospective pilot
clinical trial on 24 healthy volunteers who consumed daily, as a snack, 40 g of hazelnuts (261.99 kcal/1096.17 kJ) for six weeks
was conducted. Anthropometric measurements, body composition analysis, and nutrigenomic analysis on 12 anti-inflammatory
and antioxidant genes were evaluated at baseline (T0) and after hazelnut intervention (T1). Results. No significant changes were
detected on body composition analysis after hazelnut consumption. Conversely, significant upregulation was detected for SOD1
(2744 = 2.42), CAT (2724 = 2.41), MIF (2724 = 4.12), PPARy (2724 = 5.89), VDR (2744¢ = 3.61), MTHFR (2724 = 2.40),
and ACE (2744% = 2.16) at the end of the study. Conclusions. According to emerging evidences, hazelnut consumption does not
lead to weight gain probably due to the improvement of the body’s antioxidant capacity by the upregulation of genes implied in
oxidant reactions and inflammation.

1. Introduction

Inflammation is a constant feature associated with the onset
and progression of many chronic degenerative diseases,
dramatically increasing in western countries, and one of the
leading causes of its insurgence is the high adipose tissue
content [1]. White adipose tissue (WAT) is a metabolic organ

able to satisfy body functional demands through the storage,
in case of an extra caloric intake, or the mobilization, in
case of metabolic demands, of energy. WAT is composed
of adipocytes, which has marked cellular heterogeneity,
vascularisation, and innervation, with a complex hormonal
homeostatic system [2]. The relationship between obesity
and inflammation was firstly observed in the 1990s. The
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metabolic dysfunction of adipocytes is the main cause of
chronic inflammation in WAT, through the increasing
expression of many biologically functional cytokines/
chemokines considering the major mediators of inflam-
mation in particular in obesity condition, like tumor
necrosis factor-a (TNF-«), interleukin-6 (IL-6), interleukin-
1B (IL-1pB), interleukin-8 (IL-8), and interleukin-17D (IL-
17D) [3]. The release of those inflammation cytokines
determined the subsequent activation of tissue-resident
macrophages [4]. In obesity, the excess of lipids and the
consequent surplus of WAT can cause also an increase of
reactive oxygen species (ROS) levels and the reduction of
the antioxidant defenses, events that determine the induction
of systemic oxidative stress [5].

Among several nutraceutical foods, tree nuts are edi-
ble dry fruits that, together with cereals and legumes,
have characterized the human diet since preagricultural
times, representing a high-energy and nutrient-dense
food, rich in minerals, vitamins, and bioactive compounds
[6]. The scientific evidence arises from both epidemiolog-
ical observations and clinical trials, showing beneficial
effects of nut intake on the health status. The reason
why a diet rich in nuts has these health benefits is due
to their high content in monounsaturated fatty acids
(MUFAs) and polyunsaturated fatty acids (PUFAs) [7],
sterols, and fibers and to the presence of bioactive mole-
cules like vitamin E (a-tocopherol), vitamin B, arginine,
and polyphenols [8, 9]. In particular, the nut antioxidant
capacity was widely discussed, highlighting the bioactivity
potential of nut phenolic compounds [10]. There is also
a suggestion of regulatory effects of nuts on inflammation,
demonstrated by the change of circulating inflammatory
markers and the expression of ligands for inflammatory mol-
ecules in circulating monocytes after two weeks of an
enriched nut diet [11]. Furthermore, nuts are particularly
rich in calories but their enriching in diets does not change
the body mass index (BMI). Actually, a higher weight loss
and a greater protection against cardiovascular risk factors
in subjects who consumed nuts in their diet compared to
who follow other dietary plans were shown [12-14]. These
observations support the theory for which the introduction
of nuts in weight loss or weight control diets determines a
more favourable outcome.

For all these reasons, nuts are included in the American
Heart Association dietary metrics for defining ideal cardio-
vascular health in their recent report on setting goals for
health promotion and disease reduction for 2020 [15].
Furthermore, the World Health Organization (WHO)
recommend a daily intake of nuts as a fundamental part of
a cardioprotective diet [16].

