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Stealth Attacks on the Smart Grid
Ke Sun, Iñaki Esnaola, Samir M. Perlaza, and H. Vincent Poor

Abstract—Random attacks that jointly minimize the amount of
information acquired by the operator about the state of the grid
and the probability of attack detection are presented. The attacks
minimize the information acquired by the operator by minimizing
the mutual information between the observations and the state
variables describing the grid. Simultaneously, the attacker aims
to minimize the probability of attack detection by minimizing the
Kullback-Leibler (KL) divergence between the distribution when
the attack is present and the distribution under normal operation.
The resulting cost function is the weighted sum of the mutual
information and the KL divergence mentioned above. The trade-
off between the probability of attack detection and the reduction
of mutual information is governed by the weighting parameter
on the KL divergence term in the cost function. The probability
of attack detection is evaluated as a function of the weighting
parameter. A sufficient condition on the weighting parameter
is given for achieving an arbitrarily small probability of attack
detection. The attack performance is numerically assessed on the
IEEE 14-Bus, 30-Bus, and 118-Bus test systems.

Index Terms—Stealth, data injection attacks, information-
theoretic security, mutual information, probability of detection

I. INTRODUCTION

THE smart grid relies on the effective integration of the

power grid and advanced communication and sensing

infrastructure. Consistency between the physical layer of the

power grid and the energy management system (EMS) in the

cyber layer facilitates an economic and reliable operation of

the power system. The 2003 North American outage caused

by an alarm system failure [1] and the 2015 Ukraine power

failure caused by the BlackEnergy virus incident [2] emphasize

the need for cybersecurity mechanisms for the power system.

However, the cybersecurity threats to which the smart grid is

exposed are not well understood yet, and therefore, practical

security solutions need to come forth as a multidisciplinary

effort combining technologies such as cryptography, machine

learning, and information-theoretic security [3].

Data injection attacks (DIAs) have emerged as a major

source of concern and exemplify the type of cybersecurity

threats that specifically target power systems [4]. DIAs ma-

nipulate the state estimation process in the EMS by altering

the measurements of the state variables without triggering the

bad data detection mechanism put in place by the operator.
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In [4], it is shown that attacks that lie in the column space

of the Jacobian measurement matrix are undetectable by

testing the residual. To decrease the number of sensors that

need to be compromised by the attacker while remaining

undetectable, the ℓ0 norm of the attack vector is used as

minimization objective yielding sparse attack in [5], [6], [7]

and [8]. The case in which sparse attacks are constructed in

a distributed setting with multiple attackers is discussed in

[9] and [10]. Estimation of the operating point is studied in

[11] using the power flow or power injection information in

an inference problem formulation. Attack detection methods

that incorporate the statistical structure of the state variables

are presented for the centralized case in [12] and for the

decentralized case in [13]. Similarly, other instances of prior

knowledge use include using load forecasts in [14], [15], and

overload mitigation based on corrective dispatch in [16].

The complex nature of the power system leads naturally

to a stochastic modelling of the state variables describing the

grid. For instance, the state variables of low voltage distri-

bution systems are well described as following a multivariate

Gaussian distribution [17]. DIAs within a Bayesian framework

with minimum mean square error estimation are studied in [18]

for the centralized case and in [19] for the distributed case.

However, the fundamental limits governing the performance

of attacks in the smart grid are not well understood yet.

Information-theoretic tools are well suited to analyze power

system by leveraging the stochastic description of the state

variables. A sensor placement strategy that accounts for the

amount of information acquired by the sensing infrastructure

is studied in [20]. Information-theoretic privacy guarantees for

smart meter users are proposed in [21], [22], [23] for memory-

less stochastic processes and in [24] for general random pro-

cesses. In [25], stealth Gaussian DIA constructions are studied

in terms of information measures that quantify the information

loss and the probability of attack detection induced by the

attack. Therein, the proposed cost function gives the same

weight to the information loss and the probability of detection

which results in the effective secrecy framework proposed by

[26] in the context of stealth communications. Stealth DIA

constructions are also studied in [5], [27] for the case in

which the detection is based on the residual and in a Bayesian

hypothesis testing framework in [28]. The approaches in [5]

and [27] consider the minimum cost of compromising the

meters and the communication substation, respectively. On the

other hand, [28] focuses on the delay between the time of

attacker launching the attack and the time of operator detecting

the attack.

In this paper, the stealth attacks in [25] are generalized by

introducing a weight parameter to the objective describing

the probability of detection, which allows the attacker to

construct attacks with arbitrarily low probability of detection.
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Operating under the assumption that the state variables are

described by a multivariate Gaussian distribution [18], [19], we

characterize the optimal Gaussian generalized stealth attacks.

