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A multi-objective framework for long-term generation expansion planning with variable
renewables

Abstract

The growing importance of operational flexibility in genevatexpansion planning with increased
integration of variable renewables has been regularly higeliy in recent research. Yet,
operational flexibility has been largely overlooked in otdereduce the prohibitive problem size
that results when operational details at small timesea¢emcluded in this long-term exercise. In
this work, we present a multi-objective optimization framdwihat effectively and tractably
incorporates flexibility screening of candidate generatiortf@as in long-term generation
expansion planning. Operational flexibility is considered ag@arate objective along with the
traditional economic and environmental objectives. Thetglah the proposed methodology to
provide valuable insights into the correlations betwéeqbility, total costs and carbon emissions
is demonstrated using a case study. The results cleadglrthat omission of flexibility from the
framework gives rise to deficient generation mixes thauaable to match the more frequent and
steeper variations in net load. A high-level evaluatiorihef flexibility needed in generation
portfolios to balance net loads with different degreesaniability is also provided. Finally, a
procedure is proposed to support the decision-making proaessléating the most appropriate
investment plan among the many solution options providedhdyrulti-objective optimization
framework.

Keywords — flexibility objective, generation expansion, evolutionagfgorithm, unit
commitment, decision-making, Pareto-optimal investmean 9l

NOMENCLATURE
Acronyms
AHP Analytical Hierarchy Process
CCGT Combined Cycle Gas Turbine
CCs Carbon Capture and Storage
CFM Composite Flexibility Metric
DM Decision-Maker
EENS Expected Energy Not Served
FOR Forced Outage Rate



GEP
IEA
LOLP
MDT
MOO
MUT
NSGAAI
OCGT
O&M
OR

Prmin

PV
RDR
RE
RTS-96
RUR
SDT
SPC
SUT
ucC

VRE

Generation Expansion Planning
International Energy Agency

Loss of Load Probability
Minimum Down Time
Multi-Objective Optimization
Minimum Up Time
Non-dominated Sorting Genetic Algorithm Version I
Open Cycle Gas Turbine
Operation and Maintenance
Operating Range

Minimum Stable Generation Level
Photovoltaic

Ramp-Down Rate

Renewable Energy

Reliability Test System 1996
Ramp-Up Rate

Shut Down Time

Supercritical Pulverized Coal
Start Up Time

Unit Commitment

Variable Renewable Energy

Sets and Indices:

t, T
9,G
n, N

k, K

set of periods within the planning horizon.
set of existing generation technology types.
set of candidate generation technology types.

set of generation technology types (K=G+N



i | set of intermittent RE technology typ@s= N).

z,Z set of flexibility indicators of a generator unit.
Parameters:

r Yearly discount rate.

a Yearly discount factor = 1/(1+r).

y Number of consecutive years constituting a period.
Us max Maximum number of units of n allowedtin

Ué Number of units of g available at start of t.
Cap Capacity of unit of g (MW).

Cap Capacity of unit of n (MW).

In Investment cost for n ($/MW).

Fo Annual fixed O&M cost for g ($/MW).

Fn Annual fixed O&M cost for n ($/MW).

Vy Variable O&M cost for g ($/MWh).

Vh Variable O&M cost for n ($/MWh).

Ceens Cost of lost load ($/MWh).

On Salvage factor for unit of n.

Emig CO; emissions generated by g (kg&MWh).
Emi, CO; emissions generated by n (kg&MWh).
Dem? Peak demand during t (MW).

R Minimum reserve margin during t (% bem?).
RL o Maximum reserve margin during t (Y%oRém?).
VREL,, Minimum % generation from units of i during t.
VREL 0 Maximum % generation from units of i during t.
Xz Value assigned to flexibility indicator z

W, Weight of flexibility indicator z in CFM.



min(x,) Minimum value ofx, among units of k.

max(x;,) Maximum value o, among units of k.

Variables:

Ut Num. of units of n added in time periods until t.

Ut Total num. units of n added in planning horizon.

Ef Total energy served by units of g during t (MWh).

EL Total energy served by units of n during t (MWh).