Among nuts, hazelnuts (Corylus avellana L.) belong to
the Betulaceae family and are considered excellent anti-
inflammatory and hypolipidemic food [17], being the second
richest source of MUFAs among nuts and because they are
rich in vitamin E and tocopherols, phytosterols (mainly a-
sitosterol), magnesium, copper and selenium, L-arginine,
polyphenols, folate, and fibers. Among the phenolic com-
pounds, gallic acid, p-hydroxybenzoic acid, epicatechin,
caffeic acid, sinapic acid, and quercetin are found in
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hazelnuts, with the highest unsaturated/saturated fatty acid
ratio among nuts [12].

To our knowledge, only one study defined the right
intake of hazelnuts to consume in order to maintain body
weight [18], and few works have had a nutrigenomic
approach to study the effects of hazelnut consumption
[19, 20]. However, nowadays, no studies have identified
the right intake of hazelnuts to be able to maintain or
improve body weight and/or body composition and enhance
anti-inflammatory gene expression. The mechanisms behind
weight and of body composition changes given by hazelnut
consumption, as well as their modulatory effect on the
inflammatory genomic upstream pathway, represent a new
field to discover.

The aims of this pilot study were to investigate the
effect of hazelnut treatment (HNT) on body composition
and on genomic response of genes related to oxidative
stress and inflammation.

2. Materials and Methods

2.1. Subjects and Study Design. For this prospective clinical
trial, 30 healthy volunteers were recruited and analyzed from
the staff of the Clinical Nutrition and Nutrigenomic Section,
Department of Biomedicine and Prevention of the University
of Rome Tor Vergata. Body composition data and blood
samples for genomic analysis were collected at baseline (T0)
and after 6 weeks of hazelnut intervention (T1) in order to
evaluate nutritional, oxidative, and inflammation statuses.
In this pilot study, every recruited subject was considered a
control of himself. Lifestyle habits of healthy volunteers did
not change during the study period. No abnormality was
presented during the study period. All participants recruited
in the study authorized their participation by reading and
signing the informed consent, conducted in accordance
with the provisions of the Ethics Committee of Medicine,
University of Rome Tor Vergata, and with the Helsinki
Declaration of 1975 as revised in 1983. This protocol has
been registered with Trial Registration Number Clinical-
Trials.gov. ID: NCT01890070.

2.2. Exclusion Criteria. In order to be included in the study,
subjects had to respect the following exclusion criteria: active
tobacco smoking; pregnancy; breastfeeding; type 1 and type 2
diabetes; past or active cardiovascular diseases; metabolic,
endocrine, liver, kidney, and autoimmune disorders; chronic
viral (hepatitis C and B and HIV) and cancer diseases;
corticosteroid and chronic anti-inflammatory therapy; and
participation in other dietary trials.

2.3. Dietary Intervention. During the study period, all the
recruited subjects consumed daily 40 g of hazelnuts
(261.99 kcal/1096.17 KkJ), cultivar Tonda Gentile Romana,
provided by Coopernocciola in Vico Matrino (Viterbo,
Italy). A 24 h dietary recall was performed at the baseline
to all participants. All subjects were administered a standard
isocaloric diet according to the following Mediterranean diet
criteria: 55% of carbohydrates, 20% of proteins (>50% of
vegetable derivation), <30% of lipids (on total kcal: saturated
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fat <10%, 6-10% polyunsaturated fatty acids (PUFA), n-6/
n-3 PUFA ratio of 3:1, 15% of monounsaturated fatty
acids (MUFA), and <1% transfatty acids), and 30 g of
fiber. Caloric intake calculation of all standard isocaloric
diets was based on a 24 h dietary recall evaluation for each
subject. Standard diets were elaborated with a proper soft-
ware (Dietosystem, DS Medica, Milan, Italy). All subjects
were asked to eliminate any other type of hazelnuts or
nuts from their diet.

2.4. Anthropometric Measurements and Body Composition
Analysis. All volunteers were subjected to an anthropometric
evaluation after overnight fasting. Body weight and height
were measured according to previously described methods
[21]. Body weight was evaluated with balance scale to the
nearest 0.1 kg (Invernizzi, Rome, Italy). Height was measured
with a stadiometer to the nearest 0.1 cm (Invernizzi, Rome,
Italy). BMI was calculated using the following formula:
BMI = body weight (kg)/height (m)*. Body composition analy-
sis was assessed by Dual Energy X-Ray Absorptiometry (DXA)
(i-DXA, GE Medical Systems, Milwaukee, WI, USA) [22].

