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A multi-objective framework for long-term generation expansion planning with variable 
renewables 

 

Abstract 

The growing importance of operational flexibility in generation expansion planning with increased 
integration of variable renewables has been regularly highlighted in recent research. Yet, 
operational flexibility has been largely overlooked in order to reduce the prohibitive problem size 
that results when operational details at small timescales are included in this long-term exercise. In 
this work, we present a multi-objective optimization framework that effectively and tractably 
incorporates flexibility screening of candidate generation portfolios in long-term generation 
expansion planning. Operational flexibility is considered as a separate objective along with the 
traditional economic and environmental objectives. The ability of the proposed methodology to 
provide valuable insights into the correlations between flexibility, total costs and carbon emissions 
is demonstrated using a case study. The results clearly reveal that omission of flexibility from the 
framework gives rise to deficient generation mixes that are unable to match the more frequent and 
steeper variations in net load. A high-level evaluation of the flexibility needed in generation 
portfolios to balance net loads with different degrees of variability is also provided. Finally, a 
procedure is proposed to support the decision-making process for selecting the most appropriate 
investment plan among the many solution options provided by the multi-objective optimization 
framework. 

 

Keywords — flexibility objective, generation expansion, evolutionary algorithm, unit 
commitment, decision-making, Pareto-optimal investment plans. 

NOMENCLATURE 

Acronyms 

AHP  Analytical Hierarchy Process 

CCGT  Combined Cycle Gas Turbine 

CCS  Carbon Capture and Storage 

CFM  Composite Flexibility Metric 

DM  Decision-Maker 

EENS  Expected Energy Not Served 

FOR  Forced Outage Rate 
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GEP  Generation Expansion Planning 

IEA  International Energy Agency 

LOLP  Loss of Load Probability 

MDT  Minimum Down Time 

MOO  Multi-Objective Optimization 

MUT  Minimum Up Time 

NSGA-II  Non-dominated Sorting Genetic Algorithm Version II 

OCGT  Open Cycle Gas Turbine 

O&M  Operation and Maintenance 

OR  Operating Range 

Pmin  Minimum Stable Generation Level 

PV  Photovoltaic 

RDR  Ramp-Down Rate 

RE  Renewable Energy 

RTS-96  Reliability Test System 1996 

RUR  Ramp-Up Rate 

SDT  Shut Down Time 

SPC  Supercritical Pulverized Coal 

SUT  Start Up Time 

UC  Unit Commitment 

VRE  Variable Renewable Energy 

Sets and Indices: 

t, T  set of periods within the planning horizon. 

g, G  set of existing generation technology types. 

n, N  set of candidate generation technology types.   

k, K  set of generation technology types (K=G+N). 
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i, I  set of intermittent RE technology types (I ؿ N).  

z, Z  set of flexibility indicators of a generator unit.    

Parameters: 

r  Yearly discount rate. 

  Yearly discount factor = 1/(1+r). 

y  Number of consecutive years constituting a period. ܷ௡ǡ௠௔௫௧   Maximum number of units of n allowed in t. 

௚ܷ௧  Number of units of g available at start of t. 

Capg   Capacity of unit of g (MW). 

Capn  Capacity of unit of n (MW). 

In   Investment cost for n ($/MW). 

Fg   Annual fixed O&M cost for g ($/MW). 

Fn   Annual fixed O&M cost for n ($/MW). 

Vg   Variable O&M cost for g ($/MWh). 

Vn   Variable O&M cost for n ($/MWh). 

CEENS  Cost of lost load ($/MWh). 

įn   Salvage factor for unit of n. 

Emig   CO2 emissions generated by g (kgCO2e/MWh). 

Emin   CO2 emissions generated by n (kgCO2e/MWh). ݉݁ܦ௧  Peak demand during t (MW). ܴ௠௜௡௧    Minimum reserve margin during t (% of ݉݁ܦ௧). ܴ௠௔௫௧    Maximum reserve margin during t (% of ݉݁ܦ௧). ܸܴܧ௠௜௡௧   Minimum % generation from units of i during t. ܸܴܧ௠௔௫௧   Maximum % generation from units of i during t. 

xz  Value assigned to flexibility indicator z 

Wz  Weight of flexibility indicator z in CFM. 
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݉݅݊ሺݔ௭ሻ Minimum value of xz among units of k. ݉ܽݔሺݔ௭ሻ Maximum value of xz among units of k. 

Variables: ܷ௡௧   Num. of units of n added in time periods until t. ܷ௡்   Total num. units of n added in planning horizon. ܧ௚௧   Total energy served by units of g during t (MWh). ܧ௡௧    Total energy served by units of n during t (MWh). ܥ௜௡௩௧   Total investment cost during t ($). ܥைெி௧   Total fixed O&M cost during t ($/kW-yr). ܥைெ௏௧   Total variable O&M cost during t ($/MWh). ܥ௢௨௧௧   Total outage cost during t ($). ܥ௦௔௟௧   Total salvage value of units of n during t ($). ܶ݌ܽܥ௡௧   Total capacity of n added in time periods until t (MW). 

EENSt  Expected energy not served during t (MWh). ݔ௭ǡ௞  Value of flexibility indicator z for unit of k. ܫ௭Ǥ௞  Normalized value of ݔ௭ǡ௞. 

rxy  Pearson correlation coefficient between a pair of flexibility indicators x and y 

Flexk  CFM index of unit of k. 

Flexg  CFM index of unit of g. 

Flexn  CFM index of unit of n. 
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1. INTRODUCTION 

In recent years, new paradigms for generation expansion planning (GEP) have emerged that are 
mainly driven by commitments to decarbonize power systems. The increased integration of wind 
and solar energy in the electricity grid has compelled power system planners to focus their attention 
on the operational challenges associated with the uncertain output of these variable renewable 
energy (VRE) sources. With higher levels of VRE penetration, the magnitude and frequency of 
the fluctuations in net load intensify. The conventional generation fleet requires increased 
operational flexibility to quickly adjust its supply to match these variations [1]. Present-day GEP 
models with increased VRE integration must therefore ensure that the optimal generation 
portfolios are flexible enough to satisfy the renewable energy targets set during the various stages 
of the planning horizon [2]. Overlooking flexibility in such planning models will inevitably result 
in sub-optimal or infeasible capacity addition [3]. While the critical importance of flexibility in 
capacity planning with renewables has been widely acknowledged, very few attempts have been 
made to integrate it in the planning process [4]. The main issue is that traditional GEP for vertically 
integrated power systems is already a complex problem. It involves multi-period, non-linear, 
mixed-integer, dynamic and stochastic optimization in a highly constrained and uncertain 
environment [5]. Capturing flexibility would entail considering operational details at a sub-hourly 
timescale, generally through the unit commitment (UC) problem, within a GEP exercise that 
usually spans over decades [6]. UC formulations merge many binary and real-valued decisions 
regarding the commitment and dispatch levels of generating units respectively. Moreover, many 
complex time-related constraints are associated with each generating unit [7]. As a result, 
combined GEP-Flexibility models present considerable complexity and computational tractability 
challenges [8].  

An initial approach to the GEP-Flexibility problem applied a two-stage technique [9],[10]. In the 
first stage, future generation portfolios are obtained using conventional generation planning 
models. In the second stage, the operational dynamics of a sample of generation mixes selected 
from the outcome of the first stage are examined in detail [9]. This technique usually employs 
common energy planning models such as TIMES for the long-term generation planning and 
EnergyPLAN for the short-term operational model [10]. The main issue with this approach is that 
ignoring operational details in the generation planning model during the first stage will likely result 
in generation mixes that are operationally or economically infeasible [11]. In addition, the two 
stages use different sets of input parameters that could lead to hidden input data inconsistency [11].  

