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Abstract— This paper describes the possibility of applying
a generic, cloud-based Optimisation as a Service facility to
food cooking planning and scheduling in a commercial kitchen.
We propose a chromosome encoding and customisation of the
classic MOEA/D multi-objective genetic algorithm. The applica-
bility of the proposed approach is evaluated experimentally for
two scenarios different with respect to the number of cooking
appliances and the amount of the ordered food. The proposed
system managed to determine the trade-offs between cooking
time, energy dissipation and food quality.

I. INTRODUCTION

The term fourth industrial revolution, often abbreviated

to Industry 4.0, is used to refer to the current trend of au-

tomation in manufacturing technologies. One of the promises

of Industry 4.0 is related to facilitating of production of

small batches of highly customised commodities [1]. Even

if not 100% correct from the orthodox standpoint, preparing

dishes in a restaurant may be viewed to be consistent with

the primary assumptions of Industry 4.0. The orders are

released at random moments, the batches are extremely

short (up to a number of people in a group) and highly

customised (e.g., blue, rare, medium rare, medium or well-

done steaks). Consequently, a chef is often reported as one

of the most stressful jobs [2]. Digital gastronomy aims

to mitigate the chef life by enhancing traditional cooking

with new capabilities rather than replacing the chef with

an autonomous machine [3]. Following this trend, modern

technologies are increasingly more popular in restaurants. At

the moment, the Internet of Things (IoT) is used to monitor

the equipment that cooks, cleans or stores food [4]. However,

in the near future technology will be probably applied to

more sophisticated tasks. For example, the recent progress

in developing so-called electronic tongues and noses can
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facilitate the automation of the process of food samples’

quality estimation [5]. Such sensors can be used to fill the

gap between recipes and actual cooking activities, identified

in [6]. Even Kinect-style cameras can be applied for fine-

grained recognition of kitchen activities [7]. Not only the

sensors but also the actuators in smart kitchen appliances

can act as things connected to the Internet, as for example

a recently presented smart oven from Electrolux in which

the time duration or temperature can be remotely altered

[8]. Even if a certain task in a cooking process has to be

done manually (e.g., adding ingredients to a pot), it can be

guided by a robot speech following some recipes [9] or even

a cognitive conversational agent connected to a smart fridge

[10]. However, those systems process one recipe at a time.

This is in contrast to [11], where the cooking process has

been treated as an optimisation problem. That system applied

the list scheduling algorithm to minimise the food time

preparation and maximise food quality, benefiting from the

fact that some actions can be executed in parallel, reducing

the cooking duration.

The above observations encourage us to apply a generic

factory reconfiguration system, described in [12], to food

preparation in restaurants. In particular, similarly to a smart

factory, a kitchen can receive a new order at any time. For

such order, a process planning and scheduling need to be per-

formed with no delay [13]. Process planning and scheduling

are required to be re-executed in case any unexpected event

occurs in the kitchen, for example, a failure of a device

(treated as a smart thing) is detected [14]. If a number

of devices in a kitchen is considerable, process planning

and scheduling will have similar computation cost as in a

smart factory, which is rather significant [15]. Between sub-

sequent executions of the process planning and scheduling,

the computational power is not needed. Consequently, the

workload related to the process planning and scheduling in

a restaurant follows the on-and-off workload pattern. When

using the process planning and scheduling approach that can

be processed in a distributed way, for example the island

model of a Genetic Algorithm (GA) similarly to [16], the

workload satisfies all criteria for suitability for public cloud

provided in [17], namely an unpredictable load, different

computational power requirements at different time intervals

and horizontal scalability.

The rest of this paper is organised as follows. Section

II outlines our generic service for optimisation of smart
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Fig. 2. Layers in the proposed approach

factories. Application of this service to a smart kitchen

is described in Section III. In Section IV, experimental

evaluation of the proposed approaches is carried out. Section

V concludes the paper.