2.5. Biochemical Analysis. Blood tests were carried out at the
“Policlinico Tor Vergata (PTV)” of Rome, Italy. Analyses
were performed at baseline after a 12-hour overnight fast.
Blood samples (10 mL) were collected into EDTA tubes
(Vacutainer®), placed in ice, and plasma was separated by
centrifugation. Laboratory analysis included complete blood
count, total cholesterol (TC), high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol
(LDL-C), and triglycerides (Tg). Complete blood count,
except serum lipid and Tg analyses, was carried out with an
ADVIA®1800 Chemistry System (Siemens Healthcare).
Serum lipid profile components were determined by stan-
dard enzymatic colorimetric techniques (Roche143 Modular
P800, Roche Diagnostics, Indianapolis, IN, USA). Serum Tg
were measured by a coupled enzymatic method on the
Beckman Synchron LX20 automated system.

2.6. Sample Collection. RNA Extraction and Analysis. Blood
samples were collected and stabilized in PAX gene
Blood RNA Tubes (Pre AnalytiX, Qiagen, Hombrechtikon,
Switzerland) and then stored at -80°C until use. Blood
samples were pooled according to intervention times
(baseline and postintervention). Total RNA was purified
with a PAX gene Blood miRNA Kit, following the manufac-
turer’s instructions (Pre AnalytiX, Qiagen, Hombrechtikon,
Switzerland), and quantified through spectrophotometry
(Nanodrop, Wilmington, USA). Specific RT2 Profiler PCR
Arrays (Qiagen, Netherlands) were used for human oxidative
stress (PAHS-065ZA, Qiagen, Netherlands) and human
inflammation (PAHS-097ZA, Qiagen, Netherlands) path-
ways. The gene expression of the following 12 genes was
analyzed: superoxide dismutase 1 (SOD1) (NCBI Accession
number: NM_000454.4), catalase (CAT) (NCBI Accession
number: NM_001752.3), macrophage migration inhibitory
factor (MIF) (NCBI Accession number: NM_002415.1),
peroxisome proliferator-activated receptor gamma (PPARy)
(NCBI Accession number: NM_001354667), vitamin D

receptor (VDR) (NCBI Accession number: NM_000367.2),
methylenetetrahydrofolate reductase (MTHFR) (NCBI Acces-
sion number: NM_001330358.1), angiotensin I-converting
enzyme (ACE) (NCBI Accession number: NM_000789.3),
apolipoprotein E (APOE) (NCBI Accession number: NM_
001302691.1), interleukin 6 receptor (IL6R) (NCBI Accession
number: NM_000565.3), nuclear factor of kappa light
polypeptide gene enhancer in B-cell 1 (NFKB1) (NCBI
Accession number: NM_003998.3), insulin-like growth
factor 2 receptor (IFG2R) (NCBI Accession number:
NG_011785.3), and upstream transcription factor 1
(USF1) (NCBI Accession number: NM_001276373.1). Each
qRT-PCR experiment was performed in triplicate and
repeated at least twice, in line with the manufacturer’s
instructions (Qiagen, Netherlands). 3-Actin (ACTB) (NM
001101) was used as a housekeeping gene. A comparative
threshold (CT) cycle was used to determine the gene
expression level. A CT value was normalized using the for-
mula ACT = CT (gene) — CT (housekeeping gene). The rela-
tive gene expression levels were determined according to the
following formula: AACT = ACT sample — ACT calibrator.
The value used to plot relative gene expression was deter-
mined using the expression fold change (FC) = 2744¢T,

2.7. Statistical Analysis. Statistical analysis was carried out
using IBM SPSS 21.0 for Windows (Armonk, NY: IBM Corp,
USA). Power calculation was evaluated on total cholesterol,
with a 2-sided test and an a=0.05. After the Shapiro-Wilk
test, a paired t-test or a nonparametric Wilcoxon test
was performed to evaluate differences before and after
hazelnut interventions. All tests were considered significant
at p<0.05. For genomic analysis, the value used to plot
relative gene expression was determined using the expres-
sion fold change (FC) =2744T, Only genes with a FC >2
were considered significantly upregulated for differentially
expressed genes. Conversely, genes with a FC<0.5 were
considered significantly downregulated for differentially
expressed genes.