A second approach extended the traditional screening curves technique to develop heuristic-based 
models [12],[13]. The latter represent the cycling operation of thermal units in capacity planning 
with VRE. Basically, these models first apply a UC model that considers some operational 
constraints to determine how generating units will be dispatched. The implications of the dispatch 
order on the total costs are then computed and the screening curve is adjusted accordingly. 
Although this method provides solutions within a reasonable time, it does not ensure their global 
optimality and omits many operational constraints of thermal generators. Furthermore, it does not 
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model the discrete generator sizes, leading to a very optimistic UC schedule for all generating 
technologies [14].  

Several GEP models have curtailed the computational burden of integrating short-term operational 
dynamics by applying variants of the UC formulation. One common technique involves the 
judicious selection of representative days or weeks to simulate UC during the planning horizon. 
Usually, one week of chronological load and wind data is used to represent each season in a 
planning horizon of one year [15]. The planning horizon can be extended beyond one year while 
maintaining the computational efficiency by selecting one representative day of each month over 
a number of years [16]. A limitation of this technique relates to the difficulty in selecting 
representative periods that can accurately model highly stochastic VRE resource patterns over 
much longer time periods [17]. Moreover, some operational constraints are typically simplified to 
reduce the computational complexity.  

During the last few years, a new modeling methodology has scaled down the dimension of the UC 
problem by aggregating groups of generating units with similar characteristics into clusters [5]. 
Consequently, a reduced set of integer variables per cluster replaces a much larger set of binary 
commitment variables for each individual unit [18]. Likewise, the clustered formulation deals with 
significantly fewer constraints that are imposed on clusters of generators rather than on individual 
generators [19]. The problem size can be further reduced by ignoring a few UC constraints for 
each cluster. This approach has been successful in reducing run times considerably while 
upholding reasonable accuracy in the results [20]. However, when applying the clustered UC 
formulation in the long-term planning exercise, a series of approximations are often required to 
keep computation time within limits. For example, most clustered approaches use representative 
weeks of demand and VRE outputs. Furthermore, while it is expected that errors are introduced 
into such formulations for clusters of heterogeneous generating units, it has been demonstrated 
that even clusters of identical units can lead to errors under certain power system operating 
conditions [21].  

In this work, we present a novel multi-objective optimization framework that effectively and 
tractably incorporates flexibility screening of candidate generation portfolios in long-term 
generation expansion planning. The key contributions of this work are: 

(i) One common feature of the foregoing GEP-Flexibility models is that they all minimize a 
single cost objective subject to several constraints. This cost function aggregates all cost 
components associated with capacity investment. They include fixed operation and 
maintenance costs, UC costs as well as miscellaneous costs such as penalties for CO2 
emissions, load shedding and VRE curtailment. Yet, many components of this cost 
objective are conflicting in nature. Besides, GEP and UC are non-commensurable 
processes and the intricacies of the UC problem cannot be readily converted to monetary 
terms In this paper, a multi-objective optimization (MOO) approach is used to provide an 
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appropriate way to deal with these conflicting, non-commensurable and non-monetary 
outcomes [22].  
 

(ii)  The proposed framework meets the needs and expectations of contemporary GEP. It 
searches for minimal cost investment plans while also considering capacity adequacy, 
compliance with environmental obligations and flexibility preparedness to match increased 
net load variability. The latter is implemented by the explicit inclusion of flexibility as an 
objective in a multi-objective formulation. This represents the first attempt to consider 
flexibility as a separate objective in GEP. The decision is justified by the well-documented 
prominence of flexibility in present-day power system planning, as detailed in Section 3.2. 
 

(iii)  Existing combined models tend to examine limited planning horizons to prevent 
exceedingly long run times. Attempting to simulate a typical long-term GEP problem with 
these models will be computationally prohibitive. The proposed model is not only 
developed for long planning horizons but also allows the latter to be broken down into 
stages. This enables modification of parameters for each stage to reflect changes in the 
energy market.  
 

(iv) It has been largely reported that large-scale integration of VRE sources calls for higher 
amounts of flexibility in the generation portfolio in order to maintain reliability of supply. 
The current work contributes to the growing body of knowledge on this topic. The 
economic and environmental impacts of embedding flexibility in the GEP exercise can be 
visualized within the proposed framework. More importantly, the results provide clear 
evidence that ignoring flexibility in GEP leads to generation mixes that are infeasible 
during operations.  
 

The rest of the paper is structured as follows. Section 2 describes the MOO algorithm used. Section 
3 details the objectives and constraints of the MOO formulation, with particular emphasis on the 
flexibility objective function that is central to this study. Section 4 presents the results for a test 
system and discusses the impact of flexibility on investment and operational costs. It also 
elaborates on the decision-making process. Section 5 demonstrates the effectiveness of the 
methodology to appropriately represent the operational behavior of the power system in the 
proposed framework using a UC model. Section 6 provides a summary and concluding remarks. 

 

2. MULTI-OBJECTIVE OPTIMIZATION ALGORITHM 

Early GEP models aimed at finding the most economical generation plan that could provide an 
adequate supply of electricity. As power systems evolved, GEP models needed to consider a wide 
range of aspects besides the traditional least-cost objective. In particular, environmental, technical, 
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operational, regulatory and social considerations became important [3]. An initial approach for 
handling these additional potential objectives consisted of expressing them as constraints imposed 
on the GEP model. For example, environmental impacts were often tackled by setting tolerance 
thresholds for the maximum acceptable emission rates during the planning horizon. Alternatively, 
other objectives were converted into cost or penalty functions that were subsequently incorporated 
into the least-cost objective function. While models considering additional objectives, either as 
constraints or from a financial perspective, are simple, they provide a single solution as a result of 
the search process. This implies that trade-offs between different components of the cost objective 
must be established in advance of the solution, thereby limiting considerably the decision-making 
process [23]. No single solution can be claimed as being optimal in problems involving multiple 
conflicting objectives [24]. In addition, the ongoing low-carbon transition of the power sector has 
bolstered the importance of environmental and operational objectives in GEP. These conflicting 
and non-commensurate objectives must be optimized simultaneously. GEP models become more 
realistic when distinct evaluation criteria are explicitly considered as objective functions rather 
than performing an absolute economic analysis exercise [25],[26].  

The aim of the proposed MOO model is to yield optimal generation mixes that are resilient to the 
unexpected nature of future net loads in the grid while satisfying the traditional economic and 
environmental objectives. Problems involving multiple conflicting criteria do not have a unique 
optimal solution but a set of alternatives, known as Pareto-optimal or non-dominated solutions, 
which represent trade-offs among the various criteria [27]. Evolutionary algorithms are well suited 
for solving problems of this nature for several reasons [28]. Firstly, they have the inherent ability 
to search for multiple Pareto-optimal solutions concurrently in a single simulation run. Also, unlike 
exact optimization methods, evolutionary algorithms have robust and powerful search mechanisms 
that allow them to handle the large and complex search spaces commonly associated with real-
world optimization problems [28]. They further enable the decision-maker (DM) to refine and 
adjust preferences in the search for a compromise solution in a limited amount of time [29]. Among 
the many existing multi-objective evolutionary approaches, the Non-dominated Sorting Genetic 
Algorithm Version II (NSGA-II) has been successfully applied to several disciplines [30], 
including the traditional GEP problem [24]. It has been demonstrated that NSGA-II outperforms 
a number of contemporary MOO evolutionary algorithms in finding a diverse set of solutions for 
problems with a maximum of three objectives [27]. 

