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Algorithms for the Self-Optimisation of Chemical Reactions  

Adam D. Claytona,Ώ, Jamie A. Mansona,Ώ, Connor J. Taylora,Ώ, Thomas W. Chamberlaina, Brian A. 

Taylorb, Graeme Clemensb and Richard A. Bournea,* 

Self-optimising chemical systems have experienced a growing momentum in recent years, with the evolution of self-

optimising platforms leading to their application for reaction screening and chemical synthesis. With the desire for improved 

process sustainability, self-optimisation provides a cheaper, faster and greener approach to the chemical development 

process. The use of such platforms aims to enhance the capabilities of the researcher by removing the need for labor-

intensive experimentation, allowing them to focus on more challenging tasks. The establishment of these systems have 

enabled opportunities for self-ŽƉƚŝŵŝƐŝŶŐ ƉůĂƚĨŽƌŵƐ ƚŽ ďĞĐŽŵĞ Ă ŬĞǇ ĞůĞŵĞŶƚ ŽĨ Ă ůĂďŽƌĂƚŽƌǇ͛Ɛ ƌĞƉĞƌƚŽŝƌĞ͘ TŽ ĞŶĂďůĞ ƚŚĞ 
wider adoption of self-optimising chemical platforms, this review summarises the history of algorithmic usage in chemical 

reaction self-optimisation, detailing the functionality of the algorithms and their applications in a way that is accessible for 

chemists and highlights opportunities for the further exploitation of algorithms in chemical synthesis moving forward. 

 

Introduction 

The numerous advantages of continuous flow chemistry over 

conventional batch chemistry are becoming apparent to a 

growing number of synthetic chemists.1,2 Properties such as 

enhanced heat and mass transfer,3,4 safer use of hazardous 

reagents5 and an extended operating window6 enable reactions 

that are difficult or even impossible in batch to be achieved 

relatively easily.7 In addition, automation is readily 

implemented into flow systems via in-line monitoring, offering 

a greater degree of reliability and reaction control.8,9 

These advances in the automation of laboratory equipment 

have simultaneously led to a rise in the use of algorithms in 

chemistry.10,11 With developments in automation enabling 

chemists to make better use of the human resource by assigning 

routine, labour intensive tasks to machines.12,13 More recently, 

machine learning algorithms have been applied to more 

challenging tasks, such as the discovery of new chemical 

reactivity14 and the prediction of reaction outcomes.15  

Automated flow systems are able to search large regions of 

experimental space in relatively short periods of time, making 

them well suited for optimisation problems.16,17 Optimising 

processes by combining flow reactors, process analytics and 

ŽƉƚŝŵŝƐĂƚŝŽŶ ĂůŐŽƌŝƚŚŵƐ ŝƐ ŬŶŽǁŶ ĂƐ ͚ƐĞůĨ-ŽƉƚŝŵŝƐĂƚŝŽŶ͛͘ TŚĞ 
reaction mixture is analysed and the responses are supplied to 

an optimisation algorithm. The algorithm then generates the 

next set of conditions to explore based on the results of the  

previous experiments, thereby creating a feedback loop.18 

Intelligent analysis of the experimental space reduces the 

number of experiments required, providing a faster, cheaper 

ĂŶĚ ͚ŐƌĞĞŶĞƌ͛ ŵĞƚŚŽĚ ĨŽƌ ƉƌŽĐĞƐƐ ĚĞǀĞůŽƉŵĞŶƚ͘ SĞůĨ-optimising 

systems provide an enabling technology for efficient 

optimisation of expensive-to-evaluate chemical systems. As 

such, algorithms used in self-optimisation typically focus on 

minimising the number of experiments and material consumed 

during the optimisation process. Given that the algorithm 

selected by the user has a significant influence on the efficiency 

of the optimisation, there will remain a continued interest in the 

development of algorithms for self-  

 

Fig 1. A summary of algorithms used in self-optimising chemical platforms. 
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optimising systems.  