Since the performance of the attacks depends on the weighting

parameter governing the probability of detection, we provide a

sufficient condition on the weighting parameter that achieves

a desired probability of attack detection. To this end, we

characterize the probability of attack detection via an upper

bound which leverages a concentration inequality in [29].

The rest of the paper is organized as follows: In Section

II, a Bayesian framework with linearized dynamics for DIA

is introduced. The generalized stealth attack construction and

performance analysis are presented in Section III. Section IV

provides the probability of detection of the generalized stealth

attack, and the concentration inequality is used to derive the

upper bound for probability of detection. Section V evaluates

the proposed attack performance on IEEE test systems. The

paper ends with conclusions in Section VI.

II. SYSTEM MODEL

A. Bayesian Framework with Linearized Dynamics

The measurement model for state estimation with linearized

dynamics is given by

Y m = HXn + Zm, (1)

where Y m ∈ R
m

is a vector of random variables describing

the measurements; Xn ∈ R
n

is a vector of random variables

describing the state variables; H ∈ R
m×n

is the linearized

Jacobian measurement matrix which is determined by the

power network topology and the admittances of the branches;

and Zm ∈ R
m

is the additive white Gaussian noise (AWGN)

with distribution N (0, σ2Im) that is introduced by the sensors

as a result of the thermal noise, c.f. [30] and [31]. In the

remaining of the paper, we assume that the vector of the state

variables follows a multivariate Gaussian distribution given by

Xn ∼ N (0,ΣXX), (2)

where ΣXX ∈ Sn
+ is the covariance matrix of the distribution

of the state variables and Sn
+ denotes the set of positive

semidefinite matrices of size n×n. As a result of the linearized

dynamic in (1), the vector of measurements also follows a

multivariate Gaussian distribution denoted by

Y m ∼ N (0,ΣYY ), (3)

where ΣYY = HΣXXHT + σ2Im is the covariance matrix of

the distribution of the vector of measurements.

Data injection attacks corrupt the measurements available to

the operator by adding an attack vector to the measurements.

The resulting vector of compromised measurements is given

by

Y m
A = HXn + Zm +Am, (4)

where Am ∈ R
m

is the attack vector and Y m
A ∈ R

m
is the

vector containing the compromised measurements [4]. Given

the stochastic nature of the state variables, it is reasonable for

the attacker to pursue a stochastic attack construction strategy.

In the following, an attack vector which is independent of

the state variables is constructed under the assumption that

the attack vector follows a multivariate Gaussian distribution

denoted by

Am ∼ N (0,ΣAA), (5)

where ΣAA ∈ Sm
+ is the covariance matrix of the attack

distribution. The rationale for choosing a Gaussian distribu-

tion for the attack vector follows from the fact that for the

measurement model in (4) the additive attack distribution that

minimizes the mutual information between the vector of state

variables and the compromised measurements is Gaussian

[32]. Because of the Gaussianity of the attack distribution,

the vector of compromised measurements is distributed as

Y m
A ∼ N (0,ΣYAYA

), (6)

where ΣYAYA
= HΣXXHT + σ2Im +ΣAA is the covariance

matrix of the distribution of the compromised measurements.

It is worth noting that the independence of the attack vector

with respect to the state variables implies that constructing

the attack vector does not require access to the realizations

of the state variables. In fact, knowledge of the second order

moments of the state variables and the variance of the AWGN

introduced by the measurement process suffices to construct

the attack. This assumption significantly reduces the difficulty

of the attack construction.

The operator of the power system makes use of the acquired

measurements to detect the attack. The detection problem is

cast as a hypothesis testing problem with hypotheses

H0 : Y m ∼ N (0,ΣYY ), versus (7)

H1 : Y m ∼ N (0,ΣYAYA
). (8)

The null hypothesis H0 describes the case in which the power

system is not compromised, while the alternative hypothesis

H1 describes the case in which the power system is under

attack.

Two types of error are considered in hypothesis testing

problems, Type I error is the probability of accepting H1 when

H0 is the ground truth, i.e. a false alarm or false positive;

and Type II error is the probability of accepting H0 when

H1 is the ground truth, i.e. a true negative. The Neyman-

Pearson lemma [33, Proposition II.D.1] states that for a fixed

probability of Type I error, the likelihood ratio test (LRT)

achieves the minimum Type II error when compared with any

other test with an equal or smaller Type I error. Consequently,

the LRT is chosen to decide between H0 and H1 based on the

available measurements. The LRT between H0 and H1 takes

following form:

L(y)
∆
=

fY m

A
(y)

fY m(y)

H1

≷
H0

τ, (9)

where y ∈ R
m

is a realization of the vector of random

variables modelling the measurements; fY m

A
and fY m denote

the probability density functions (p.d.f.’s) of Y m
A and Y m,

respectively; and τ is the decision threshold set by the operator

to meet a given false alarm constraint.
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B. Information-Theoretic Setting

The mutual information between two random variables is a

measure of the amount of information that each random vari-

able contains about the other random variable. Consequently,

the amount of information that the vector of measurements

contains about the vector of state variables is determined by

the mutual information between the vector of state variables

and the vector of measurements. Information measures have

previously been used to quantify the amount of information ac-

quired by different monitoring systems in a smart grid context.