II. GENERIC SERVICE FOR SMART FACTORIES

RE-CONFIGURATION

The class of optimisation problems analysed in this paper

concerns integrated process planning and scheduling in smart

kitchens performed on demand. The optimisation is carried

out by the module named Optimisation Engine (OE), which

is a part of the larger system presented in Figure 1. The

operation of this system is triggered by the data ingested

from assorted devices (things) such as smart hobs. This data

is collected by the Situation Determination (SD) module,

which derives the current situation of resources, products and

processes, using a custom use-case situation model based on

a common situation model. SD monitors raw data provided

by things and the outcomes of the Predictive Analytics (PA)

module and then determines the kitchen current state. In

case any relevant change of the kitchen state is detected,

the process plan and schedule is recomputed.

In the proposed system, the popular streaming platform

named Kafka has been applied to the communication be-

tween modules. The messages sent via Kafka follow a well-

defined textual protocol named Metrics API, which defines

three types of numeric or nominal values: key objectives to

be optimised, control metrics that can be mutated to obtain

various candidate solutions and observable metrics informing

about situations relevant to the optimisation process, such as

unavailability of a certain resource. This system architecture

is compliant with the scheme proposed in [18], where

three-layers of an intelligent factory reconfiguration system

have been identified. The lowest layer, named Specification

layer, includes the knowledge description regarding the fac-

tory based on General system ontology. The middle layer,

Analysing & modelling layer, includes both SD and PA

modules. OE operates in the topmost layer which is named

Decision layer. These layers are visualised in Figure 2.

From this layered architecture, it follows that the appropriate

operation of both the SD and PA modules are crucial

for performing effective optimisation. However, the detailed

description of these two modules is out of the scope of this

paper.

The overall specification of reconfiguration capability is

most readily explained via division into two component

parts: the Metrics API and Optimisation Engine. The Metrics

API provides a complete configuration description for the

variables associated with the food order and kitchen temporal

state. The elements of the configuration data schema are

termed metrics, i.e. either measurable physical values corre-

sponding to appliance sensors or else key objective (quality)

measures derived from these. The chief functionality of OE

is to generate a food cooking plan and schedule in response

to reconfiguration requests issued by SD. The quality of the

candidate plans and schedules is determined by the objective

function. This function is generated automatically based on

a kitchen configuration and applies a digital twin of the

corresponding smart kitchen specified with Interval Algebra

[13].

The optimisation used by OE is based on [12]. There

are given a set of recipes, a set of resources and an or-

der. OE assigns resources and priorities to a multisubset

(i.e. a combination with repetitions) of recipes so that the

total processing time (makespan) and energy are minimised

and the food quality is the highest. In genetic algorithms,

candidate solutions are treated as individuals. During the

optimisation process, these individuals are evolved using a

set of bio-inspired operators such as selection, crossing-over

and mutation. The solution to the problem considered in

this paper can be then described with a chromosome whose

odd genes identify the recipe to be applied and the even

genes denote the priority of that recipe instance. The aim of

introducing priorities is to determine the processing orders of

recipes allocated to the same resource and thus to determine

the temporal scheduling. This ordering does not change the

amount of cooked food but can influence the makespan.

The problem analysed in this paper is characterised with

multi-objective criteria. End-users should be then informed

about a wide set of Pareto-optimal solutions to select the final

solution based on their knowledge of the problem. The set

of the alternative solutions presented to the end-users should

be then diverse and, favourably, distributed over the entire

Pareto front. This expectation is in line with the properties of

the MOEA/D algorithm proposed by Zhang and Li in [19],

which is then used in OE.

III. APPLYING GENERIC RE-CONFIGURATION SERVICE

FOR SMART KITCHEN

The optimisation process is executed after sending a

serialised configuration to a predefined Kafka topic. The

configuration includes the list of dishes to be cooked together

with the list of the recipes and the parameters of the available

hobs. An example list of recipes used in this paper is

provided in Table I. For example, the list of compatible

cooking zones (e.g. of the area sufficient for a certain pot

or food amount) is provided in the domain of a controlled

metric type, which is shown in Figure 3 for two examples

related to boiled water. The resource name is composed of



ControlledMetricType[name=Boiled water A 0,

allocation,valueType=ValueType.Nominal[name=

Boiled water A 0 allocation type ,values={Hob(1)

Pot(1), Hob(2) Pot(1), Hob(3) Pot(1), Hob(4) Pot(1),

No allocation},typ=NOMINAL]

ControlledMetricType[name= Boiled water B 0

allocation,valueType=ValueType.Nominal[name=

Boiled water B 0 allocation type ,values={Hob(5)

Pot(2), Hob(6) Pot(2), No Allocation},typ=NOMINAL],

units=n/a]

Fig. 3. Two example controlled metrics

Fig. 4. Example of possible configuration of four cooking zones to heat
pots of different sizes

two parts: the actual cooking zone name and the pot type.