Ct, Total investment cost during t ($).

Céur Total fixed O&M cost during t ($/KW-yr).

Céuv Total variable O&M cost during($/MWh).

Ctu Total outage cost during t ($).

(o Total salvage value of units of n during).

TCap}, Total capacity of n added in time periods until t (MW).
EENS Expected energy not served during t (MWh).

Xz k Value of flexibility indicator z for unit of k.

Lk Normalized value of, .

My Pearson correlation coefficient between a pair a&ftfllity indicators x and y
Flex CFM index of unit ok.

Flex CFM index of unit of g.

Flex, CFM index of unit of n.



1. INTRODUCTION

In recent years, new paradigms for generation expamdoming (GEP) have emerged that are
mainly driven by commitments to decarbonize power systemsin€heased integration of wind
and solar energy in the electricity grid has compeltagigr system planners to focus their attention
on the operational challenges associated with the untet#put of these variable renewable
energy (VRE) sources. With higher levels of VRE penietnathe magnitude and frequency of
the fluctuations in net load intensify. The conventiogaheration fleet requires increased
operational flexibility to quickly adjust its supply to rohtthese variations [1]. Present-day GEP
models with increased VRE integration must therefore enthat the optimal generation
portfolios are flexible enough to satisfy the renewab&rg@ntargets set during the various stages
of the planning horizon [2]. Overlooking flexibility in such piang models will inevitably result
in sub-optimal or infeasible capacity addition [3]. Whitee critical importance of flexibility in
capacity planning with renewables has been widely acknowdedgey few attempts have been
made to integrate it in the planning process [4]. The maie isshat traditional GEP for vertically
integrated power systems is already a complex probleimvalves multi-period, non-linear,
mixed-integer, dynamic and stochastic optimization in ahlizigconstrained and uncertain
environment [5]. Capturing flexibility would entail consideringeoational details at a sub-hourly
timescale, generally through the unit commitment (UC) probigithin a GEP exercise that
usually spans over decades [6]. UC formulations merge many landryeal-valued decisions
regarding the commitment and dispatch levels of gemeratnits respectively. Moreover, many
complex time-related constraints are associated edtbh generating unit [7]. As a result,
combined GEP-Flexibility models present considerable complarilycomputational tractability
challenges [8].

An initial approach to the GEP-Flexibility problem applied a-stage technique [9],[10]. In the
first stage, future generation portfolios are obtained usmgventional generation planning
models. In the second stage, the operational dynam@ssaimple of generation mixes selected
from the outcome of the first stage are examined taild®]. This technique usually employs
common energy planning models such as TIMES for the-temg generation planning and
EnergyPLAN for the short-term operational model [10]. Wan issue with this approach is that
ignoring operational details in the generation planningehddring the first stage will likely result
in generation mixes that are operationally or economidafgasible [11]. In addition, the two
stages use different sets of input parameters that caulddenidden input data inconsistency [11].

A second approach extended the traditional screening ceclasidque to develop heuristic-based
models [12],[13]. The latter represent the cycling operaifadhermal units in capacity planning
with VRE. Basically, these models first apply a UC model that consideme operational
constraints to determine how generating units will be titéigal. The implications of the dispatch
order on the total costs are then computed and the sugeenive is adjusted accordingly.
Although this method provides solutions within a reasontfle, it does not ensure their global
optimality and omits many operational constraints offrttag generators. Furthermore, it does not
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model the discrete generator sizes, leading to a vaignistic UC schedule for all generating
technologies [14].