Since its inception in 2002, the NSGA-II has become pervasive in finding multiple Pareto-optimal 
solutions in MOO problems. Its widespread use is attributed to the application of three distinctive 
features, namely, an elitism strategy, an explicit diversity preserving mechanism, and a focus on 
non-dominated solutions [27]. The NSGA-II algorithm for one iteration is illustrated in Fig. 1. An 
offspring population Qj is generated from the parent population Pj, each of size S, using typical 
evolutionary operators. The two populations are subsequently merged together to form an 
intermediate population Rj of size 2S. The fitness of all individuals in Rj are evaluated and the 
solutions are then sorted on the basis of their non-dominance. In other words, all non-dominated 
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solutions are assigned rank 1 and grouped in Pareto Front 1. Those that are dominated only by 
rank 1 individuals are ascribed rank 2 and classified in Pareto Front 2, etc. The new population for 
the next iteration Pj+1 is constituted by considering individuals from the Pareto Fronts in increasing 
order, one at a time. Once the S places in Pj+1 are filled, the remaining fronts are discarded. If all 
individuals of the last front admitted cannot be accommodated in the new population as shown in 
Fig. 1, then selection is made based on the diversity of the solutions. For this purpose, an operator 
is used to determine the crowding distance du of each solution u in the last front. The crowding 
distance du estimates the density of solutions in the objective space around u. To maintain diversity 
in the population, individuals from the least crowded regions are chosen to fill up the remaining 
places in Pj+1. 

 

Fig. 1: Mechanisms involved in the NSGA-II algorithm (adapted from [27]). 

 

3. GEP-FLEXIBILITY FORMULATION  

Since long-term GEP is considered here, the planning horizon is broken down into T stages 
consisting of y consecutive years each. There are G existing generation technologies at the start of 
the planning horizon and N candidate generation technologies available for expansion purposes. 
The outcome of the optimization problem is provided through a decision variable vector 
representing the number of units of each type of candidate generation technology to be added to 
the power system in each stage of the planning horizon. In addition, the three objective functions 
are evaluated at the end of each stage.  

Fig. 2 illustrates the general flow chart of the MOO framework for long-term GEP with increased 
integration of VRE sources. The objectives and constraints of the formulation are described in this 
section.  
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Fig. 2: General flowchart of the proposed multi-objective optimization framework. 

 

3.1 Cost Objective Function 

The traditional cost objective ensures that electricity is supplied to customers at an affordable and 
reasonable cost. The total cost is calculated as the cumulative sum of the costs related to the 
investment in new generating units, fixed and variable operation and maintenance of existing and 
newly introduced units, and the unmet demand costs in each period less the salvage value 
associated with candidate units committed during each period. All future costs are discounted with 

a discount factor  to yield their net present value. 

Minimize cost objective O1: ܱଵ ൌ  σ ௜௡௩௧ܥ ൅ ைெி௧ܥ  ൅ ைெ௏௧ܥ ൅ ௢௨௧௧ܥ െ ௦௔௟௧௧்ୀଵܥ   (1) 

The various components of the cost objective for each period t are detailed below. 
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3.1.1 Investment Costs 

It is assumed that investments in candidate units of technology n are made at the start of any period 
t. However, additional generation capacity from these units is available only in future periods to 
account for inevitable construction lead times: ܥ௜௡௩௧ ൌ ሾ௬ሺ௧ିଵሻሿߙ σ ௡ܫ ௡ܷ௧ ௡ே௡ୀଵ݌ܽܥ   (2) 

It follows that the additional generation capacity available in the next period t+1 is given by: ܶ݌ܽܥ௡௧ାଵ ൌ σ ௡ܷ௧ ௡ே௡ୀଵ݌ܽܥ ݐ      ൌ ͳǡ ǥ ǡ ܶ െ ͳ  (3) 

3.1.2 Unmet Demand Cost 

Reliability is another primary objective of GEP as the power system must adequately meet the 
demand for electrical power. However, the number of objectives is restricted to three in this study 
in order to avoid degradation in effectiveness of conventional Pareto-based evolutionary 
algorithms when tackling many-objective optimization problems [31]. In this context, system 
reliability is implicitly maximized by minimizing the costs associated with the unmet demand in 
the overarching cost function. The Expected Energy Not Served (EENS) index is used to calculate 
the unmet demand costs. It is the most direct method to financially quantify the cost of outages 
when comparing potential investments that will meet power system adequacy targets [32]. It is 
evaluated using an analytical probabilistic approach based on the Loss of Load Probability (LOLP) 
[23]. The outage costs are computed mid-year. ܥ௢௨௧௧ ൌ σ ሾሺ௝ି଴Ǥହሻା௬ሺ௧ିଵሻሿ௬௝ୀଵߙ ாாேௌܥ ௧ܵܰܧܧ   (4) 

3.1.3 Operation and Maintenance (O&M) Costs 

O&M costs are divided into fixed and variable components and are both accounted for in the 
middle of each year. The former, ܥைெி௧ , is dependent on the plant capacity whereas the latter, ܥைெ௏௧ , 
is proportional to the annual generation volume and includes fuel costs.  

ைெி௧ܥ ൌ ൝ σ ሾሺ௝ି଴Ǥହሻା௬ሺ௧ିଵሻሿ௬௝ୀଵߙ σ ௚௚ீୀଵܨ ௚݌ܽܥ ௚ܷ௧  ǡ    ݐ ൌ ͳσ ሾሺ௝ି଴Ǥହሻା௬ሺ௧ିଵሻሿ௬௝ୀଵߙ ൣσ ௚௚ீୀଵܨ ௚݌ܽܥ ௚ܷ௧ ൅ σ ௡ே௡ୀଵܨ ݐ   ௡ܷ௡௧ିଵ൧ ǡ݌ܽܥ ൌ ʹǡ ǥ ǡ ܶ (5) 

 

ைெ௏௧ܥ ൌ ൝ σ ሾሺ௝ି଴Ǥହሻା௬ሺ௧ିଵሻሿ௬௝ୀଵߙ σ ௚ܸ௚ீୀଵ ௚௧ܧ  ǡ          ݐ ൌ ͳσ ሾሺ௝ି଴Ǥହሻା௬ሺ௧ିଵሻሿ௬௝ୀଵߙ ൣσ ௚ܸ௚ீୀଵ ௚௧ܧ   ൅ σ ௡ܸே௡ୀଵ ௡௧ܧ ൧ ǡ      ݐ ൌ ʹǡ ǥ ǡ ܶ  (6) 

௚௧ܧ  and ܧ௡௧  for each unit is determined by comparing the unserved energy with and without that 

specific unit.  
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3.1.4 Salvage Cost 

The salvage value is considered in the cost objective to represent the monetary value of added 
generating units at the end of the planning horizon. It is calculated at the end of the overall planning 
horizon using a salvage factor that is dependent on the operational life of the unit: ܥ௦௔௟௧ ൌ ሺሻሺ௬்ሻ σ ௡ܫ ௡ܷ௧ ௡ሾ௬ሺ்ି௧ାଵሻሿே௡ୀଵߜ௡݌ܽܥ   (7) 

 

3.2 Flexibility Objective Function  

The flexibility needs of power systems to enable efficient integration of VRE were recognized as 
early as 2005 [33]. Since then, a substantial body of work has highlighted the increasing 
significance of flexibility in future low-carbon power systems. In this context, a report analyzing 
the needs of European power systems in 2030 observed that many countries “will strive to draw 
32-34% of their electricity from wind and solar by 2030, making increased system flexibility 
crucial” [34]. In a recent report, the International Energy Agency (IEA) stressed that “power 
system flexibility has become a global priority” [35]. An IEA working group on high penetration 
of PV systems in electricity grids further pointed out that “flexibility resources are gaining more 
and more importance” [36]. There is general agreement that flexibility is becoming absolutely 
critical to ensure reliable operations in power systems with high VRE levels. As such, flexibility 
has become an important factor to take into account in the planning of future low-carbon power 
systems and its explicit inclusion as a separate objective is considered in this work.  