Each recipe can be executed a number of times, thus the

recipe name is followed by an instance index (e.g. suffix 0

in Boiled water A 0). As it is shown in this figure, the first

recipe, Boiled water A 0 can be executed using Pot(1) and

cooking zones 1-4 on hob named Hob, or not selected to

be executed (i.e., No allocation). In the assumed hob, a few

cooking zones can be used simultaneously to cook a dish

in a larger pot, as shown in Figure 4. In this figure, four

cooking zones can be used with pot(1) (i.e., the circles on the

hob) independently (left column), or two upper or two lower

cooking zones can be combined and used with pot(2) (middle

column). Notice, that using two middle cooking zones in

such a way is impossible. Finally, three upper zones can

be used simultaneously with pot(3) (right column). In the

configuration, all cooking zones Hob(1)-Hob(7) are provided

as separate resources, but the fact that certain resources

cannot be used simultaneously (e.g. Hob(1) and Hob(5)) is

defined using mutual exclusiveness of resources as explained

in [13].

The observable metrics are used to denote the availability

of certain resources. Due to the compound naming structure

of these resources, both a certain cooking zone or a certain

pot type can be signalled as being unavailable. For example,

temporal lack of pot(1) should result in the unavailability of

all resources that are used in combination with that pot. The

first example in Figure 5 signals unavailability of a certain

cooking zone. The second and third observables inform OE

about the cooking time of a certain recipe (here: Boiled

water A) with a certain cooking zone (here: Hob(1)) and pot

(here: Pot(1)), as determined by the predictive analytics or

situation determination modules. This cooking time is taken

into consideration when a schedule is determined. Finally, the

recipe quality can be updated based on some user feedback.

ObservableMetricType[name= Hob(6) availability,

valueType=ValueType.Integer[min=0,max=0,typ=INT],

units=n/a,sampleRate=SampleRate.EventDriven[]],

ObservableMetricType[name=Boiled water A Hob(1)

Pot(1) start, valueType=ValueType.Integer[min=0,

max=0,typ=INT]

ObservableMetricType[name=Boiled water A Hob(1)

Pot(1) end, valueType=ValueType.Integer[min=40,

max=40,typ=INT]

Fig. 5. Two example observable metrics in the Electrolux use case

Optimisation took: 19.942 seconds

Schedule: Status: Succeeded.

Hob(2) Pot(1) -> [

Rice A 1_1 [35,37),

Rice A 1 [103,128),

Beef A 2_1 [188,200),

Beef A 2 [692,812),

DependentSetUp from Beef A

to Boiled Water A [812,822),

Boiled Water A 0 [1094,1109),

DependentSetUp from Boiled Water A

to Pasta A [1109, 1119),

Pasta A 0_1 [1297,1299),

Pasta A 0 [1299,1319)

]

makespan: 28:57.00

Fig. 6. Extract from an example OE report for the Electrolux use case

IV. EXPERIMENTAL RESULTS

In the considered scenario, the following amounts of food

are required to be cooked: Boiled water - 5000g, Pasta -

1000g, Rice - 1500g, Meat (beef) - 1000g, Vegetable (pota-

toes) - 1000g, Mushrooms (with oil) - 500g. These values

are provided to OE via Kafka and then the optimisation

process is executed. An example report of the optimisation

process is presented in Figure 6. As shown in the figure, the

tasks are executed concurrently on all available resources,

and the finish time of the last task indicates the makespan

of this optimisation procedure. Note the start and end time

of each task is relative to the starting time point 0. For

the production that requires certain pre-cooking, subtasks

are introduced and are executed before cooking the required

production (i.e., task Rice A 1 1 for cooking rice using task

Rice A 1). In addition, dependent setup is required when

different production is executed on the same resource (see

task DependentSetUp).