3. Results

3.1. Subjects Characteristics. Of the thirty subjects enrolled,
one of them was excluded from the trial (subject declined
to participate) (Figure 1). At the end, twenty-four subjects
completed the trial. Any changes to trial outcomes after the
trial commenced occurred. The power of the study was
0.61. The average age of subjects was 51.58 +9.37 years
(58.3% male and 41.7% female) (Table 1).

3.2. Body Composition and Bioclinical Analysis. After 6 weeks
of HNT (T1), a significant reduction of the abdominal
circumference (p =0.04; A% = -0.53%) was observed, com-
pared to baseline (T0) values. At the same time, in DXA
measurements of bone mineral content (BMC), total body
lean (TBLean), android body fat (ABFat), gynoid body fat
(GBFat), and total body fat (TBFat), no significant changes
were detected. The same observations were highlighted for
the changes in the appendicular skeletal muscle mass index
(ASMMI) and t-score parameters (Table 2). Furthermore,
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FIGURE 1: Flow chart study design.

among the biochemical parameters, only TC (p=0.01;
A% =-10.48%) and LDL-C (p=0.01; A% =-12.12%)
had a significant reduction after 6 weeks of HNT, as well as
the TC/HDL-C ratio (p=0.03; A% =-5.83%). No other
changes were highlighted for serum lipid profile and inflam-
mation markers (Table 2).

3.3. Gene Expression Data. Significant upregulation with a
fold change exceeding the threshold set at 2 was detected
for SOD1 (2744%=242), CAT (2744 =2.41), MIF
(27249 = 4.12), PPARy (2744¢ = 5.89), VDR (2744 = 3.61),
MTHFR (2744€t=2.40), and ACE (2744Ct=2.16) after
HNT (Figure 2). No significant gene expression changes
were observed for APOE, IL6R, NFKBI1, IFG2R, and USF1
(0.5 < 2744Ct < 2).

4. Discussion

Hazelnuts have been demonstrated to be able to reduce ather-
ogenic/cardiovascular risk and inflammation [12, 18, 23].

The beneficial effects of hazelnuts on inflammation are
due to the content of various nutrients and bioactive
substances, and their biochemical profile depends on the
cultivar and the country of origin. Nowadays, Turkey is
the main country producing hazelnuts in the world,
followed by Italy, where Tonda Gentile Romana is found,
a typical cultivar from the Latium region, which is particu-
larly rich in stearic, oleic, and linoleic fatty acids [24]. How-
ever, the reason why a diet rich in hazelnuts has beneficial
effects on health is because of their high content of MUFAs,
PUFAs, fibers, a-tocopherol, phytosterols, phenolic com-
pounds, magnesium, copper, and selenium [7, 12]. Some
of these components have a potential antioxidant effect
through their major nonenzymatic antioxidant proprieties
[25]. Constitutive enzymes function or even through their
ability to increase the expression of genes involved in anti-
inflammatory and antioxidant processes and/or to reduce
the expression of inflammatory genes [26-28]. It is well
known that the imbalance of the ROS production and the
body’s antioxidant capacity determines oxidative stress,
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TaBLE 1: Anthropometric and clinical baseline characteristic of study subjects.
Parameter (n =24) Male Female
Frequency (1, %) (n=14; 53.8%) (n=10; 41.7%)