Defining flexibility as an objective in a MOO formulation poses a huge challenge for planners to 
evaluate its availability in candidate generation mixes. In particular, the computational complexity 
should not be too high because the flexibility evaluation process needs to be run many times. For 
example, 5000 evaluations will be required if 100 generations of populations consisting of 50 
candidate generation mixes each are selected for the NSGA-II. The low modeling effort 
prerequisite precludes flexibility assessment approaches based on highly complex operational 
models [37],[38]. Likewise, probabilistic metrics that use data-intensive methods to evaluate the 
duration, frequency or likelihood that the power system has insufficient ramping capability to cope 
with net load fluctuations cannot be considered [19],[39],[40].  

Less data-intensive metrics have also been developed to provide a representation of the flexibility 
characteristics inherent to the power system resources. In spite of their simplicity, they offer a 
good insight into the flexibility of generating units through their technical and operational 
constraints. Hence, these screening-level metrics are convenient for assessing the flexibility of 
generation mixes in the multi-objective GEP model. Ma et al. [15] proposed a promising “offline” 
flexibility index that estimates the individual contribution of generating units to the overall system 
flexibility based on ramp rates and operating range. Oree and Sayed Hassen [41] formulated a 
more comprehensive metric, termed the composite flexibility metric (CFM). It takes into account 
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the eight most cited technical flexibility characteristics of generating units as indicators: operating 
range (OR), minimum stable generation level (Pmin), ramp-up rate (RUR), ramp-down rate (RDR), 
start-up time (SUT), shut-down time (SDT), minimum-up time (MUT) and minimum-down time 
(MDT). The sequence of steps involved in the construction of the CFM is illustrated in Fig. 3. 
Using the min-max normalization method, all indicators are first converted to an identical range 
between 0 and 1 as follows: ܫ௭ǡ௞ ൌ  ௫೥ǡೖି௠௜௡ሺ௫೥ሻ௠௔௫ሺ௫೥ሻି௠௜௡ሺ௫೥ሻ   (8) 

where xz,k is the value of indicator z for generating unit k, Iz,k is its normalized equivalent, while 

min(xz) and max(xz) are the minimum and maximum values of indicator z across all generating 

units. An Analytic Hierarchy Process (AHP) is then applied to qualitatively assign weights that 

reflect the relative importance of indicators in determining flexibility availability in generator 

units. For this purpose, pairwise comparisons of indicators are performed to express the intensity 

of importance of one indicator with respect to another in influencing the flexibility of a generating 

unit. The Pearson correlation coefficient rxy between each pair of indicators x and y is also 

computed to determine whether any pair has a high degree of correlation as it may induce an 

element of double counting in the CFM: 

௫௬ݎ ൌ  σ ሺ௫೔ି ௫ҧሻሺ௬೔ି ௬തሻ೔ ሺ௣ିଵሻఙೣఙ೤    (9) 

where there are p values of indicators x and y, with their means being xժ  and yժ  and their standard 

deviations ıx and ıy respectively. Subsequently, all indicators are aggregated linearly to give a 

measure of the flexibility availability from individual generating units. The CFM index of each 

generating unit k is obtained by: ݔ݈݁ܨ௞ ൌ  σ ሺܫ௭ǡ௞ ൈ  ௭ܹሻ௭଼ୀଵ   (10) 

subject to σ ௭ܹ௭ ൌ ͳ and 0 ≤ Wz ≤ 1, where Wz is the weight assigned to indicator z. 
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Fig. 3: Methodology for constructing the Composite Flexibility Metric [41]. 

The overall flexibility available from all constituent generating units of a power system can thus 
be computed. Obviously, since the output of a VRE unit is non-dispatchable, its associated CFM 
index is 0. Besides considering a comprehensive range of technical and operational constraints, 
the CFM has two other distinctive features that make it well suited for the GEP-Flexibility 
problem. Firstly, it can be used to intuitively compare the flexibility availability in different 
candidate generation mixes [41]. Secondly, rather than assigning a constant flexibility index to a 
particular generating unit irrespective of the generation portfolio in which it participates, the CFM 
automatically adapts to the flexibility characteristics of other units. In other words, the same 
generating unit will have a lower CFM when present in a highly flexible generation mix than in 
one composed of less flexible units, as in actual power system operations [41].  

The CFM index of each Pareto-optimal expansion plan at the end of the planning horizon is 
determined by adding the CFM indices of all of its constituent generating units. 

Maximize flexibility objective O2: ܱଶ ൌ െൣ൫σ ௚௚ீୀଵݔ݈݁ܨ ܷ௚ଵ൯ ൅ ሺσ ௡ே௡ୀଵݔ݈݁ܨ ௡்ܷ  ሻ൧   (11) 

where ܷ ௡் ൌ ሺσ ௡ܷ௧௧்ୀଶ ሻ. The negative sign in Eq. (11) indicates that this objective is maximized as 
opposed to the other two objectives that are minimized in the framework. 

 

3.3 CO2 emissions Objective Function 

In order to highlight the growing importance of environmental considerations in GEP and in line 
with the commitments taken by many countries during successive United Nations Climate Change 
conferences, minimization of CO2 emissions is considered as the third objective. Evaluation of this 
objective is based on the emission rates for generating units of different technologies. 

Minimize CO2 emissions objective O3: 
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ܱଷ ൌ  σ σ ௚௧௚ீୀଵ௧்ୀଵܧ ௚݅݉ܧ ൅  σ σ ௡௧ே௡ୀଵ௧்ୀଶܧ  ௡   (12)݅݉ܧ

 

3.4 Constraints 

Classical GEP formulations consider some capacity, reliability and operational constraints on the 
power system. The proposed GEP-Flexibility model is subject to the following constraints: 

3.4.1 Reserve margin 

This constraint requires that the total capacity available in the power system during any period t 
should be sufficient to meet the demand plus a prescribed amount of reserves. ሺͳ ൅ ܴ௠௜௡௧ ሻǤ ௧݉݁ܦ ൑ σ ௡௧௧௝ୀଶ݌ܽܥܶ ൅ σ ௚݌ܽܥ ௚ܷ௧௚ீୀଵ ൑ ሺͳ ൅ ܴ௠௔௫௧ ሻǤ  ௧  (13)݉݁ܦ

3.4.2 Upper and lower bounds for VRE integration 

This constraint not only ensures minimum generation from VRE technologies based on targets set 
by policy-makers but also enforces upper limits that will preserve the stability of the power system. ܸܴܧ௠௜௡௧ ൑ σ σ ௜݌ܽܥ ௜ܷ௧ூ௜ୀଵ௧௝ୀଶ ൫σ ௡௧௧௝ୀଶ݌ܽܥܶ ൅ σ ௚݌ܽܥ ௚ܷ௧௚ீୀଵ ൯ൗ ൑ ௠௔௫௧ܧܴܸ      (14) 

3.4.3 Upper bound on candidate technology capacity 

In order to ensure diversity in the generation expansion mixes, a constraint is imposed to limit the 
added capacity of each candidate technology type in each period.  Ͳ ൑  ௡ܷ௧  ൑  ௡ܷǡ௠௔௫௧  (15) 

 