For instance, in [20] mutual information is used to quantify

the amount of information obtained by phasor measurement

units from the grid. Similarly, mutual information is used to

quantify the amount of information leaked by smart meters in

[21] and [22].

The Kullback-Leibler (KL) divergence between two prob-

ability distributions is a measure of the statistical difference

between the distributions. As such, it is a practical measure

to quantify the deviation of the measurement statistics with

respect to the statistics under normal operating conditions. For

instance, in [13] it is used to test abnormal behaviors on the

grid. For the hypothesis testing problem in (9), a small value

of the KL divergence between PY m

A
and PY m implies that on

average the attack is unlikely to be detected by the LRT set

by the attacker for a fixed value of τ .

The purpose of the attacker is to disrupt the normal state

estimation procedure by minimizing the information that the

operator acquires about the state variables, while guaranteeing

that the probability of attack detection is small enough, and

therefore, remain concealed in the system.

An information-theoretic framework for the attack construc-

tion is adopted in this paper. To minimize the information

that the operator acquires about the state variables from the

measurements, the attacker minimizes the mutual informa-

tion between the vector of state variables and the vector of

compromised measurements. Specifically, the attacker aims

to minimize I(Xn;Y m
A ). The rationale for choosing mutual

information to measure the evidence acquired by the measure-

ments stems from the fundamental character of information-

theoretic measures. In particular, mutual information describes

the amount of information two random variables share, and

therefore, it establishes in quantitative terms how much evi-

dence the measurements contain. For that reason, it is natural

for the attacker to attempt to minimize the mutual information

with the aim of disrupting the monitoring process of the

network operator.

On the other hand, the probability of attack detection is

determined by the detection threshold τ set by the operator

and the distribution induced by the attack on the vector of

compromised measurements. An analytical expression of the

probability of attack detection can be described in closed-form

as a function of the distributions describing the measurements

under both hypotheses. However, the expression is involved

in general and it is not straightforward to incorporate it into

an analytical formulation of the attack construction. For that

reason, we instead consider the asymptotic performance of

the LRT to evaluate the detection performance of the operator.

The Chernoff-Stein lemma [34, Theorem 11.7.3] characterizes

the asymptotic exponent of the probability of detection when

the number of observations of measurement vectors grows to

infinity. In our setting, the Chernoff-Stein lemma states that

for any LRT and ǫ ∈ (0, 1/2), it holds that

lim
k→∞

1

k
log βǫ

k = −D(PY m

A
‖PY m), (10)

where D(·‖·) is the KL divergence, βǫ
k is the minimum

Type II error such that the Type I error α satisfies α < ǫ,
and k is the number of m-dimensional measurement vectors

that are available for the LRT. Therefore, for the attacker,

minimizing the asymptotic detection probability is equivalent

to minimizing D(PY m

A
‖PY m), where PY m

A
and PY m denote

the probability distributions of Y m
A and Y m, respectively.

III. INFORMATION-THEORETIC ATTACK

A. Generalized Stealth Attacks

When these two information-theoretic objectives are con-

sidered by the attacker, [25] proposes an stealthy attack

construction that combines the two objectives in one cost

function, i.e.,

I(Xn;Y m
A )+D(PY m

A
‖PY m)=D(PXnY m

A
‖PXnPY m), (11)

where PXnY m

A
is the joint distribution of Xn and Y m

A . The

resulting optimization problem to construct the attack is given

by

min
Am

D(PXnY m

A
‖PXnPY m). (12)

Therein, it is shown that (12) is a convex optimization problem

and the covariance matrix of the optimal Gaussian attack is

ΣAA = HΣXXHT. However, numerical simulations on IEEE

test system show that the attack construction proposed above

yields large values of probability of detection in practical

settings.

To address the issue of high probability of detection, in the

following we propose an attack construction strategy that tunes

the probability of detection with a parameter that weights the

detection term in the cost function. The resulting optimization

problem is given by

min
Am

I(Xn;Y m
A ) + λD(PY m

A
‖PY m), (13)

where λ ≥ 1 governs the weight given to each objective in the

cost function. It is interesting to note that for the case in which

λ = 1 the proposed cost function boils down to the effective

secrecy proposed in [26] and the attack construction in (13)

coincides with that in [25]. For λ > 1, the attacker adopts

a conservative approach and prioritizes remaining undetected

over minimizing the amount of information acquired by the

operator. By increasing the value of λ the attacker decreases

the probability of detection at the expense of increasing the

amount of information acquired by the operator via the mea-

surements. The case for λ < 1 requires a different treatment

and is left as future work.
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B. Optimal Attack Construction

The attack construction in (13) is formulated in a general

setting. The following propositions particularize the KL di-

vergence and mutual information to our multivariate Gaussian

setting.