Self-optimising systems are developed at the interface between 

chemistry, chemical engineering and computer science. For 

self-optimising systems to become more commonplace in 

research laboratories, the end-user (e.g. chemists) require a 

basic knowledge of the types of algorithms available. However, 

reviews in this area have to date focused primarily on the 

monitoring of reactions, and less on the algorithms 

employed.19,20 In this review, we provide an overview of the 

algorithms which have been used for self-optimisation to date 

(Fig 1), including explanations designed to aid chemists in their 

choice of the most appropriate algorithm for a given synthetic 

challenge. 

Local Optimisation 

Model-Based 

Design of experiments (DoE) has been studied and used for 

chemical process optimisation and screening for many 

decades.21 This approach is used to determine a set of 

experiments which will efficiently identify the important factors 

affecting the chemical system, as well as ascertaining how the 

differing factors interact with each other. This statistical 

framework allows optimum regions of experimental space to be 

located for further exploration through the construction of a 

response surface; where a response surface describes the 

relationship between experimental variables (e.g. reaction 

temperature, time, pH etc.) and a response (e.g. yield). The 

literature behind the designs is well understood and known 

throughout the chemical industry and academia where it is used 

readily.22,23 

Methods to improve the standard rigid DoE design, to allow for 

adjustment based on the responses from a given process, have 

been attempted in a self-optimising chemical environment. The 

Jensen group first utilised an optimal DoE approach for the 

optimisation of the alkylation of 1,2-diaminocyclohexane for 

discrete (e.g. solvents, catalysts, ligands) and continuous 

variables (e.g. reaction time, temperature, reagent 

equivalents).24 The optimisation was initialised using a 

screening set of experiments, from which a linear response 

surface was fitted. In performing only screening experiments, 

elucidation of potential response curvature is not possible, 

however, this is contrasted by the conservation of resources. 

Following initialisation, further experiments were performed 

focusing on determining the optimum point for each solvent. 

Fitting of a quadratic model was performed and a paired 2-

sample t-test allowed for the elimination of poorly performing 

solvents. Optimal regions for the remaining solvents were 

determined by applying G-optimality, which aims to design 

experiments which minimise the maximum variance of the 

models predicted values.25 

The algorithm has been further refined, initially enhancing the 

handling of discrete variables via the addition of a mixed integer 

nonlinear programming (MINLP) approach,26 with discrete 

variables removed when performance was poor. MINLP refers 

to optimisation tasks involving both continuous and discrete 

variables, with nonlinearities in the response. Further 

alterations were made to improve the initial space filling 

experimental design, being led by D-optimality, with additional 

improvements to the discrete variable reduction process.27,28 D-

optimal designs seek to minimise the covariance (uncertainty) 

of the parameter estimates for a specific model.29 For the 

catalytic reaction studied, the authors assumed the system 

could be modelled as a logarithmic model derived from the 

assumption that the reaction had a single rate determining step. 

The requirement for an assumed model derivation could 

present an issue for the application of the algorithm in 

kinetically complex systems and for general purpose use 

without a priori knowledge.18 Additionally, the use of a paired 

2-sample t-test for solvent elimination has the potential to miss 

the best conditions due to synergistic effects. To date this 

algorithm presents the only documented self-optimisation of 

both discrete and continuous variables in a chemical system, 

with scope for the field to expand in this area. 