Median P25 P75 Median P25 P75

Age (years) 56.50 52.00 60.50 47.50 41.25 56.25
SBP (mmHg) 125.50 112.25 140.00 108.00 101.75 121.50
DBP (mmHg) 74.50 65.00 88.25 72.50 63.75 75.50
Height (cm) 172.00 165.00 173.25 161.00 155.75 162.00
Weight (kg) 75.00 69.50 82.95 63.95 58.83 78.68
BMI (kg/mz) 26.23 24.34 27.36 25.37 22.99 30.07
Neck circumference (cm) 41.00 39.75 42.63 37.00 35.38 38.25
Waist circumference (cm) 88.50 82.75 92.25 81.50 72.00 85.88
Abdominal circumference (cm) 94.00 87.13 97.00 92.75 86.75 99.75
Hip circumference (cm) 97.50 94.00 99.25 100.50 96.00 114.13
Waist/hip ratio 0.91 0.87 0.96 0.79 0.73 0.84
TBFat (kg) 19.30 16.20 22.60 22.90 20.51 37.41
TBFat (%) 25.60 22.28 28.58 38.45 33.05 42.28
ABFat (%) 33.15 25.08 37.53 43.00 33.98 51.75
GBFat (%) 25.70 22.98 27.15 39.35 36.88 49.63
TBLean (kg) 53.94 48.04 58.36 38.39 36.44 40.93
BMC (g) 2896.00 2631.75 3108.50 2313.00 2059.50 2634.75
ASMMI 8.74 8.37 9.29 6.67 6.42 7.59
t-score -0.40 -0.93 0.13 0.25 -1.13 1.60
Neutrophils (K/uL) 2850.00 2000.00 3530.00 3070.00 2190.00 3360.00
Lymphocytes (K/uL) 1800.00 1240.00 2000.00 2120.00 1160.00 2540.00
Platelets (K/uL) 191000.00 167000.00 204000.00 243000.00 173000.00 256000.00
TC (mg/dL) 193.00 149.00 245.00 214.00 159.00 270.00
HDL-C (mg/dL) 50.00 43.00 66.00 67.00 38.00 70.00
LDL-C (mg/dL) 131.00 80.00 159.00 146.00 75.00 178.00
Tg (mg/dL) 95.00 42.00 113.00 99.00 54.00 124.00
NLR 1.46 1.11 2.40 1.52 0.83 2.22
PLR 120.00 77.78 129.41 106.60 65.04 186.72
Tg/HDL-C 1.44 0.68 2.51 1.81 0.77 2.24
TC/HDL-C 3.86 2.40 4.00 3.87 2.34 4.07
kcal/diet 1960.00 1650.00 2050.00 1840.00 1230.00 2050.00

Anthropometric and clinical characteristic at baseline (T0) and after HNT (T1). Results are expressed as the median, minimum, and maximum for each
parameter. A paired ¢-test (a) or a nonparametric Wilcoxon test (b) was performed to evaluate differences before and after hazelnut intervention. All
tests were considered significant at p <0.05. SBP: systolic blood pressure; DBP: diastolic blood pressure; TBFat: total body fat; ABFat: android body
fat; GBFat: gynoid body fat; TBLean: total body lean; BMC: bone mineral content; ASMMI: appendicular skeletal muscle mass index; TC: total
cholesterol; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; Tg: triglycerides; NLR: neutrophil-lymphocyte

ratio; PLR: platelet-lymphocyte ratio.

which is implicated in several pathological processes.
Despite the fact that 30% of obese subjects are considered
metabolically healthy, a condition where insulin sensitivity,
visceral fat content, and intima media thickness of the
carotid artery are similar to healthy normal weight, the
majority of obese patients were metabolically unhealthy,
with an increased risk of cardiovascular problems, meta-
bolic disorders, arterial hypertension, and chronic heart
disease development [3]. Adipocytes represent the main
cause of chronic inflammation in WAT because of the
increased expression of several cytokines/chemokines
and ROS production, within a reduction of the antioxidant