The trade-off between three conflicting objectives,

makespan, energy cost and deficiency (the reverse of quality),

has been investigated for the example scenario and visualised

in Figure 7 in a form of a Pareto front approximation.

The chart demonstrates that the decreasing of makespan

is obtained via sacrificing the quality (i.e., increasing de-

ficiency). Note, during the experiment, we noticed that it is

not necessary that a higher makespan must lead to a lower

deficiency value (which indicates a higher food quality). This

is because the recipes can be executed in parallel (based on
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the allocation decision during optimisation). Given the same

recipes, executing in parallel can decrease the makespan but

the deficiency objective will remain unchanged. Therefore,

during this evaluation, we often observed new optimisation

results that contain makespan and deficiency values that are

both lower than certain previous optimisation results. Such

a phenomenon also makes the final number of optimisation

results low, as optimisation results that are strictly domi-

nated will be removed from the Pareto front approximation.

However, in general, we demonstrate the trend where the

deficiency metric value is decreased (i.e., better quality is

obtained) while the makespan is increasing. In addition,

The trade-off between makespan and energy cost, has been

investigated for the example scenario and demonstrated in

Figure 7 in the form of a Pareto front approximation. The

chart indicates that the decreasing of makespan can be

achieved via consuming more energy.

The proposed method is applicable rather to large restau-

rants or company cafeterias where trade-offs between con-

flicting objectives such as energy, makespan and deficiency,

needs to be investigated rather than to single hobs treated

as home appliances. With a larger scenario, both in terms

of the number of available resources and the ordered food,

it needs to be considered to demonstrate the scalability of

the proposed approach. Hence in the second scenario, the

presence of 4 hobs from Figure 4 is assumed. In addition,

the amount of the ordered food is 4 times larger than in the

previous case. The trade-off between objectives deficiency

and makespan is presented in Figure ?? and the trade-off

between objectives makespan and energy cost is given in

Figure ??. As it is seen in these figures, a similar relation

between the objectives holds than in the previous scenario

(see Figure ?? and ??). The optimisation process has taken

280.863 seconds, which is about 14 times higher than in the

previous, simpler case.

V. CONCLUDING REMARK

In this paper, a real-world food cooking planning and

scheduling problem in a commercial smart kitchen has been

described. Its goal is not only to minimise the cooking time

but also to minimise the energy dissipation and maximising

the food quality via selecting recipes multisubset to be

executed. A typical multi-objective genetic algorithms named

MOEA/D has been used. The experiments have demonstrated

the applicability of the proposed approach which has been

able to determine the trade-offs between the conflicting

objectives. The proposed algorithm is scalable enough to be

applied to a relatively large kitchen and high quantity of

production.
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TABLE I

PARAMETERS OF FOOD COOKING USING VARIOUS COOKING ZONES, POTS AND RECIPES
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C Boiled water B 400 Hob(5), Hob(6) Pot 2 1610 40 0.045 19
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F Boiled water C 600 Hob(7) Pot 3 2100 13 0.039 33
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B Boiled water A 250 Hob(1), Hob(2), Hob(3), Hob(4) Pot 1 6650 110 0.18 9
C Boiled water B 500 Hob(5), Hob(6) Pot 2 6900 90 0.27 12
D Boiled water B 500 Hob(5), Hob(6) Pot 2 7000 85 0.18 16
E Boiled water C 750 Hob(7) Pot 3 7350 60 0.27 21
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E Boiled water C 600 Hob(7) Pot 3 2450 22 0.066 26
F Boiled water C 600 Hob(7) Pot 3 2590 20 0.06 31

Cooking A - 200 Hob(1), Hob(2), Hob(3), Hob(4) Pot 1 700 38 0.072 11
with oil B - 200 Hob(1), Hob(2), Hob(3), Hob(4) Pot 1 840 36 0.06 16
(mushroom) C - 300 Hob(5), Hob(6) Pot 2 910 25 0.09 19

D - 300 Hob(5), Hob(6) Pot 2 1050 23 0.078 20
E - 400 Hob(7) Pot 3 1120 12 0.108 26
F - 400 Hob(7) Pot 3 1260 10 0.096 29
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