Proposition 1. [34] The KL divergence between m-

dimensional multivariate Gaussian distributions N (0,ΣYAYA
)

and N (0,ΣYY ) is given by

D(PY m

A
‖PY m)=

1

2

(

log
|ΣYY |

|ΣYAYA
|
−m+ tr

(

Σ−1
YY ΣYAYA

)

)

. (14)

Proposition 2. [34] The mutual information between the

vectors of random variables Xn ∼ N (0,ΣXX) and Y m
A ∼

N (0,ΣYAYA
) is given by

I(Xn;Y m
A ) =

1

2
log

|ΣXX ||ΣYAYA
|

|Σ|
, (15)

where Σ is the covariance matrix of the joint distribution of

(Xn, Y m
A ).

Substituting (14) and (15) in (13) we can now pose the

Gaussian attack construction as the following optimization

problem:

min
ΣAA∈Sm

+

−(λ− 1) log |ΣYY +ΣAA| − log |ΣAA + σ2Im|

+λtr(Σ−1
YY ΣAA). (16)

We now proceed to solve the optimization problem above.

First, note that the optimization domain Sm
+ is a convex set.

The following proposition characterizes the convexity of the

cost function.

Proposition 3. Let λ ≥ 1. Then the cost function in the

optimization problem in (16) is convex.

Proof. Note that the term − log |ΣAA + σ2Im| is a con-

vex function on ΣAA ∈ Sm
+ [35]. Additionally, −(λ −

1) log |ΣYY +ΣAA| is a convex function on ΣAA ∈ Sm
+ when

λ ≥ 1. Since the trace operator is a linear operator and the

sum of convex functions is convex, it follows that the cost

function in (16) is convex on ΣAA ∈ Sm
+ .

Theorem 1. Let λ ≥ 1. Then the solution to the optimization

problem in (16) is

Σ⋆
AA =

1

λ
HΣXXHT. (17)

Proof. Denote the cost function in (16) by f(ΣAA). Taking

the derivative of the cost function with respect to ΣAA yields

∂f(ΣAA)

∂ΣAA

=−2(λ− 1)(ΣYY +ΣAA)
−1−2(ΣAA + σ2Im)−1

+2λΣ−1
YY + (λ− 1)diag

(

(ΣYY +ΣAA)
−1
)

+diag
(

(ΣAA + σ2Im)−1
)

− λdiag(Σ−1
Y Y ). (18)

Note that the only critical point is Σ⋆
AA = 1

λ
HΣXXHT.

Theorem 1 follows immediately from combining this result

with Proposition 3.

Corollary 1. The mutual information between the vector of

state variables and the vector of compromised measurements

induced by the optimal attack construction is given by

I(Xn;Y n
A )

=
1

2
log

∣

∣

∣

∣

∣

HΣXXHT

(

σ2Im +
1

λ
HΣXXHT

)−1

+ Im

∣

∣

∣

∣

∣

. (19)

Theorem 1 shows that the generalized stealth attacks share

the same structure of the stealth attacks in [25] up to a scaling

factor determined by λ. The solution in Theorem 1 holds for

the case in which λ ≥ 1, and therefore, lacks full generality.

However, the case in which λ < 1 yields unreasonably

high probability of detection [25] which indicates that the

proposed attack construction is indeed of practical interest

in a wide range of state estimation settings. Furthermore the

optimization problem in (16) results in a non-convex problem

when λ < 1 and the solution obtained above no longer holds.

For this reason the case with λ < 1 is left as a future research

question.

Changing the value of λ yields different solutions on the

Pareto front of the optimization problem in (16) as we show

in the numerical results in Section V-B. For any λ ≥ 1,

Theorem 1 guarantees that the generalized stealth attack is the

only Parento efficient solution, i.e. the attack construction that

minimizes the mutual information subject to the probability of

detection constraint being satisfied. By increasing the value of

λ the attacker places more importance on the probability of

detection than on the mutual information which results in a

more conservative attack that disrupts less but is more difficult

to detect.

Theorem 1 also shows that the resulting attack construction

is remarkably simple to implement provided that the infor-

mation about the system is available to the attacker. Indeed,

the attacker only requires access to the linearized Jacobian

measurement matrix H and the second order statistics of

the state variables, but the variance of the noise introduced

by the sensors is not necessary. To obtain the Jacobian, a

malicious attacker needs to know the topology of the grid,

the admittances of the branches, and the operation point of

the system. The second order statistics of the state variables

on the other hand, can be estimated using historical data. In

[25] it is shown that the attack construction with a sample

covariance matrix of the state variables obtained with historical

data is asymptotically optimal when the size of the training

data grows to infinity.