defenses [5, 29]. In particular, obesity-related disorders
are mainly due to the increasing levels of visceral adiposity
tissue (VAT), which are considered extremely dangerous
because they are related to the high concentration of
inflammatory cytokines and obesity-related cardiometa-
bolic problems [3]. It is well known that nuts are particu-
larly rich in fats and calories and usually considered a
hypercaloric food, but it was observed that hazelnuts or
nut-enriched diets do not change weight or BMIL In fact,
several epidemiological studies detected an inverse or a null
association between nut consumption and BMI [17-20].
More specifically, consumption up to 60 g of hazelnuts per
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TaBLE 2: Anthropometric and clinical characteristic at baseline (T0) and after hazelnut treatment (HNT) (T1).
. Baseline (TQ) . HNT (Tl). A% »
Median Min-Max Median Min-Max
SBP (mmHg) 116.50 96.00-169.00 120.00 100.00-150.00 3.00 0.81%
DBP (mmHg) 73.00 57.00-93.00 75.00 60.00-86.00 2.74 0.28*
Weight (kg) 71.40 53.50-93.00 71.05 53.50-93.00 -0.49 0.46°
BMI (kg/mz) 25.95 20.64-35.60 25.76 20.64-35.44 -0.71 0.55%
Neck circumference (cm) 39.50 33.00-44.00 40.00 34.00-43.00 1.27 0.71°
Waist circumference (cm) 86.25 66.50-101.00 85.00 66.00-103.00 -1.45 0.90*
Abdominal circumference (cm) 94.00 73.00-110.00 93.50 81.00-110.50 -0.53 0.04*
Hip circumference (cm) 98.25 92.00-117.00 99.00 91.00-116.00 0.76 0.44°
Waist/hip ratio 0.87 0.71-1.03 0.87 0.69-1.00 0.00 0.34%
TBFat (kg) 34.75 14.60-53.10 34.95 13.50-52.60 0.58 0.89°
TBFat (%) 29.65 16.3-54 29.05 18.00-53.30 -2.02 0.73*
ABFat (%) 28.75 16.10-48.30 28.80 15.40-48.00 0.17 0.15*
GBFat (%) 21.08 12.02-38.02 21.34 12.49-38.13 1.21 0.89%
TBLean (kg) 47.63 32.87-70.81 48.09 32.40-68.42 0.97 0.34*
BMC (g) 2703.00 1667.00-3742.00 2622.00 1692.00-3627.00 -3.00 0.29%
ASMMI 8.37 5.98-10.28 8.05 6.06-10.57 -3.83 0.11%
t-score -0.1000 -1.90-1.90 -0.1000 -1.90-1.90 0.00 0.87%
Neutrophils (K/uL) 2970.00 2220-6860 3245 2170-8481 11.71 0.40*
Lymphocytes (K/uL) 1695.00 1160.00-2680.00 1660.00 754.00-2700.00 -7.11 0.18°
Platelets (K/uL) 194500.00 166000.00-293000.00 214000.00 148000.00-324000.00 6.01 0.14*
TC (mg/dL) 181.00 149.00-214.00 167.00 102.00-200.00 -10.48 0.01%
HDL-C (mg/dL) 51.50 35.00-79.00 47.50 37.00-80.00 -6.93 0.22%
LDL-C (mg/dL) 114.00 75.00-146.00 103.00 47.00-125.00 -12.12 0.01*
Tg (mg/dL) 100.50 42.00-170.00 82.50 44.00-151.00 -11.99 0.20*
NLR 2.08 0.83-4.48 2.14 0.95-6.68 28.87 0.18°
PLR 127.08 61.94-198.28 135.69 64.91-309.02 18.10 0.08*
Tg/HDL-C 2.02 0.68-3.55 1.87 0.61-3.02 -5.61 0.55°
TC/HDL-C 3.71 2.28-5.03 3.27 2.23-4.6 -5.83 0.03%
kcal/diet 1965.00 1230.00-2780.00 2226.99 1491.99-3041.99 11.38 0.03%

Anthropometric and clinical characteristic at baseline (T0) and after HNT (T1). Results are expressed as the median, minimum, and maximum for each
parameter. A paired t-test (a) or a nonparametric Wilcoxon test (b) was performed to evaluate differences before and after hazelnut intervention. All
tests were considered significant at p <0.05. SBP: systolic blood pressure; DBP: diastolic blood pressure; TBFat: total body fat; ABFat: android body
fat; GBFat: gynoid body fat; TBLean: total body lean; BMC: bone mineral content; ASMMI: appendicular skeletal muscle mass index; TC: total
cholesterol; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; Tg: triglycerides; NLR: neutrophil-lymphocyte

ratio; PLR: platelet-lymphocyte ratio.

day did not affect weight and improve blood cholesterol
levels [18].

Since 1 kg of fat contains 9000 kcal [30], an excess of
261.99 keal per day for 6 weeks, due to the intake of 40 g of
hazelnuts, would have led to a fat tissue gain of 1 kg, while
no significant difference of weight and/or fat mass emerged
from the results. Interestingly, as demonstrated by previous
observations [12-14], although we noticed a small but signif-
icant reduction of abdominal circumference (p < 0.05), we
did not observe any changes in weight, BMI, android, gynoid
body fat, and total body fat measured by DXA after 6 weeks
of a reported 1096.17 kJ/d increase in energy intake with
the hazelnut-enriched diets. Furthermore, in this study,
we observed a significant reduction of TC, LDL-C, and
TC/HDL-C ratio according to Perna et al. [14].