Black-Box 

Black-box optimisation techniques are defined as methods 

requiring no mechanistic understanding of the process to 

perform the optimisation task. The Nelder-Mead simplex 

(NMSIM) algorithm is an example of a black-box local 

optimisation method used to determine the maximum (or 

minimum) of a single-objective function (a response being 

optimised). This is achieved by means of using convex polyhedra 

formed of n+1 vertices (where n is the number of variables).30 

The polyhedron, or simplex, explores the feasible design space 

set by the user. The algorithm begins by conducting either user-

defined or random experiments within a given area of the 

design space, with each vertex of a polyhedron representing an 

experiment with an evaluation of the response function. The 

worst performing vertex is then replaced at each iteration of the 

algorithm with another vertex via a geometric transformation, 

resulting in a new simplex that explores a new point in the 

design space. This approach locates areas with a better 

response and hence successive simplex iterations converge on 

a local optima. The method of defining the new vertex is based 

on five geometrical transformations of a current simplex, 

outlined in Fig 2, which depict two-dimensional transformations 

that can be extrapolated to higher dimensions. 

Fig 3 shows an example of how NMSIM can find the local 

minimum of a response function in a two-variable design  

 

 

Fig 2. The different geometric transformations of the Nelder-Mead simplex: inside 

contraction (XIC), multiple contraction (MC), outside contraction (XOC), reflection 

(XR) and expansion (XE). 
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Fig 3. An example of a two-variable design space with arbitrary variables and a 
mapped response surface, showing how NMSIM converges on the minimum. 
Minima (blue), maxima (red). 

space. The initial vertices of simplex 1 are evaluated via the 

response function, then the worst vertex is replaced via 

reflection to form simplex 2. Similarly, the worst vertex of 

simplex 2 is replaced via reflection to form simplex 3. These 

successive transformations enable the simplex algorithm to 

converge on an optimum. The optimisation typically stops when 

a better response function evaluation cannot be found, 

indicating that a local optimum has been identified. One of the 

first times this algorithm was applied to self-optimisation was in 

the Heck reaction, and represented one of the earliest examples 

of a self-optimising chemical platform.31 A publication by 

Krishnadasan et al. from the same year shows the use of simplex 

methods for optimisation of nanoparticle production. The 

authors utilise a dynamic simplex to apply compensation in the 

case of system-drift (unforeseen changes in the system).32 

Further work by Cronin and coworkers successfully coupled the 

algorithm with in-line NMR to optimise an imine synthesis, with 

a total of 29 experiments, utilising a custom cost function.33 

The Super Modified Simplex algorithm (SMSIM) is an adaptation 

of NMSIM, originally introduced by Routh et al.,34 whereby 

polynomial fitting of data points determines the optimum 

simplex transformations. As these transformations are based on 

predictions from the polynomials generated, the algorithm can 

accelerate across areas of low interest. Fig 4 shows an initial 

simplex formed of data points 1, 2 and 3, where 3 is the worst 

result. The midpoint of 1 and 2 is then measured as 4, which is 

ƚŚĞ ͚ĐĞŶƚƌŽŝĚ͛͘ TŚĞ ĐĞŶƚƌŽŝĚ ŝƐ ƚŚĞ ƉŽŝŶƚ Ăƚ ǁŚŝĐŚ ǀĞƌƚĞǆ ϯ ǁŝůů ďĞ 
reflected through at distance XRɲ to vertex 5, which is also 

measured. A second order polynomial through data points 3, 4 

and 5 is then constructed and extrapolated to identify the 

optimum expansion distance XRɴ to vertex 6.35 Many notable 

modifications to NMSIM have been reported by Felpin et al. 

which were used in the self-optimisation of the Heck-Matsuda 

reaction and in the natural product synthesis of carpanone, over 

four stages with a total of 66 experiments.36,37 These 

modifications include: boundary and linear constraints on 

variables (such as temperature, or  

 

Fig 4. An example showing how a polynomial fit to the data (red dashed line) 
predicts the optimum expansion point to the next simplex vertex, resulting in the 
new simplex expansion (dashed line) towards the minimum (blue contour).  