Corollary 1 shows that the mutual information increases

monotonically with λ and that it asymptotically converges to

I(Xn;Y m), i.e. the case in which there is no attack. While the

evaluation of the mutual information as shown in Corollary 1 is

straightforward, the computation of the associated probability

of detection yields involved expressions that do not provide

much insight. For that reason, the probability of detection of

optimal attacks is treated in the following section.

IV. PROBABILITY OF DETECTION OF GENERALIZED

STEALTH ATTACKS

The asymptotic probability of detection of the generalized

stealth attacks characterized in Section III-B is governed by
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the KL divergence as described in (10). However in the non-

asymptotic case, determining the probability of detection is

difficult, and therefore, choosing a value of λ that provides

the desired probability of detection is a challenging task. In

this section we first provide a closed-form expression of the

probability of detection by direct evaluation and show that

the expression does not provide any practical insight over the

choice of λ that achieves the desired detection performance.

That being the case, we then provide an upper bound on the

probability of detection, which, in turn, provides a lower bound

on the value of λ that achieves the desired probability of

detection.

A. Direct Evaluation of the Probability of Detection

Detection based on the LRT with threshold τ yields a

probability of detection given by

PD

∆
= E

[

✶{L(Y m

A
)≥τ}

]

, (20)

where ✶{·} is the indicator function. The following proposi-

tion particularizes the above expression to the optimal attack

construction described in Section III-B.

Lemma 1. The probability of detection of the LRT in (9) for

the attack construction in (17) is given by

PD(λ)
∆
=P

[

(Up)
T
∆Up ≥λ

(

2logτ+log
∣

∣Ip+λ−1∆
∣

∣

)

]

, (21)

where p
∆
= rank(HΣXXHT), Up ∈ R

p is a vector of

random variables with distribution N (0, Ip), and ∆ ∈
R

p×p is a diagonal matrix with entries given by (∆)i,i =
λi(HΣXXHT)λi(Σ

−1
YY ), where λi(A) with i = 1, . . . , p

denotes the i-th eigenvalue of matrix A in descending order.

Proof. The probability of detection of the stealth attack is,

PD(λ)=

∫

S

dPY m

A
(22)

=
1

(2π)
m

2 |ΣYAYA
|
1
2

∫

S

exp

{

−
1

2
yTΣ−1

YAYA
y

}

dy, (23)

where

S = {y ∈ R
m

: L(y) ≥ τ}. (24)

Algebraic manipulation yields the following equivalent de-

scription of the integration domain:

S=
{

y ∈ R
m
: yT∆0y≥2 log τ+log |Im +ΣAAΣ

−1
YY |
}

, (25)

with ∆0
∆
= Σ−1

YY −Σ−1
YAYA

. Let ΣYY = UYY ΛYY U
T
YY where

ΛYY ∈ R
m×m

is a diagonal matrix containing the eigenvalues

of ΣYY in descending order and UYY ∈ R
m×m

is a unitary

matrix whose columns are the eigenvectors of ΣYY ordered

matching the order of the eigenvalues. Applying the change

of variable y1
∆
= UYY y in (23) results in

PD(λ)=
1

(2π)
m

2 |ΣYAYA
|
1
2

∫

S1

exp

{

−
1

2
yT
1Λ

−1
YAYA

y1

}

dy1, (26)

where ΛYAYA
∈ R

m×m
denotes the diagonal matrix contain-

ing the eigenvalues of ΣYAYA
in descending order. Noticing

that ΣAA and ΣYAYA
are also diagonalized by UYY , the

integration domain S1 is given by

S1=
{

y1∈R
m
: yT

1∆1y1≥2 log τ+log |Im+ΛAAΛ
−1
YY |
}

, (27)

where ∆1
∆
= Λ−1

YY − Λ−1
YAYA

and ΛAA denotes the diagonal

matrix containing the eigenvalues of ΣAA in descending order.

Further applying the change of variable y2
∆
= Λ

−1
2

YAYA
y1 in (26)

results in

PD(λ) =
1

√

(2π)m

∫

S2

exp{−
1

2
yT
2y2}dy2, (28)

with the transformed integration domain given by

S2=
{

y2 ∈ R
m
: yT

2∆2y2 ≥ 2 log τ +log |Im+∆2|
}

, (29)

with

∆2
∆
= ΛAAΛ

−1
YY . (30)

Setting ∆
∆
= λ∆2 and noticing that rank(∆) =

rank(HΣXXHT) concludes the proof.