Several GEP models have curtailed the computational bufdategrating short-term operational
dynamics by applying variants of the UC formulation. One comrtechnique involves the
judicious selection of representative days or weeks tolaisnC during the planning horizon.
Usually, one week of chronological load and wind data is tse@present each seasonain
planning horizon of one year [15]. The planning horizon caextended beyond one year while
maintaining the computational efficiency by selecting mepresentative day of each month over
a number of years [16JA limitation of this technique relates to the difficulty selecting
representative periods that can accurately model highthastic VRE resource patterns over
much longer time periods [17]. Moreover, some operaticmastraints are typically simplified to
reduce the computational complexity

During the last few years, a new modeling methodologydaed down the dimension of the UC
problem by aggregating groups of generating units with similaracteristics into clusters [5]
Consequently, a reduced set of integer variables peeclegilaces a much larger set of binary
commitment variables for each individual Uni8]. Likewise, the clustered formulation deals with
significantly fewer constraints that are imposed on ehssbvf generators rather than on individual
generators [19]. The problem size can be further reducegnbying a few UC constraints for
each cluster. This approach has been successful in reduginggmes considerably while
upholding reasonable accuracy in the results [20]. Howevieen applying the clustered UC
formulation in the long-term planning exercise, a sevieapproximations are often required to
keep computation time within limits. For example, mossidred approaches use representative
weeks of demand and VRE outputs. Furthermore, while it is gegbéleat errors are introduced
into such formulations for clusters of heterogeneous gengranits, it has been demonstrated
that even clusters of identical units can lead to srtorder certain power system operating
conditions [21]

In this work, we present a novel multi-objective optiamian framework that effectively and
tractably incorporates flexibility screening of candidate egation portfolios in long-term
generation expansion planning. The key contributions ofitbik are:

() One common feature of the foregoing GEP-Flexibility modethat they all minimize a
single cost objective subject to several constrairtigs dost function aggregates all cost
components associated with capacity investment. They inclxee bperation and
maintenance costs, UC costs as well as miscellane®tis soch as penalties for €0
emissions, load shedding and VRE curtailment. Yet, many comfmdénthis cost
objective are conflicting in nature. Besides, GEP and UC reme-commensurable
processes and the intricacies of the UC problem cannagdokly converted to monetary
termsin this paper, a multi-objective optimization (MOQO) approachsed to provide an



appropriate way to deal with these conflicting, non-consumble and non-monetary
outcomes [22].

(i) The proposed framework meets the needs and expectaticcent@mporary GEP. It
searches for minimal cost investment plans while atstsidering capacity adequacy,
compliance with environmental obligations and flexibility pmejoiless to match increased
net load variability. The latter is implemented by thpliex inclusion of flexibility as an
objective in a multi-objective formulation. This repeats the first attempt to consider
flexibility as a separate objective in GEP. The decisgustified by the well-documented
prominence of flexibility in present-day power system planrasgletailed in Section 3.2.

(i) Existing combined models tend to examine limited planning horizongprevent
exceedingly long run times. Attempting to simulatgpical long-term GEP problem with
these models will be computationally prohibitiveneTproposed model is not only
developed for long planning horizons but also allows therladtdoe broken down into
stages. This enables modification of parameters for s@cfe to reflect changes in the
energy market.

(iv) It has been largely reported that large-scale integratio/RE sources calls for higher
amounts of flexibility in the generation portfolio in ordermaintain reliability of supply.
The current work contributes to the growing body of knowledgethis topic. The
economic and environmental impacts of embedding flexibilitthe GEP exercise can be
visualized within the proposed framework. More importanie results provide clear
evidence that ignoring flexibility in GEP leads to generatiomes that are infeasible
during operations

The rest of the paper is structured as follows. Sectaes2ribes the MOO algorithm used. Section
3 details the objectives and constraints of the MOO udation, with particular emphasis on the
flexibility objective function that is central to thisusty. Section 4 presents the results for a test
system and discusses the impact of flexibility on inwestt and operational costs. It also
elaborates on the decision-making process. Section Drogrates the effectiveness of the
methodology to appropriately represent the operationahvier of the power system in the
proposed framework using a UC model. Section 6 provides a symama concluding remarks.