4. RESULTS AND DISCUSSION 

The proposed MOO GEP-Flexibility model was implemented on a personal computer with a 3.2 
GHz quad-core CPU and 16 GB of RAM in MATLAB version 9.2. Its performance was evaluated 
on the IEEE Reliability Test System (RTS-96) without hydro units. Three different formulations 
were applied to explore correlations between the flexibility, economic and environmental 
objectives by analyzing trade-offs among the Pareto-optimal generation mixes: 
 
(i) GEP-CFE incorporates all three objectives,  
(ii) GEP-CF considers the flexibility and cost objectives, and 
(iii) GEP-CE is the traditional multi-objective GEP model that takes into account the cost and 

CO2 emissions objectives. 
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4.1 Test System 

The IEEE RTS-96 consists of 26 generating units of 8 different generation technologies with a 
combined generating capacity of 3105 MW [42]. This test system was chosen because it is well 
documented and all eight flexibility characteristics of its constituent units used in the CFM 
computation have been provided in the literature. The important parameters of the generating units 
are summarized in Table 1. Flexibility characteristics are taken from [42]. Fixed and variable O&M 
costs of the IEEE RTS-96 have been updated to present day values in this study [43]. The CFM 
indices presented in Table 1 are those of each generator unit within the IEEE RTS-96 system [41]. 
Due to the adaptive nature of the CFM highlighted in Section 3.2, the CFM indices will change as 
new generating units are added to the system during the GEP exercise. 

Table 1: Parameters of generating units of IEEE RTS-96 [40],[41],[42].  

Unit Type No. of 
Units 

Size (MW) FOR (%) O&Mvar 
($/MWh) 

O&MFix 
($/kW-yr) 

Emi (KgCO2e 
/MWh) 

Initial CFM 
index 

Oil/Steam 5 12 2 42.74 13.17 320.87 0.589 

Oil/CT 4 20 10 71.92 7.04 302.00 0.643 

Coal/Steam 4 76 2 14.93 51.4 396.37 0.559 

Oil/Steam 3 100 4 42.74 13.17 320.87 0.537 

Coal/Steam 4 155 4 14.93 51.4 396.37 0.425 

Oil/Steam 3 197 5 42.74 13.17 320.87 0.481 

Coal/3Steam 1 350 8 14.93 51.4 396.37 0.424 

Nuclear 2 400 12 4.60 93.3 0.00 0.498 

 

4.2 Model Parameters 

The performance of the proposed model is demonstrated by considering a 12-year planning 
horizon, divided into 4 stages of 3 years each. A load profile similar to that of IEEE RTS-96 is 
used, with a peak load of 3000 MW at the start of the planning period. It is assumed that the peak 
load increases at a yearly rate of 7.5%. Future costs are discounted to yield net present values using 
an annual interest rate of 8.5%.  

Five candidate technologies are considered as expansion options for the GEP: supercritical 
pulverized coal (SPC), open cycle gas turbine (OCGT), combined cycle gas turbine (CCGT), wind 
and solar photovoltaic (PV). They represent a good mix of VRE, flexible and more efficient 
conventional technologies to support both growing load and increasing integration of VRE during 
the planning horizon. None of the existing technologies are considered as candidates for expansion. 
Technical and economic parameters of all candidate generating units are given in Table 2 and the 
flexibility characteristics of the thermal units are provided in Table 3 [44],[45]. 
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VRE integration targets are assumed to grow progressively from stage 2 to 4 as follows: 5-10%, 
10-15% and 15-25%. Accordingly, the planning reserve margin increases gradually to ensure 
system reliability as more VRE resources, typified by low capacity values, are added to the system. 
Thus, the lower limits for reserve margin are taken as 120%, 130% and 140% of their respective 
peak demands for stages 2, 3 and 4 respectively while the upper limit is constrained at 150%. 
Unserved energy is penalized at a rate of $5/kWh. The maximum number of units that can be 
added during each stage is limited to 5 for the VRE technologies and 3 for the other technologies.  

A salient feature of NSGA-II is that, unlike many contemporary evolutionary MOO algorithms, it 
does not require any additional parameters beyond standard parameters such as population size, 
number of generations, crossover probability and mutation probability [46]. Its outcome is 
therefore less sensitive to user-defined parameter values. 20 independent test runs were conducted 
with different combinations of parameters to determine the most appropriate combination. 
Subsequently, the NSGA-II was run for 100 generations of population size 50 along with a 
simulated binary crossover probability of 0.833 and a polynomial mutation probability of 0.067. 
Recognizing the stochastic nature of the NSGA-II algorithm, multiple runs of the simulation for 
the GEP-CFE, GEP-CF and GEP-CE formulations were carried out and the results presented in 
this section represent the typical non-dominated solutions for one run. 

 

Table 2: Parameters of candidate generating units 

Unit Type Size 
(MW) 

FOR 
(%) 

O&Mvar 
($/MWh) 

O&MFix 
($/kW-yr) 

Inv. costs 
($/kW) 

Emi 
(KgCO2e/ 

MWh) 

Life 
(yrs) 

SPC 250 9.7 3.1 38.85 2215 743 50 

CCGT 130 8 5.4 7.69 840 349 40 

OCGT 176 7.5 7.7 3.08 558 515 30 

Wind 100 7.3 10 34.62 1962 0 20 

Solar PV 100 5.9 0 19.23 1808 0 25 

 

Table 3: Flexibility characteristics of candidate units 

Unit Type Pmin (%) OR 
(MW) 

RUR 
(MW/hr

) 

RDR 
(MW/hr

) 

SUT 
(hr) 

SDT 
(hr) 

MUT 
(hr) 

MDT 
(hr) 

SPC 0.4 250 180 180 3 2 6 4 

CCGT 0 130 130 130 1 1 4 2 

OCGT 0 176 176 176 0 0 0.5 0.5 
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4.3 Optimal expansion plans 

A broad overview of the differences in optimal expansion plans obtained from the three 
formulations is first discussed. Table 4 summarizes the ranges of the objective function values for 
the non-dominated solutions output by each model. There are widespread differences between the 
ranges depending on the objective functions involved. Applying the additional flexibility objective 
to the traditional GEP-CE model expands the total cost range while scaling the CO2 emissions 
range marginally. On the other hand, replacing the CO2 emissions objective in GEP-CE by 
flexibility considerably reduces both limits of the total cost range, suggesting that integrating 
flexibility in GEP can significantly alter optimal generation portfolios and lower total costs.  

The tractability of the proposed approach is evidenced by the relatively short solution times of 
3595, 3761 and 3841s for GEP-CE, GEP-CF and GEP-CFE respectively compared to those of 
combined GEP-UC formulations covered in Section 1, which often take several days. 

 

Table 4: Range of Objective Function values for Pareto-optimal solutions for the three models 

 GEP-CFE GEP-CE GEP-CF 

Total Cost (109 x $) 9.63-15.12 10.35-14.59 9.60-11.91 

CO2 emissions (1010x kgCO2e) 1.60-2.45 1.57-2.41  

Flexibility (CFM) 20.16-27.60  25.29-27.77 

 

4.4 Decision-making 

There is no single optimal solution to a multi-objective optimization problem when at least one of 
the objectives is in conflict with another of the objectives, as is the case here. Instead, a family of 
solutions is sought. This Pareto-optimal set of solutions is one in which each solution is considered 
as equally good mathematically. Improving one such solution in any one objective inevitably 
results in degrading at least one of the remaining two objectives. If a DM is not involved to 
articulate additional preference information, it is difficult to choose a particular compromise 
solution as none of the Pareto-optimal solutions can be said to be inferior to the others. 
Determining the most preferred solution requires DMs to have a good knowledge of the problem 
at hand. Moreover, they must have a good understanding of the correlations among the objectives 
and decision variables. With all this information in mind, they will be in a position to elicit 
preferences with respect to the importance that they assign to the objectives. At the same time, 
they can gather valuable insights from the interdependencies among the objectives revealed by the 
proposed framework to refine their choice. Thus, using these insights and their domain-specific 
knowledge, they are able to determine which solution offers the best compromise with respect to 
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the competing objectives. 