Lemma 1 shows that the probability of detection is equiva-

lent to the probability that a weighted sum of independent χ2

random variables exceeds a certain threshold. In our setting,

the threshold is determined by the trade-off parameter λ.

Notice that the left-hand term (Up)T∆Up in (21) is a weighted

sum of independent χ2 distributed random variables with one

degree of freedom where the weights are determined by the

diagonal entries of ∆ which depend on the second order

statistics of the state variables, the Jacobian measurement

matrix, and the variance of the noise; i.e. the attacker has no

control over this term. The right-hand side contains in addition

λ and τ , and therefore, the probability of attack detection is

described as a function of the parameter λ.

Unfortunately, no closed-form expression is available for the

distribution of a positively weighted sum of independent χ2

random variables with one degree of freedom [36]. Usually,

some moment matching approximation approaches, such as the

Lindsay–Pilla–Basak (LPB) method [37], are utilized to solve

this problem but the resulting expressions are complex and

the relation of the probability of detection with λ is difficult

to describe analytically following this course of action.

In the following an upper bound on the probability of attack

detection is derived. The upper bound is then used to provide

a simple lower bound on the value λ that achieves the desired

probability of detection.

B. Upper Bound on the Probability of Detection

The following theorem provides a sufficient condition for λ
to achieve a desired probability of attack detection.

Theorem 2. Let τ > 1 be the decision threshold of the LRT

in (9). Given t > 0 it holds that for all λ ≥ max (λ⋆(t), 1) the

probability of attack detection satisfies

PD(λ) ≤ e−t, (31)

where λ∗(t) is the only positive solution of λ satisfying

2λ log τ −
1

2λ
tr(∆2)− 2

√

tr(∆2)t−2‖∆‖∞t = 0, (32)
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and ‖ · ‖∞ is the infinity norm.

Proof. We start with the result of Lemma 1 which gives

PD(λ)=P

[

(Up)
T
∆Up≥λ

(

2 log τ +log
∣

∣Ip+λ−1∆
∣

∣

)

]

. (33)

We now proceed to expand the term log
∣

∣Ip + λ−1∆
∣

∣ using a

Taylor series expansion resulting in

log
∣

∣Ip + λ−1∆
∣

∣

=

p
∑

i=1

log
(

1 + λ−1(∆)i,i
)

(34)

=

p
∑

i=1





∞
∑

j=1

(

(

λ−1(∆)i,i
)2j−1

2j − 1
−

(

λ−1(∆)i,i
)2j

2j

)



 . (35)

Since (∆)i,i ≤ 1 for i = 1, . . . , p, and λ ≥ 1, then

(

λ−1(∆)i,i
)2j−1

2j − 1
−

(

λ−1(∆)i,i
)2j

2j
≥ 0, for j ∈ Z

+
. (36)

Thus, (35) is lower bounded by the second order Taylor

expansion, i.e.,

log |Ip +∆| ≥

p
∑

i=1

(

λ−1(∆)i,i −

(

λ−1(∆)i,i
)2

2

)

(37)

=
1

λ
tr(∆)−

1

2λ2
tr(∆2). (38)

Substituting (38) in (33) yields

PD(λ)≤P

[

(Up)
T
∆Up ≥ tr(∆)+2λ log τ −

1

2λ
tr(∆2)

]

. (39)

Note that E
[

(Up)T∆Up
]

= tr(∆), and therefore, evaluating

the probability in (39) is equivalent to evaluating the proba-

bility of (Up)T∆Up deviating 2λ log τ − 1
2λ tr(∆2) from the

mean. In view of this and the results in [29] and [38], the

right-hand side in (39) is upper bounded by

PD(λ)≤P

[

(Up)
T
∆Up ≥ tr(∆)+2

√

tr(∆2)t+2||∆||∞t

]

(40)

≤ e−t, (41)

for t > 0 satisfying

2λ log τ −
1

2λ
tr(∆2) ≥ 2

√

tr(∆2)t+ 2||∆||∞t. (42)

The expression in (42) is satisfied with equality for two

values of λ, one is strictly negative and the other one is

strictly positive denoted by λ∗(t), when τ > 1. The result

follows by noticing that the left-hand term of (42) increases

monotonically for λ > 0 and choosing λ ≥ max (λ⋆(t), 1).
This concludes the proof.

It is interesting to note that for large values of λ the

probability of detection decreases exponentially fast with λ.

We will later show in the numerical results that the regime in

which the exponentially fast decrease kicks in does not align

with the saturation of the mutual information loss induced by

the attack.

V. NUMERICAL SIMULATION

In this section, we present simulations to evaluate the

performance of the proposed attack strategy in practical state

estimation settings. In particular, the IEEE 14-Bus, 30-Bus

and 118-Bus test systems are considered in the simulation.

In state estimation with linearized dynamics, the Jacobian

measurement matrix is determined by the operation point.