2. MULTI-OBJECTIVE OPTIMIZATION ALGORITHM

Early GEP models aimed at finding the most economicaérg¢ion plan that could provide an
adequate supply of electricity. As power systems evolB&d®R models needed to consider a wide
range of aspects besides the traditional least-costtoigieln particular, environmental, technical,
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operational, regulatory and social considerations bedmipertant B]. An initial approach for
handling these additional potential objectives consistearessing them as constraints imposed
on the GEP model. For example, environmental impacts ofege tackled by setting tolerance
thresholds for the maximum acceptable emission ratesgitiie planning horizon. Alternatively,
other objectives were converted into cost or penaltytiome that were subsequently incorporated
into the least-cost objective function. While models aberéng additional objectives, either as
constraints or from a financial perspective, are sintpé&y provide a single solution as a result of
the search process. This implies that trade-offs betwiferetht components of the cost objective
must be established in advance of the solution, therebyngrabnsiderably the decision-making
process [23]. No single solution can be claimed as bmatighal in problems involving multiple
conflicting objectives [24]. In addition, the ongoing low-gamldransition of the power sector has
bolstered the importance of environmental and operatminjactives in GEPThese conflicting
and non-commensurate objectives must be optimized sireoliagty. GEP models become more
realistic when distinct evaluation criteria are leifly considered as objective functions rather
than performing an absolute economic analysis exer2igg26].

The aim of the proposed MOO model is to yield optimal gaigar mixes that are resilient to the
unexpected nature of future net loads in the grid while satigsfihe traditional economic and
environmental objectives. Problems involving multiple cotifig criteria do not have a unique
optimal solution but a set of alternatives, known a®t®aoptimal or non-dominated solutions,
which represent trade-offs among the various criteria RV@lutionary algorithms are well suited
for solving problems of this nature for several reasong E&stly, they have the inherent ability
to search for multiple Pareto-optimal solutions corenity in a single simulation run. Also, unlike
exact optimization methods, evolutionary algorithms habeist and powerful search mechanisms
that allow them to handle the large and complex sespabhes commonly associated with real-
world optimization problems [28]. They further enable tlezision-maker (DM) to refine and
adjust preferences in the search for a compromise@olinta limited amount of time [29]. Among
the many existing multi-objective evolutionary approachas,Non-dominated Sorting Genetic
Algorithm Version Il (NSGA-Il) has been successfully applieds&veral disciplines [30],
including the traditional GEP problem [24]. It has been detmated that NSGA-II outperforms
a number of contemporary MOO evolutionary algorithmniding a diverse set of solutions for
problems with a maximum of three objectives][27

Since its inception in 2002, the NSGA-II has become pervasifireding multiple Pareto-optimal
solutions in MOO problems. Its widespread use is attributed tappication of three distinctive
features, namely, an elitism strategy, an expliciedity preserving mechanism, and a focus on
non-dominated solutions [27]. The NSGA-II algorithm for @eeation is illustrated in Fig. 1. An
offspring population Qis generated from the parent populatignech of size S, using typical
evolutionary operators. The two populations are subsequemhged together to form an
intermediate population;R®f size 2S. The fitness of all individuals in &e evaluated and the
solutions are then sorted on the basis of their nanktlince. In other words, all non-dominated



solutions are assigned rank 1 and grouped in Pareto Frohib&e That are dominated only by
rank 1 individuals are ascribed rank 2 and classified iatB&ront 2, etc. The new population for
the next iteration 1 is constituted by considering individuals from the Paretmsrin increasing
order, one at a time. Once the S places.ind&te filled, the remaining fronts are discarded. If all
individuals of the last front admitted cannot be accomitezbtism the new population as shown in
Fig. 1, then selection is made based on the diversityeo$thutions. For this purpose, an operator
is used to determine the crowding distang®fdeach solution u in the last front. The crowding
distance destimates the density of solutions in the objectpaes around u. To maintain diversity
in the population, individuals from the least crowded reg@are chosen to fill up the remaining
places in R1.

Pareto Front F,
Parent S individuals
Population 12> Idvicuals | S spaces
P Pareto Front F, vl
Non-dominated Pareto Front F, Crowding distance Next Generation
I - Parent
sorting for F; Population P;.
0ﬂspnpg S individuals | § individuals
Population ~ Pareto Front F, .
discarded
o
Pareto Front F-

Fig. 1: Mechanisms involved in the NSGA-II algorithm (adafftech [27]).