There are several reasons why nut consumption does not
determine weight gain and improve cholesterol profile.
Firstly, nuts contain a good amount of proteins and fibers,
and they have a low glycemic index, contributing to enhance
satiety through the reduction of calorie intake from other
food sources [31]. In addition, the high content of dietary
fibers could reduce the bioavailability of cholesterol from
food, and the antioxidant molecules contained in hazelnuts
contribute to their antiatherogenic effect [14]. Moreover,
the typical crunchy texture of nuts promotes satiety through
the mechanical act of chewing, which determines the secre-
tion of food intake regulation [32]. Secondly, previous works
suggested that nut consumption leads to the energy expendi-
ture and thermogenic effect increase, probably because of the
high unsaturated/saturated fat ratio characteristic of the nuts
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FIGURE 2: Gene expression after hazelnut treatment. Different levels of the fold change of 12 genes were analyzed: superoxide dismutase 1
(SOD1), catalase (CAT), macrophage migration inhibitory factor (MIF), peroxisome proliferator-activated receptor gamma (PPARy),
vitamin D receptor (VDR), methylenetetrahydrofolate reductase (MTHFR), angiotensin I-converting enzyme (ACE), apolipoprotein E
(APOE), interleukin 6 receptor (IL6R), nuclear factor of kappa light polypeptide gene enhancer in B-cell 1 (NFKB1), insulin-like growth
factor 2 receptor (IFG2R), and upstream transcription factor 1 (USF1). Genes with a FC > 2 were considered significantly upregulated for
differentially expressed genes; genes with a FC < 0.5 were considered significantly downregulated for differentially expressed genes.

[33]. Thirdly, lipids of nuts are not easily bioavailable [34],
and then, a great part of them is excreted with feces and
not accessible for metabolization [35]. Fourthly, the applica-
tion of Atwater factors to nuts determined an overestimation
of energy contents [36].

Another possible explanation about nut consumption
and the maintenance of weight or BMI could be suggested
by the antioxidant potential of hazelnuts. It is well known
that some foods have peculiar antioxidant activities [37],
which can affect some disturbances such as obesity. In fact,
the relation between obesity and inflammation could be
considered bidirectional. Few studies demonstrated that a
previous inflammatory status is found before the overweight
and obesity onset, becoming a possible risk factor of them
[38, 39]. In the SUN study, Ramallal et al. [40] observed that
subjects who follow a proinflammatory diet have a clinically
relevant weight gain (3-5 kg), as compared with those in
the anti-inflammatory diet group. The antioxidant capacity
determined by nuts was widely discussed, highlighting the
bioactivity potential of nut phenolic compounds [13].

Unfortunately, only few studies observed the effect
of hazelnut consumption on inflammatory and/or anti-
inflammatory gene expression, and the most relevant results
were related to the upregulation of some antioxidant genes
[25, 26]. In this pilot study, we confirmed that after hazelnut
consumption there is an upregulation of the two of the
major antioxidant enzymes, SOD1 (2744t = 2.42) and CAT
(2744€t = 2.41), which are two of the most important genes
involved in the antioxidant pathway, thanks to their ability
to catalyze the reaction that leads from superoxide (O,) to
oxygen and water production. Furthermore, during our trial,
we observed an upregulation of MIF (2744 = 4.12). MIF, a