temperature given a concentration), dimensionality reduction 

upon exploring boundaries, dimension recovery to re-enter the 

design space (Fig 5), diversification by searching unexplored 

regions and the ability to have multiple termination criteria 

(such as when all material has been consumed). Other 

modifications to NMSIM such as Complex Method38 have also 

been used for self-optimisation, such as in the amidation of 3-

cyanopyridine.39 This algorithm works in a very similar way to 

SMSIM, however, instead of basing the expansion distances on 

predicted optimal regions via polynomial fitting, an iterative 

process is employed. This iterative process begins by measuring 

a vertex at a given expansion distance. If the measurement is 

worse than the current data points, it is rejected. Additional 

measurements are then taken at incrementally shorter 

distances along the same direction, until a better evaluation is 

found. Gradient-based methods are another form of local 

optimisation that typically converge on the optimum by 

following the initial trajectory of the local response surface. The 

steepest descent method40 is a gradient-based algorithm first 

used in a chemical  

 

Fig 5. An example showing how a polynomial fit to the data (red dashed line) 

predicts the optimum expansion point to the next simplex vertex, resulting in the 

new simplex expansion (dashed line) towards the minimum (blue contour).  
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system by McMullen and Jensen in combination with DoE for 

the optimisation of a Knoevenagel condensation reaction.41 In 

this method, an initial 2k orthogonal design (where k is the 

number of variables) or central composite design (CCD) DoE is 

performed around a particular starting point. A local response 

surface is then modelled, from which the gradients are 

calculated. Further experiments are performed along the 

trajectory of the gradient until the response function value 

worsens, indicating that the optimum has been passed or that 

a change of search direction is necessary to proceed, as shown 

in Fig 6. Modifications to the steepest descent method, such as 

conjugate gradient and Armijo conjugate gradient, have also 

been used in the self-optimisation of the Paal-Knorr synthesis.42 

The conjugate gradient algorithm utilises the weighted sum of 

the last search direction and the direction calculated via the 

steepest descent method to determine the next iteration. This 

prevents large direction adjustments which are less likely to 

lead the algorithm through difficult response surface terrain.43 

The Armijo algorithm differs by implementing an Armijo-type 

line search.44 This varies the step size along each trajectory, 

which was shown to out-perform the other steepest descent 

algorithms by reaching a similar optimum in fewer 

experiments.41,42 Where gradient information is available this 

can offer faster convergence, however, this can be complicated 

in the presence of experimental noise and the need to fit a 

mathematical surface. Real-time analysis of transient 

experiments in the future may enable experimentally measured 

gradients to be utilised although to the authors͛ knowledge this 

has not been demonstrated yet. 

Many local optimisation algorithms are typically fast to 

converge on an optimum, as each successive iteration of the 

algorithm makes progressive improvements by moving 

perpendicularly to the contour of the response-surface. 

Variants of both the simplex and steepest descent algorithms 

have been shown to converge on optima within a self-

optimising reaction system, each with their own advantages in 

  

 

 

Fig 6. A steepest descent method minimisation, where an initial point and 2k 

orthogonal design are performed, followed by further experiments along the 

trajectory of highest gradient towards the optimum. Minima (blue), maxima (red).  

terms of robustness and experimental efficiency. The 

disadvantage of using local optimisation tools is when there is 

no a priori knowledge about the reaction system; as the 

complexity of the system arising from variable-variable 

interactions can lead to multiple optima. In these cases, there is 

no guarantee that the global optimum will be found over a local 

optima before termination. 

When considering a local optimisation algorithm it must 

therefore be assumed that the chemical system of interest has 

a single optimum, otherwise a global optimisation tool may be 

more relevant. 

Consideration of optimisation time may also be worthwhile 

when selecting a local or global optimiser. Due to global 

searching, experimental points are on average further apart in 

the experimental space, meaning the reactor system can take 

correspondingly longer to reach the new conditions.45 

Global Optimisation 

AŶ ĂůŐŽƌŝƚŚŵ͛Ɛ ĂďŝůŝƚǇ ƚŽ ůŽĐĂƚĞ ƚŚĞ ŽƉƚŝŵƵŵ ĚĞƐƉŝƚĞ ƚŚĞ 
inherent experimental noise of chemical systems is crucial for 

self-optimising platforms. As there are no noise-handling 

capabilities inbuilt in local search algorithms, the presence of 

significant noise can be detrimental to the speed of identifying 

the optimum. Considerable noise in a system can lead to local 

optimisation techniques, such as simplex, prematurely 

terminating at a point away from the true optimum of the 

system. As many global optimisers attempt to facilitate noise, 

their convergence on the optimum may be more efficient in 

notably noisy systems. 