We assume a DC state estimation scenario [30], [31], and

thus, we set the resistances of the branches to 0 and the bus

voltage magnitude to 1.0 per unit. Note that in this setting

it is sufficient to specify the network topology, the branch

reactances, real power flow, and the power injection values to

fully characterize the system. Specifically, we use the IEEE

test system framework provided by MATPOWER [39]. We

choose the bus voltage angle to be the state variables, and use

the power injection and the power flows in both directions as

the measurements.

As stated in Section IV-A, there is no closed-form ex-

pression for the distribution of a positively weighted sum

of independent χ2 random variables, which is required to

calculate the probability of detection of the generalized stealth

attacks as shown in Lemma 1. For that reason, we use the LPB

method and the MOMENTCHI2 package [40] to numerically

evaluate the probability of attack detection.

The simulation settings are the same as in [25]. The

covariance matrix of the state variables is assumed to be a

Toeplitz matrix with exponential decay parameter ρ, where

the exponential decay parameter ρ determines the correlation

strength between different entries of the state variable vector.

The performance of the generalized stealth attack is a function

of weight given to the detection term in the attack construction

cost function, i.e. λ, the correlation strength between state

variables, i.e. ρ, and the Signal-to-Noise Ratio (SNR) of the

power system which is defined as

SNR
∆
= 10 log10

(

tr(HΣXXHT)

mσ2

)

. (43)

A. Generalized Stealth Attack Performance

Fig. 1 and Fig. 2 depict the performance of the optimal

attack construction given in (17) for different values of ρ
with SNR = 10 dB and SNR = 20 dB, respectively,

when λ = 2 and τ = 2. Interestingly, the performance of

the attack construction does not change monotonically with

the correlation strength, which suggests that the correlation

among the state variables does not necessarily provide an

advantage to the attacker. Admittedly, for a small and moderate

values of ρ, the performance of the attack does not change

significantly with ρ for both objectives. This effect is more

noticeable in the high SNR scenario. However, for large values

of ρ the performance of the attack improves significantly in

terms of both mutual information and probability of detection.

Moreover, the advantage provided by large values of ρ is more

significant for the 118-Bus system than for the 30-Bus system,
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Fig. 1. Performance of the generalized stealth attack in terms

of mutual information and probability of detection for different

values of ρ when λ = 2, τ = 2, and SNR = 10 dB.
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Fig. 2. Performance of the generalized stealth attack in terms

of mutual information and probability of detection for different

values of ρ when λ = 2, τ = 2, and SNR = 20 dB.

which indicates that correlation between the state variables is

easier to exploit for the attacker in large systems.

Fig. 3 and Fig. 4 depict the performance of the optimal

attack construction for different values of λ and ρ with

SNR = 10 dB and SNR = 20 dB, respectively, when τ = 2.

As expected, larger values of the parameter λ yield smaller

values of the probability of attack detection while increasing

the mutual information between the state variables vector and

the compromised measurement vector. We observe that the

probability of detection decreases approximately linearly with

respect to log λ for moderate values of λ. On the other hand,

Theorem 2 states that for large values of λ the probability of

detection decreases exponentially fast to zero. However, for the

range of values of λ in which the decrease of probability of

detection is approximately linear with respect to log λ, there

is no significant reduction on the rate of growth of mutual

information. In view of this, the attacker needs to choose

the value of λ carefully as the convergence of the mutual

information to the asymptote I(XN ;Y M ) is slower than that

of the probability of detection to zero.

The comparison between the 30-Bus and 118-Bus systems

shows that for the smaller size system the probability of

detection decreases faster to zero while the rate of growth of
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Fig. 3. Performance of the generalized stealth attack in terms

of mutual information and probability of detection for different

values of λ and system size when ρ = 0.1, ρ = 0.9, SNR =
10 dB and τ = 2.
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Fig. 4. Performance of the generalized stealth attack in terms

of mutual information and probability of detection for different

values of λ and system size when ρ = 0.1, ρ = 0.9, SNR =
20 dB and τ = 2.

mutual information is smaller than that on the larger system.

This suggests that the choice of λ is particularly critical in

large size systems as smaller size systems exhibit a more

robust attack performance for different values of λ. The effect

of the correlation between the state variables is significantly

more noticeable for the 118-bus system. While there is a

performance gain for the 30-bus system in terms of both

mutual information and probability of detection due to the

high correlation between the state variables, the improvement

is more noteworthy for the 118-bus case. Remarkably, the

difference in terms of mutual information between the case

in which ρ = 0.1 and ρ = 0.9 increases as λ increases

which indicates that the cost in terms of mutual information

of reducing the probability of detection is large in the small

values of correlation.

The performance of the upper bound given by Theorem

2 on the probability of detection for different values of λ
and ρ when τ = 2 and SNR = 10 dB is shown in Fig.