cytokine able to regulate innate and acquired immune
responses, is usually associated to atherosclerosis progres-
sion, obesity, insulin resistance, and inflammatory diseases
[41]. Recently, MIF was identified as a key regulator of anti-
oxidant response element (ARE), a DNA enhancer that
controls the expression of phase II detoxifying enzymes and
cytoprotective proteins for redox homeostasis [42]. In this
view, in accordance with other studies [43, 44], MIF seems
to be a sensor for oxidative stress, and its upregulation, as
shown in our work, could represent a new way to reduce
oxidative stress, because of its role as a key regulator of
ARE-mediated gene expression. Furthermore, MIF regulates
the antioxidant system by binding and activating transcrip-
tion factors such as Nrf2, which during oxidative stress
translocate into the nucleus, inducing ARE activation. In
our pilot study, hazelnut consumption is associated also with
the upregulation of PPARy (2744¢t =5.89), an enzyme that
cooperates in the modulation of oxidative stress, antioxidant
response, and inflammatory diseases. In fact, PPARy has a
reciprocal transcriptional regulation with Nrf2, acting
synergically in the activation of antioxidant genes [45]. The
upregulation of SOD1, CAT, MIF, and PPARy observed in
this study is in line with previous works, which have demon-
strated the antioxidant proprieties of a diet rich in nuts,
related to the regulation of cellular pathways of atherosclero-
sis, inflammation, and oxidative stress [46] (Figure 2). At the
same time, PPARy, which controls M2 macrophage activa-
tion, seems to be related to VDR expression. The reduction
of VDR expression could determine the abolishment of
PPARYy effects, establishing a possible VDR-PPARy pathway
that, along with vitamin D, regulates macrophage phenotype
[47]. Furthermore, VDR inhibits the initiation of endothelial



inflammatory diseases, like atherosclerosis, and reducing
inflammatory cytokine/chemokine production in macro-
phages, when it is activated by vitamin D [48]. The upregula-
tion of VDR (2744 = 3.61) observed in our study (Figure 2)
amplified the antioxidant and anti-inflammatory potential of
hazelnuts. In fact, the increased VDR gene expression over-
laps PPARy upregulation, suggesting a possible effect of
HNT on the VDR-PPARy pathway.

High blood concentrations of homocysteine (Hcy), an
important intermediary in the metabolism of methionine
and cysteine, are another potential inflammatory factor.
Hcy induces the production of several proinflammatory
cytokines, and at the same time, in endothelial cells, high
levels of Hcy induce the oxidative inactivation of nitric oxide
with the collaboration of several ROS. Furthermore, Hcy
plays an important role in the conservation of intracellular
glutathione pools and then in oxidative stress conditions. A
full MTHEFR expression and activity are strictly necessary
for the proper recycle of Hcy. Its reduced gene expression
could lead to mental disorders, developmental delays, cardio-
vascular diseases, and cancer [49]. The increased MTHFR
gene expression (2744 =2.40) observed in this pilot study
after HNT could reinforce the antioxidant effect of hazel-
nut consumption (Figure 2). In fact, if MTHFR gene is
upregulated, we can speculate a reduction of ROS production
and inflammation.

Ordinary nut consumption, maybe due to the polyphenol
content, is associated with beneficial effects on blood pressure
[47]. High blood pressure is one of the risk factors associated
with oxidative stress and inflammation. Usually, increased
levels of vascular ACE, the key regulator of the renin-
angiotensin system and kallikrein-kinin system, are associ-
ated with increased blood pressure [50]; however, evidences
have been reported between ACE gene expression and hyper-
tensive condition [51]. In our study, hazelnut consumption
leads to an increase of ACE gene expression (2744 =2.16)
(Figure 2), but not to a significant change in SBP or DBP
(p > 0.05), strengthening the observation of Mohammadifard
N. et al. that maybe only mixed nut and pistachio con-
sumption could be associated with better blood pressure
outcomes [52].

5. Conclusions

In conclusion, the reasons why nuts do not determine weight
gain are various, like satiety induction, energy expenditure,
thermogenesis increase, and the low nutrient bioavailability.
According to emerging evidences, hazelnut antioxidant
capacity could be another reason. Although this pilot study
was not without limitations, as the lack of biochemical anal-
ysis, serum protein levels of investigated genes, antioxidant
markers, and the limited sample size, our results suggest that
an ordinary consumption of small amount of hazelnuts could
be a nutritional treatment for all chronic degenerative
diseases underlying oxidative stress and inflammation rein-
forcing the WHO recommendation. Furthermore, the lack
of weight gain and, more importantly, the lack of fat mass
gain with the hazelnut consumption, which is still considered
a high-calorie food, could represent an encouragement for
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the inclusion of this food not only in the anti-inflammatory
dietary patterns but also in all weight loss diets. Our data
should be confirmed on a larger number of subjects, with a
prospective long-term controlled trial.
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