The GEP-CFE formulation is used as an example to illustrate how DMs could proceed to select 
the most appropriate investment plan from the set of non-dominated solutions. Table 5 presents 
four solutions selected from the GEP-CFE Pareto-optimal solution set. Solutions 1, 2 and 3 
represent investment plans that have the best values for the objective functions total cost, CO2 
emissions and flexibility, respectively. It implies that solution 1, with a total cost of 9.63 (x 109$), 
is an appropriate solution if cost is a critical concern for DMs. Similarly, solution 2 is suitable if 
the country has set very stringent emission targets over the planning horizon, although its cost is 
significantly higher than that of solution 1. The underlying principle of Pareto-optimality is also 
clearly evidenced by these three solutions. Thus, any investment plan cannot be improved in one 
objective without making it worse in at least one of the two remaining objectives. A comparison 
of solutions 1 and 2 shows that curtailing the CO2 emissions drastically from 2.45 to 1.60 (x 1010 
kgCO2e) results in a substantial rise in the total cost from 9.63 to 14.60 (x 109$), while 
simultaneously lowering the flexibility index of the generation portfolio considerably from 25.29 
to 22.52. A similar cause-effect pattern is noted when solutions 2 and 3 are contrasted. A large 
improvement in the CFM from 22.52 to 27.60 leads to a deterioration in the CO2 emissions from 
1.60 to 1.95 (x 1010 kgCO2e) and a small benefit in total cost from 14.60 to 13.63 (x 109$). 

Therefore, choosing one of these three solutions ensures that the DMs get the best out of one 
objective at the expense of at least one of the remaining objectives. As illustrated in this case, when 
the other objectives are conflicting with the favored one, the former are adversely affected to a 
large extent. Hence, DMs must analyze trade-offs among the objectives to assist them in the 
selection of a compromise solution. Typically, the DMs will be aware of the emission reduction 
commitments along with the RE integration targets set by the policy-makers over the GEP horizon. 
In addition, they will be well informed about the financial resources and priorities of the utility 
over the planning period. Using this knowledge, DMs can differentiate among the solutions and 
choose the one that has the best potential to fulfill the emission and RE obligations while staying 
within a reasonable budgetary envelope. For example, if DMs are looking for a solution whose 
emission and flexibility values are closer to the best values among all solutions but with 
intermediate cost, solution 4 represents a suitable solution. It is a good compromise solution whose 
cost lies nearly midway between the limits of the total cost range (12.82 within a range of 9.63-
15.12) while its CO2 emissions are closer to the lower boundary of its overall solution range (1.90 
within a range of 1.60-2.45) and its flexibility index lies in the superior segment of its overall 
solution range (25.06 within a range of 20.16-27.60). For solution 4, of course, an informed 
domain-expert DM will be best placed to make this choice.  
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Table 5: Objective function values of four solutions selected from the GEP-CFE Pareto-optimal 
set 

Solution no. Total Cost         
(109 x $) 

CO2 Emissions 
(1010 x kgCO2e) 

Flexibility  
(CFM) 

1 9.63 2.45 25.29 

2 14.60 1.60 22.52 

3 13.63 1.95 27.60 

4 12.82 1.90 25.06 

 

4.5 Correlations among the objectives of GEP-CFE 

Viewing and understanding interdependencies between two objectives can be readily done using 
scatter plots. However, extracting meaningful information from scatter plot representations with 3 
or more objectives is extremely difficult, let alone reading the objective function values of the 
solutions. Parallel coordinates plots provide a more convenient way of visualizing and analyzing 
the solutions of such problems [47]. Rather than placing the objective axes orthogonally to each 
other as done in scatter plots, the parallel coordinates plot inserts them parallel to each other, 
mostly vertically and equidistant. Each solution in the non-dominated population set is then 
represented by joining its objective function values on each pair of axes by a line.  

Fig. 4 shows the parallel coordinates plot of the non-dominated solutions for the GEP-CFE 
formulation. Each pair of connected lines denotes one solution. For example, the two pairs of 
connected blue lines represent the two investment plans with highest flexibility index of 27.60. 
Connected line pairs in green represent the remaining non-dominated solutions. A careful 
interpretation of the pattern of lines between two adjacent objective axes can reveal important 
information about any correlation between them. It may be necessary to re-order the axes in order 
to identify interdependencies between non-adjacent axes, such as the total cost and CO2 emission 
axes in Fig. 4. Accordingly, Fig. 5 displays the same solution set but with the total cost and CO2 
emissions objective axes adjacent to each other. One easily identifiable characteristic from the 
parallel coordinates plot is the degree of conflict between two objectives. This is indicated by the 
number of intersecting lines between their axes. A large number of crossing lines points to heavy 
conflict. This is the case for the total cost and CO2 emissions objectives in Fig. 5, implying that 
they are negatively correlated. Moreover, the lines intersect within a narrow band in the space 
between the two axes. This behavior suggests that the inverse relationship is consistent, even if it 
is not exactly linear. Therefore, higher investments are mostly associated with lower CO2 
emissions for this particular case study.  

There are also several intersecting lines between the total cost and flexibility objectives in Fig. 4, 
although the number is lower than in the previous case. While this is not always the case, higher 
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costs also generally translate into lower flexibility in the generation expansion portfolios for the 
IEEE RTS-96 system. Since the points of intersection occur along most of the flexibility axis 
length, the magnitude of this general negative correlation is variable. In contrast, the line crossing 
pattern is more erratic between the flexibility and CO2 emission objectives. For this reason, no 
definite correlation between these two objectives can be inferred from parallel coordinates plots. 

The four non-dominated GEP-CFE solutions that were presented in Table 5 are highlighted in Fig. 
5. The parallel coordinates plot makes it easy for the DM to distinguish solutions with the best 
values in each objective function. Thus, solutions 1 and 2 that minimize total cost and CO2 
emissions respectively intersect the corresponding axes at the lowest point, that is 9.63 x 109$ for 
total cost and 1.60 x 1010 kgCO2e for CO2 emissions. On the other hand, the flexibility axis is 
crossed at its highest point of 27.60 by solution 3 as it maximizes this objective. The parallel 
coordinates plot also simplifies trade-off analysis by enabling a quick assessment of the extent to 
which the other objectives are affected by favoring one objective in a particular solution. Solution 
4, for example, illustrates an investment plan whose CO2 emissions and flexibility are closer to the 
best values while its total cost is intermediate as explained in Section 4.4.  

 

Fig. 4: Parallel coordinates plot of the GEP-CFE non-dominated solution set for objective order: 
Total Cost, Flexibility, CO2 Emissions. 
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Fig. 5: Parallel coordinates plot of the GEP-CFE non-dominated solution set for objective order: 
Total Cost, CO2 emissions, Flexibility. 