5. Similarly, Fig. 6 depicts the upper bound with the same

parameters but with SNR = 20 dB. As shown by Theorem

2 the bound decreases exponentially fast for large values of
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Fig. 5. Upper bound on probability of detection given in

Theorem 2 for different values of λ when ρ = 0.1 or 0.9,

SNR = 10 dB, and τ = 2.
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Fig. 6. Upper bound on probability of detection given in

Theorem 2 for different values of λ when ρ = 0.1 or 0.9,

SNR = 20 dB, and τ = 2.

λ. Still, there is a significant gap to the probability of attack

detection evaluated numerically. This is partially due to the fact

that our bound is based on the concentration inequality in [29]

which introduces a gap of more than an order of magnitude.

Interestingly, the gap decreases when the value of ρ increases

although the change is not significant. More importantly, the

bound is tighter for lower values of SNR for both 30-bus and

118-bus systems.

B. Performance and Sensitivity under AC State Estimation

In the AC state estimation case the iterative estimation meth-

ods require a nominal operation point that is updated for each

iteration. When the attacker has the perfect information about

the operation point in each iteration, i.e. perfect information

about Jacobian matrix H in each iteration, the resulting mutual

information and probability of detection follow from Corollary

1 and Lemma 1 directly. In the following, we study the impact

of imperfect nominal operation point information on the attack

performance. In particular the generalized stealth attacks are

constructed as Am
0 ∼ N (0, 1

λ
H0ΣXXHT

0), where H0 is the

Jacobian matrix at the nominal operation point x0 and is given
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Fig. 7. Performance of generalized stealth attack in terms of

mutual information and probability of detection for different

values of σ2
∆ and λ on IEEE 14-Bus system when ρ = 0.1,

τ = 2, and SNR = 20 dB. The marker represents the same

value of λ is used in the attack construction.
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Fig. 8. Performance of generalized stealth attack in terms of

mutual information and probability of detection for different

values of σ2
∆ and λ on IEEE 30-Bus system when ρ = 0.1,

τ = 2, and SNR = 20 dB. The marker represents the same

value of λ is used in the attack construction.

by

H0 =
∂

∂(Xn)
H(Xn)|Xn=x0

, (44)

with H(Xn) ∈ R
m

denoting the vector of random variables

induced by the nonlinear relation between the state variables

and the measurements. To model the imperfect knowledge of

the nominal point, the nominal linearization point is perturbed

with random variable ∆ ∼ N (0, σ2
∆I) resulting in the Jaco-

bian matrix H given by

H =
∂

∂(Xn)
H(Xn)|Xn=x0+∆. (45)

Note that the introduction of this random perturbation gives

us a way to control the strength of the perturbation, i.e. the

uncertainty over the nominal linearization point, and as a

result we study the sensitivity of the attacks under AC state

estimation by changing the variance σ2
∆ in the simulations.
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Fig. 7 depicts the performance of the generalized stealth

attacks in terms of the mutual information and the probability

of detection for different values of σ2
∆ and λ on the IEEE

14-Bus system when ρ = 0.1, τ = 2, and SNR = 20 dB.

Similarly Fig. 8 shows the performance of the attacks under

the same setting on IEEE 30-Bus system. We generate 200
realizations of ∆ per point and for each realization of ∆
we evaluate 2000 realizations of the state variables. The

curve corresponding to the case when σ2
∆ = 0 describes

the performance of the attacks with perfect knowledge of

the nominal operation point. As expected, when there is less

accurate knowledge about the nominal operation point, i.e.

σ2
∆ increases, the performance of the attack Am

0 decreases.

Interestingly the performance decrease translates in a larger

value of mutual information for all cases. However, the change

in probability of detection is not as significant, to the extent

that in some cases the probability of detection decreases. Note

that for all cases, overall the attack performance decreases

when perfect operation point is not available. Interestingly,

the stealth of the attacks is more robust for the IEEE 30-

Bus system than for the IEEE 14-Bus system, which suggests

that the attacker is better positioned to cope with system

uncertainty for larger networks.

VI. CONCLUSIONS

We have proposed a novel data injection attacks based

on information-theoretic performance measures. Specifically,

we have posed the attack construction problem as an opti-

mization problem in which the cost function combines the

mutual information and the probability of attack detection. The

proposed cost function allows to obtain an arbitrarily small

probability of attack detection via a parameter that weights

the effect of the mutual information and the probability of

detection. The resulting random attack construction has been

analyzed in terms of the information loss and the probability

of attack detection that it induces on the system. We have

characterized the probability of attack detection by obtaining

an easy to compute upper bound. The upper bound has been

used to provide a practical attack construction guideline by

determining the cost function that achieves a given probability

of attack detection.
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