Stable Noisy Optimisation by Branch and Fit (SNOBFIT) is a 

global optimisation algorithm for bound constrained noisy 

optimisation of objective functions.46 To date, this is the only 

single-objective optimiser which has been successfully 

implemented in self-optimisation. It is a derivative-free 

optimisation method, which means that it requires no gradient 

information of the objective function being optimised. The 

algorithm uses a combination of stochastic linear and quadratic 

surrogate models to determine the optimum point of the 

system. A surrogate model is an approximate model that maps 

the process inputs to an objective function.47 They provide a 

cheap alternative which can be called in lieu of the parent 

function to improve optimisation efficiency, with the stochastic 

nature of the models enabling the algorithm to handle noise 

effectively. 

A basic flow diagram detailing a simplified overview of SNOBFIT 

is shown in Fig 7. The algorithm generates points in five 

different classifications: 

- Class 1: The point that minimises the local quadratic 

model around the current best point (xbest). It contains 

at most one point 

- Class 2: Are points that are approximate local 

minimisers. If there are no local points then no points 

in class 2 are generated 

- Class 3: Are points that are approximate nonlocal 

minimisers  

- Class 4: Are points in regions that are yet to be explored 
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Fig 7. Flow diagram for a call of the SNOBFIT algorithm. neval is the current number 
of points for the following iteration SNOBFIT has generated. nreq is the required 
number of points to be generated for each call of the algorithm, this is set by the 
user. 

- Class 5: Are points that are randomly generated to fill 

the design space. They are only generated if the 

number of evaluated points is less than the number 

required. The number required is set by the user upon 

initialisation. 

The first documented use of a self-optimising chemical platform 

utilised SNOBFIT as the optimisation algorithm.48 The authors 

optimised, within 100 measurements, for a target wavelength 

at the outlet of the reactor which corresponded to the desired 

nanoparticle properties. The algorithm was selected due to its 

global nature and ability to handle noisy data, making it an ideal 

fit to optimise complex systems such as the synthesis of 

nanoparticles.  

The main advantage of using SNOBFIT is the higher confidence 

that the optimum found will be the global for the system. Fig 8 

illustrates this advantage where SNOBFIT is able to determine 

the region of the global optimum whereas the simplex method 

gets stuck in a local minimum. Given the global nature of the 

algorithm it can require an increased number of iterations to 

converge upon the optimum when compared with local 

methods.45 This is due to the random search element of the 

design which explores regions for which the objective function 

has not been evaluated. This coupled with the variety of 

literature sources documenting its use and the robustness of 

the algorithm in the presence of noise has led to SNOBFIT being 

used in self-optimising platforms41,49ʹ52 as well as a wide range 

of other optimisation tasks. It has been noted that the  

  

Fig 8. Comparison of SNOBFIT (orange squares) and simplex (black dots) for the 
minimisation of a complex function, restricted to 30 evaluations. Global minimum 
is indicated by a blue cross. 

algorithm can struggle for high dimensional problems (when the 

input dimension > 9).53 This could present issues when applying 

the algorithm to telescoped reactions, where the input variable 

space is large. However, this is not normally an issue for single 

stage synthesis. In addition to issues with high dimensionality 

SNOBFIT can only be used for the optimisation of continuous 

variables. This removes the possibility for optimisations 

containing both discrete and continuous variables. 