 

4.6 Impact of flexibility  

To gain more insight into the impact of modeling flexibility explicitly as an objective on total cost 
and CO2 emissions, a detailed analysis of the Pareto-optimal expansion plans is performed. The 
statistics of the constituent candidate generating units of all non-dominated generation mixes 
resulting from the three formulations are synthesized in the box-plot of Fig. 6. Some distinctive 
trends can be observed in the Pareto-optimal expansion plans, leading to some general 
observations for this specific IEEE RTS-96 case study. Notably, when generator operational 
constraints are omitted from the framework in the GEP-CE formulation, the optimal investment 
plans contain significantly more inflexible SPC units. Thus, GEP-CE solutions contained between 
2 to 6 SPC units compared to 0 to 3 for GEP-CF. The smaller number of more expensive SPC 
units justifies the much lower total costs of GEP-CF plans as opposed to GEP-CE plans noted in 
Table 4. The scarcity of SPC units in the GEP-CF solutions is offset by higher numbers of cheaper 
and more flexible CCGT and OCGT units compared to GEP-CE, leading to improved CFM 
indices. There is an average of nine units of both CCGT and OCGT for GEP-CF as opposed to 4.1 
and 6.3 respectively for GEP-CE.  
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Fig. 6: Distribution of candidate units in Pareto-optimal generation mixes for the three 
formulations. 

GEP-CE plans have higher variability in the number of each type of candidate unit in comparison 
with those of GEP-CFE. In contrast, GEP-CF generation mixes are characterized by the smallest 
spread in number of units, justifying its limited range of objective values observed in Table 4. The 
limited spread is explained by the fact that since the CFM of the two VRE technologies is 0, the 
diversity of GEP-CF solutions that maximize flexibility at least cost with the remaining three 
candidate technologies is restricted.  

To better understand the effects of ignoring flexibility in GEP, the CFM of GEP-CE Pareto-optimal 
expansion plans are computed post-optimization. It is found that the flexibility indices of the GEP-
CE solutions lie in the range of 18.68 to 24.06. Thus, the expansion mixes of GEP-CE and GEP-
CF are mutually exclusive since the least flexible GEP-CF solution has a CFM index of 25.29, as 
indicated in Table 4. It follows that none of the expansion portfolios output by the GEP-CE would 
be considered optimal if the environmental objective was replaced by the flexibility objective.  

 

5. VALIDATION OF GEP-FLEXIBILITY FRAMEWORK 

The proposed GEP-Flexibility framework relies heavily on the CFM to provide a meaningful 
indication of the ability of the generation portfolio to respond to net demand variability. However, 
there is no evidence so far that a generation portfolio with a CFM index of 27, for example, is 
actually more robust to net load variations than one with a CFM value of 24. In addition, it has not 
yet been demonstrated that more severe net load uncertainty will call for generation fleets with 
higher CFM indices to ensure feasible operations. In order to validate the proposed MOO GEP-
Flexibility framework and demonstrate the effectiveness of the CFM in this process, the 
operational feasibility of optimal expansion plans is tested by applying a UC formulation that 
captures the full range of generator technical constraints.  
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5.1 Unit Commitment model 

The UC model minimizes the total operational costs, comprising of variable costs, start-up costs, 
shut-down costs and no-load costs, while accounting for all eight operational constraints of 
conventional generators. This model is applied to the IEEE RTS-96 system for a scheduling period 
of 24 hours, where each hour is divided into four 15-minute sub-periods to capture realistic sub-
hourly operational dynamics. It is assumed that changes in the commitment status of units as well 
as initiation of start-up and shut-down procedures occur only at the start of sub-periods. Moreover, 
the power generation level of an online unit is assumed to be constant during a sub-period. The 
15-minute demand data is obtained from the power system used in a UC study by Pozo et al. [48] 
and scaled according to the projected IEEE RTS-96 system demand in the final year of the planning 
horizon. VRE generation data is also taken from the same study [48] and adjusted so that the 
renewable integration rate lies in the 15-25% range assumed for the final phase of the planning 
horizon. Three scenarios are considered to test the resilience of generation portfolios to different 
net load variability conditions: (a) “normal” net load where mean value of VRE generation data is 
considered, (b) “high” variability net load where renewable output and demand are changing 
simultaneously in opposite directions, and (c) “moderate” variability net load whose variability is 
intermediate between the first two scenarios. Fig. 7 shows the total system demand as well as the 
net loads for the three scenarios. VRE curtailment is not modeled to sustain the UC process, as the 
aim of the validation exercise is to verify the ability of generation portfolios to maintain operations 
throughout the scheduling horizon. 

 

Fig. 7: System demand and net load for the three variability scenarios 

 



26 

 

5.2 Unit Commitment Results 

The sub-hourly UC model is applied to selected optimal investment plans output by each of the 
three formulations. Generation portfolios subjected to UC are chosen such that their CFM values 
(for CEP-CF and GEP-CFE) and total cost values (for GEP-CE) are evenly spaced over their whole 
range of values given in Table 4. In this way, the selected plans provide a consistent representation 
of the entire solution space. Table 6 presents the outcome when GEP-CE, GEP-CF and GEP-CFE 
portfolios are tested with the three net load profiles. The feasibility of the UC exercise is indicated 
either by “Yes” if successful or by the time at which the generation mix first fails to follow the net 
load. In the former case, the operational cost for the 24-hour UC exercise is also provided. For 
example, consider the first two GEP-CF generation mixes in Table 6 when they are subjected to 
the moderate-variability net load profile (cells shaded in grey). It is observed that the plan with 
CFM index of 25.29 is unable to complete the UC exercise as it encounters a flexibility deficit at 
22.15 h. On the other hand, the investment plan with CFM index of 26.02 can be successfully 
scheduled to match the net load. The total operational cost for this plan to meet the moderate-
variability net load is 4,574,000 $ for the 24-hour period under consideration. 

The most prominent result is that when flexibility is ignored in the GEP process, the resulting 
optimal generation portfolios are unable to meet net load with moderate or high variability. Many 
GEP-CE investment plans even fail to match the normal-variability net load profile. The deficit of 
flexibility in the generation mixes is encountered between 20.00 and 22.30 h for the normal- and 
moderate-variability net loads. As illustrated in Fig. 7, a steep ramp-up is experienced at a net load 
level higher than 5000 MW during this time interval. The UC details reveal that the most flexible 
units in the generation portfolios are already committed to meet the previous steep ramp-up which 
occurred between 07.00 and 10.00 h, leaving the system vulnerable to subsequent upward ramps. 
Moreover, when GEP-CE generations portfolios are subjected to the high-variability net load 
profile, it is observed that the UC process is aborted much earlier, between 07.30 and 09.30 h. This 
time interval corresponds to a sustained extreme ramp-up event present in this net load scenario. 
It can therefore be concluded that while the GEP-CE investment plans have adequate capacity, 
they lack sufficiently flexible units to manage the increased net load variability. This 
predisposition to flexibility deficiency was correctly indicated by the low CFM indices of the GEP-
CE investment plans. As expected, the only two feasible GEP-CE plans that successfully 
completed the UC exercise under the normal-variability net load scenario have CFM indices of 
24.06 and 23.12, that is, close to the upper limit of the flexibility range. 

In contrast, all selected GEP-CF optimal generation mixes can be successfully scheduled to match 
the normal-variability net load profile. This performance was anticipated as they all have CFM 
indices higher than the upper flexibility limit for GEP-CE solutions. All of them can also follow 
the moderate-variability net load with the exception of the least flexible expansion plan. It is also 
noted that all selected GEP-CF investment plans successfully pursue the UC exercise beyond the 
extreme ramp-up event encountered initially in the high-variability net load profile between 06.00 
to 10.00 h. However, those with CFM indices less than 27 are unable to go through the acute ramp-
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down event occurring around 22.00 h. The nearly vertically decreasing net load requires several 
already committed units with fast RDR to ramp down simultaneously. Such a condition is satisfied 
only in generation portfolios with very high CFM indices. Again, the CFM provides a good 
indication of the ability of the generation fleet to respond to net load fluctuations. Finally, the same 
trend in performance is observed for GEP-CFE generation plans with respect to their CFM indices. 