An alternative approach to system optimisation is to utilise 

kinetic model fitting. The models can then be used to suggest 

optimal operating conditions, provided that the kinetic 

equations are deconvoluted from mass transfer effects. 

Suggesting optimal experiments for kinetic model elucidation 

can be performed through model-based design of experiments. 

As this approach does not directly search for optimal system 

conditions it will not be discussed here, however, the reader is 

directed to the following examples should they require further 

information.54ʹ56 

Multi-Objective Optimisation 

There are multiple economic and environmental process 

metrics that must be considered during optimisation of a 

chemical process.57 These objectives are often conflicting, 

which means that the objective optima are located in different 

regions of experimental space. The optimum of each objective 

can be located by conducting multiple single-objective 

optimisations.36 However, because this approach does not 

consider the objectives simultaneously, it fails to identify a 

satisfactory compromise. For example, Moore and Jensen 

observed a poor 42% conversion for a Paal-Knorr reaction 

optimised for productivity.42 To circumvent this, the authors 

repeated the optimisation using a quadratic loss function to 

penalise conversions lower than 85%.  

The actual solution to a multi-objective optimisation problem is 

a set of non-dominated solutions called the Pareto front, where 

a non-dominated solution is one which cannot be improved 

without having a detrimental effect on the other.58 Hence, a 

constrained multi-objective maximisation problem where 

variable vector x = {x1,...,xn} is formulated as follows. In  
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the objective space, find variable vector x* which maximses K 

objective functions y(x*) = {y1(x*Ϳ͕͙͕yK(x*)}, where the objective 

space is restricted by bounds on the variables. A feasible 

solution a dominates another feasible solution b when yi(aͿ ш 

yi(b) for i с ϭ͕͙͕K and yj(a) > yj(b) for at least one objective j (Fig 

9).59 

One approach to multi-objective optimisation is scalarisation, 

where objectives are combined into a single objective function 

with different weightings, w [Eq (1)].  

ݓݔܽ݉ ݂ሺݔሻ
ୀଵ  (1) 

This was used by Fitzpatrick et al. to simultaneously optimise 

throughput, conversion and consumption for an Appel 

reaction.39 An alternative approach by Krishnadasan et al. 

utilised a weighted-product objective function for the 

optimisation of CdSe nanoparticles.48 For both methodologies, 

it is difficult to define suitable weightings without substantial a 

priori knowledge, and minor changes to these weightings can 

result in significant changes to the solution obtained. 

Furthermore, weighting methods fail to reveal to complete 

trade-off in a practical number of experiments, as only one 

Pareto optimal solution is identified per optimisation.60 Further 

work by Walker et al. utilised a constrained optimisation 

approach to optimise a primary objective whilst constrained 

within the predefined bounds applied to other objectives.61 

Although this approach provides an improved means of 

scalarisation compared to previous work, it still fails to identify 

complete trade-off between objectives. In contrast, 

evolutionary algorithms, such as non-dominated-sort genetic 

algorithm (NSGA-II), are designed to converge on the Pareto 

front using a Pareto dominance ranking system.62 However, the 

requirement of a large population size has deterred their use in 

self-optimisation.  

Bayesian optimisation is a broad category of derivative free 

(requires no gradient information) global optimisation  

 

Fig 9. An example of a multi-objective optimisation with two competing 

maximisation performance criteria y1 and y2. The Pareto front is the series of non-

dominated solutions, y(x*). Solution a is dominated by all solutions between b1 

and b2. 

methods that utilise surrogate models to optimise expensive-

to-evaluate objective functions.63 The surrogate model is built 

using sampled data from the process/objective to be optimised. 