An analysis of the UC results for all three models enables the general inference that generation 
portfolios with CFM indices higher than 23, 26 and 27 can match the net load profiles with normal-
, moderate- and high-variability respectively for this particular power system. Naturally, more 
flexibility is required from the generation fleet to maintain security of supply as the variability of 
net load becomes more severe. These results substantiate the outcomes of previous studies which 
concluded that neglecting flexibility in GEP with large shares of VRE will result in expansion 
plans that are infeasible in operations [4],[15]. 

It is also obvious from Table 6 that operational costs generally tend to decrease as the flexibility 
of the expansion plan increases. For example, if the two GEP-CF expansion plans found at the 
extremities of the flexibility range are considered under normal-variability net load, a drop of 34% 
in operational costs is noted for a CFM index increase of about 2.5. In the case of the two boundary 
GEP-CFE solutions under the same net load variability scenario, operational costs decrease by 
about 33% as the CFM index rises by 4. This negative correlation occurs because fewer flexible 
generation mixes force more units than required to stay on in order to ensure that there is enough 
ramping capability available to cater for the enhanced net load variability. The standby online 
status of less flexible units affects the operational costs considerably due to the high start-up and 
no-load costs normally associated with them. In addition, other improved technical constraints also 
contribute towards lower operational costs. Thus, reduced minimum stable generation allows 
additional output at lower costs by already committed generating units, thereby supplanting 
costlier generation from other units. Similarly, shorter MUT/MDT times enable savings on fuel 
costs. The above results are entirely consistent with the conclusions of earlier research on this topic 
[49],[50],[51]. 

Finally, it is also observed that operational costs rise quickly for the same expansion plan as the 
degree of net load variability increases. For instance, the operational costs of the UC process for 
the same GEP-CFE solution with CFM index of 27.60 increases by 19.3% and 41.6% if the net 
load variability scenario changes from normal to moderate and high respectively. Greater net load 
fluctuations imply more frequent generator cycling with recurrent start-ups and shut-downs, faster 
up and down ramps and frequent operations at minimum generation levels. It follows that the start-
up, shut-down and production costs are inflated. 

It must also be pointed out that in actual operations, “flexibility-aware” GEP-CFE generation 
mixes are better prepared to cope with a number of issues that may arise in flexibility-deficient 
GEP-CE solutions, including VRE output curtailment and load shedding. In the long term, 
avoiding these issues is expected to result in additional savings. Besides, higher flexibility in the 
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generation fleet facilitates the displacement of conventional generation by VRE production, 
resulting in less cycling and operation of thermal generating units. Therefore, planning for 
additional system flexibility at an early stage enables cost-effective integration of large VRE shares 
in the future. Finally, the decision to incorporate flexibility as a separate objective in the framework 
is validated by the UC results of the traditional GEP-CE formulation. They clearly illustrate that 
omission of flexibility has resulted in generation portfolios that are operationally infeasible as VRE 
integration in the grid increases. 

 

Table 6: Feasibility of operations for GEP-CE, GEP-CF and GEP-CFE generation portfolios 

Model CFM 
index 

Feasibility 
NL_Normal NL_Moderate NL_High 

GEP-
CE 

 

Tot Cost 
(109$) 

 Feas. 
(Yes/Time) 

Op. Cost 
(103$) 

Feas. 
(Yes/Time) 

Op. Cost 
(103$) 

Feas. 
(Yes/Time) 

Op. Cost 
(103$) 

10.40 24.06 Yes 3568 22.30  09.30  

10.79 23.17 Yes 3822 22.15  09.30  

11.43 22.57 21.15  21.45  09.15  

12.03 20.03 21.00  21.00  09.00  

12.53 21.35 20.45  20.30  08.30  

13.25 21.64 20.45  20.00  08.00  

13.96 20.74 20.30  20.15  07.30  

14.47 18.68 20.00  20.00 h  07.30  

GEP-CF 

 

25.29 Yes 3939 22.15  22.15  

26.02 Yes 3751 Yes 4574 22.30  

26.61 Yes 3248 Yes 4030 22.30  

27.19 Yes 2878 Yes 3537 Yes 4183 

27.77 Yes 2601 Yes 3118 Yes 3701 

GEP-CFE 

 

20.16 21.00  20.00  09.15  

21.64 21.15  20.30  09.15  

22.76 21.15  20.30  09.30  

23.59 Yes 3568 22.00  09.30  

24.08 Yes 3378 22.15  09.45  

25.28 Yes 3422 22.30  22.15  

26.25 Yes 2945 Yes 3697 22.30  

27.60 Yes 2408 Yes 2872 Yes 3409 
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6. CONCLUSIONS 

This paper presents a novel multi-objective framework for long-term GEP with high shares of 
VRE that incorporates flexibility screening of candidate investment plans. The framework relies 
on a composite metric to assess the flexibility available in generation portfolios, thus enabling 
flexibility to be considered as a fully-fledged objective. The application of the model on an 
illustrative planning case study has clearly demonstrated how including flexibility as an objective 
radically changes the composition of investment plans and their objective function values. More 
importantly, results show that omission of flexibility from the planning exercise gives rise to 
flexibility-deficient energy mixes that are unable to match the more frequent and steeper variations 
in net load. Analysis of the set of Pareto-optimal solutions generated by the framework for the 
different formulations showed some pertinent relationships between the objectives for this specific 
case study. 

It is important to remember that the framework carries out a high-level evaluation of the overall 
flexibility available from generation portfolios. The main strength of the framework lies in the low 
modeling effort it requires to shed light on a key aspect of power system planning. Evaluating a 
multi-dimensional concept like power system flexibility within a highly complex planning 
problem represents a significant challenge. It necessitates large historical databases of load, 
generation and weather data at small temporal resolution, together with accurate power system 
information and considerable computational power. These requirements soar as the assessment 
period becomes longer. This CFM-based framework is best suited to power systems for which 
these data are not available. It provides quick and intuitive information about the generation mixes 
that are most likely to abide with existing economic, reliability and environmental restrictions. 
DMs can subsequently decide which objectives they will favor when selecting the most appropriate 
generation mix. Hence, the proposed framework can contribute to cleaner generation, security of 
supply and cost-effective electricity for the overall benefit of society. 

Nevertheless, the simplicity of the proposed framework has been made possible at the expense 
some limitations. Understanding these limitations not only ensures that meaningful insights are 
obtained into the outcomes of the proposed framework but also helps in identifying opportunities 
for future research. In particular, the contribution to system flexibility from sources other than the 
generation fleet have been ignored since the main motivation is to optimize the flexibility available 
from the non-dominated generation plans. For example, energy storage, interconnections to 
neighboring power grids and flexible demand technologies such as demand-side management 
techniques and electric vehicle batteries, can relieve the burden of flexibility provision from the 
generation resources. They could be integrated in the proposed mathematical formulation either in 
the form of additional parameters or by adding their contribution in the flexibility objective. 
Furthermore, the proposed framework assumes an optimized transmission system as it omits 
transmission constraints. Including the latter in the framework can provide useful insights into the 
possible impacts that an imperfect transmission system can have on future investment plans and 
on the flexibility requirements of the power system. Finally, this work has studied the GEP 
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problem from the perspective of a vertically integrated power system and the proposed framework 
also holds for a perfectly competitive market. In a market-based environment, different bidding 
strategies will affect the market operation unevenly and change the economic value associated 
with flexible generation. Further research could investigate different approaches to the formulation 
of bids for both flexible and inflexible generation and their outcomes on the market. Eventually, 
such work could explore the conditions under which the market provides adequate incentives for 
rewarding the supply of flexible generation.  
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