Understanding the mechanistic concepts behind the input-

output relationship is not important at this stage, with the 

ŵŽĚĞů ĐŽŶƐŝĚĞƌĞĚ ƚŽ ďĞ Ă ͚ďůĂĐŬ ďŽǆ͛. Once constructed, the 

surrogate model is utilised in conjunction with an acquisition 

function to suggest the next evaluation point, to maximise or 

minimise an objective function.64 An acquisition function is a 

function which balances exploration (searching regions which 

currently have no data points) and exploitation (focusing near 

regions of known good performance) and is maximised after 

each iteration to determine the next sampling point. Often the 

surrogate model will be of the form of a Gaussian process (GP) 

which is computationally and resource-wise more efficient to 

evaluate than the actual process. A GP model is a collection of 

random variables, for which any discrete point has a Gaussian 

(Normal) distribution.65 A GP model is characterised by a mean 

function and a covariance function. The mean function defines 

the expected output for a given set of inputs, with the 

covariance function describing the statistical relationship 

between two points in the input space. Points that are close 

together are considered similar and this is reflected in the 

covariance function. A noise term can be introduced when 

calculating the covariance for the process. This enables 

Bayesian optimisation algorithms to handle noisy data 

associated with experimental platforms. The requirement for 

hyperparameters (algorithm settings) can be considered a 

drawback of Bayesian methodologies. The setting of these 

hyperparameters can play a significant role in determining the 

goodness of fit for the GP model and can in turn affect the 

performance of stochastic optimisation algorithms that use GP 

at their core. One example of a hyperparameter is the type of 

covariance function used in fitting the GP model. Fig 10 

highlights the impact of covariance function on how well the 

model fits the data. Ensuring hyperparameters are optimised 

and robust is key to developing a Bayesian optimisation 

algorithm. The libraries of GPy66 and GPyOpt67 were used for 

sampling and example optimisations.  

 

 

Fig 10. Comparison of fit for two Gaussian models with different covariance 

functions: Matern 5/2 (red) and Squared Exponential (blue). Training data is 

shown as black dots. 
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An acquisition function is used to determine the next evaluation 

point in Bayesian optimisation. Fig 11 illustrates the sequential 

optimisation approach adopted by Bayesian optimisation 

techniques, with each figure representing an iteration of the 

algorithm. The example shown is for a single-objective problem 

but can be extended to multi-objective optimisations. For each 

iteration the acquisition function is calculated based upon the 

current available data and the surrogate model for the process. 

There are many different acquisition functions used in Bayesian 

optimisation tasks, with the development of acquisition 

functions being a constantly evolving field.68 Some of the more 

common acquisition functions are expected improvement, 

probability of improvement, upper confidence bounds and 

Thompson sampling.69,70 Mixtures of acquisition functions can 

also be used. Expected improvement was used for Fig 11, with 

the algorithm initially exploring the search domain and then 

focusing on the region where the function optimum is likely to 

be. 

The multi-objective active learner (MOAL) was designed for 

expensive-to-evaluate multi-target optimisation tasks.71 The 

algorithm was successfully applied to the optimisation of an  

 

Fig 11. Bayesian optimisation (minimisation) of an arbitrary function. (i) - (viii) 

represent sequential iterations of the algorithm. Acquisition function is shown in 

red. Current estimated function is shown in blue with associated 95 % confidence 

interval. Data is shown as red dots. The next evaluation is selected as the point 

which maximises the acquisition function. 

emulsion polymerisation recipe with 14 input variables, 

ƐŝŵƵůƚĂŶĞŽƵƐůǇ ƚĂƌŐĞƚŝŶŐ Ă ĐŽŶǀĞƌƐŝŽŶ ŽĨ шϵϵй ĂŶĚ ƉĂƌƚŝĐůĞ 
diameter of 100 ± 1 nm.72 A similar machine learning 

methodology was used to design the Thompson sampling 

efficient multi-objective optimisation (TSEMO) algorithm.73 The 

TSEMO algorithm was shown to compare competitively with 

other multi-objective Bayesian optimisation algorithms such as 

Pareto efficient global optimisation (ParEGO)74 and expected 

hypervolume improvement (EHI).75 In addition, it can readily be 

used for batch-sequential design making it well suited for 

integration with self-optimising platforms.   

The algorithmic procedure is displayed in  

Fig 12. Initially, a small dataset is collected using a random 

space-filling set of experiments, which is then used to build a GP 

surrogate model.76 The algorithm randomly samples from the 

GPs and uses the NSGA-II algorithm to identify the Pareto front 

of each random sample (Thompson sampling). Through 

randomly sampling this accounts for the 

exploration/exploitation trade-off desirable in Bayesian 

optimisation. The candidate experiment which gives the largest 

predicted hypervolume improvement is then performed, where 

hypervolume is defined as the volume of objective space 

dominated by the current set of solutions (Fig 13). The 

reference point, R, for this calculation is usually defined as the 

anti-utopian point (the worst point with respect to all objective 

functions). The hypervolume indicator is a favored metric as it 

considers both  

 

Fig 12. Flow diagram for the TSEMO algorithm. Neval is the current number of 

evaluations and Nmax is the maximum number of evaluations. 
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Fig 13. Hypervolume plot showing the process used to select experiments from 
the candidate set, Ei. The current hypervolume is the volume of space dominated 
by the current set of non-dominated solutions (a, b, c, d). In this case, E3 is selected 
as it offers the largest predicted hypervolume improvement. R = reference point.  

the convergence and diversity of the front, where diversity 

refers to how well-distributed the optimal solutions are along 

the Pareto front.77 The combined use of random GP sampling 

and hypervolume improvement accounts for the desired trade-

off between exploration and exploitation respectively. The GP 

surrogate model is then updated and the procedure repeated 

iteratively until the predefined maximum number of 

experiments is reached. Research in our group applied the 

TSEMO algorithm for the self-optimisation of an aromatic 

nucleophilic substitution (SNAr) and N-benzylation reaction, 

focusing on E-factor, space-time yield (STY) and impurity 

profiles as objectives.78 The algorithm was able to converge on 

the Pareto front in a similar number of experiments, 68 and 78 

experiments respectively, as previously reported single- 

objective optimisations, thus providing a greater amount of 

information per experiment. Notably, identification of a set of 

solutions and presentation of a front enables a posteriori 

decisions to be made regarding the desired development, 

where process specifications are often dynamic. The inclusion 

of discrete variables in future work will broaden the scope of 

multi-objective self-optimisation to a wider variety of 

processes. 

Conclusions 

Combining automation with optimisation algorithms for self-

optimising chemical platforms has already yielded very exciting 

results. Although the use of such systems are in their infancy, 

the drive for efficient process development and manufacturing 

is expected to cause this field to develop exponentially. There is 

a growing need to work with experts in algorithm design to: (i) 

further develop algorithms capable of more complex tasks, such 

as multi-step reaction and work-up processes; (ii) upskill non-

mathematical experts such as chemists to understand when and 

how to use certain algorithms based on their desired outcome, 

such as process insight and prediction. While local methods 

have thus far dominated the self-optimisation literature, their 

simplistic nature restricts their use to problems with a single 

optimum. As the direction shifts to more complex chemical 

systems, such as multi-step reaction sequences, response 

surfaces will become significantly more convoluted. Hence, 

global and multi-objective optimisation techniques are likely to 

dominate over their local counterparts. As most chemical 

optimisations represent expensive-to-evaluate problems, 

improving algorithm efficiency is key in the future to minimise 

material consumption. The combination of surrogate models 

and multi-objective optimisation has recently presented an 

exciting opportunity to maximise the amount of useful 

information gained per experiment. Furthermore, the complex 

task of self-optimising discrete variables is likely to take 

precedence in future work. With this in mind, additional 

utilisation of techniques used heavily in computer science will 

prove an interesting area for the future development of self-

optimising chemical platforms. We envisage that the adoption 

of plug-and-play self-optimising platforms will enable smarter 

and more efficient laboratories to flourish in the future.  
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