3. GEP-FLEXIBILITY FORMULATION

Since long-term GEP is considered here, the planning moigzdroken down into T stages
consisting of y consecutive years each. There are sHraxigeneration technologies at the start of
the planning horizon and N candidate generation technologggalale for expansion purposes.
The outcome of the optimization problem is provided throegldecision variable vector
representing the number of units of each type of candgiateration technology to be added to
the power system in each stage of the planning horinoaddition, the three objective functions
are evaluated at the end of each stage.

Fig. 2 illustrates the general flow chart of the MOO fearark for long-term GEP with increased
integration of VRE soues The objectives and constraints of the formulatiendescribed in this
section
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Multi-objective
Optimization of GEP
with VRE

Cost Objective Flexibility Objective Emissions Objective Constraints
* Toral investment * Ramp Rates (RUR/RDR) * CO, emission rate + Reserve margin
+ Fixed O'M cost * Operation Range (ORP,,,.) * Total energy served * VRE integration himits
* Variable O/M cost * Start-up and Shut down * Limits for added
*+ Outage cost times (SUT/SDT) capacity
* Total salvage value * Minimum up and down * Finm capacity
times (MUT/MDT)

NSGA-11

I Initial Population |

"~

Evaluation <

Selection I—)l Vatiation

-
I
I
I
I
I
I
I
I
I
I
I
I
|
I
|
I
I
L

Population of Pareto-optimal solutions
No. of units of each type of candidate generation technology
to be added in each stage of the planning horizon

Fig. 2. General flowchart of the proposed multi-objectipémization framework.

3.1  Cost Objective Function

The traditional cost objective ensures that electrisigupplied to customers at an affordable and
reasonable cost. The total cost is calculated as thelativeusum of the costs related to the
investment in new generating units, fixed and variable operatid maintenance of existing and
newly introduced units, and the unmet demand costs in eadd dess the salvage value
associated with candidate units committed during each péiddture costs are discounted with
a discount factorr to yield their net present value.

Minimize cost objective ©
0, = Z=1 Cit;w + CgMF + CéMV + Cgut - Cstal 1)

The various components of the cost objective for gaciod t are detailed below.
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3.1.1 Investment Costs

It is assumed that investments in candidate units ohtdafy n are made at the start of any period
t. However, additional generation capacity from thesesusitivailable only in future periods to
account for inevitable construction lead times:

Chy = aPEDI BN 1,UL Cap, 2)

It follows that the additional generation capacity avadablthe next period t+1 is given by:
TCaptt* =¥N_  UtCap, t=1,..,T—1 (3)

3.1.2 Unmet Demand Cost

Reliability is another primary objective of GEP as pmver system must adequately meet the
demand for electrical power. However, the number of olbgxis restricted to three in this study
in order to avoid degradation in effectiveness of conventidGt@eto-based evolutionary
algorithms when tackling many-objective optimization prolddi®l]. In this context, system
reliability is implicitly maximized by minimizing the costs assted with the unmet demand in
the overarching cost function. The Expected Energy Not 8¢BENS) index is used to calculate
the unmet demand costs. It is the most direct methoddodially quantify the cost of outages
when comparing potential investments that will meet poweesystdequacy targets [32]. It is
evaluated using an analytical probabilistic approach basdedross of Load Probability (LOLP)
[23]. The outage costs are computed mid-year.

Cour = Z;):l alU=0YEDI EENS® Crpys (4)
3.1.3 Operation and Maintenance (O&M) Costs

O&M costs are divided into fixed and variable components are both accounted for in the
middle of each year. The formél,, -, is dependent on the plant capacity whereas the I6§tgy,
is proportional to the annual generation volume and incliwd#osts.

: 5}, @009 EDISE | CapyUf, £=1 ©
OMF — Zf— qlU—0.5)+y(t-1)] [ZG—lF Cangt_l_Z _E, Caan,ﬁ‘l], t=2...T

ot Zi’_ (] 0.5)+y(t-1)] ZG Et t=1 (6)
oMV — Zf— qlU—0.5)+y(t-1)] [ZG Et +Z 1VnE,§], t=2..T

E} andEf for each unit is determined by comparing the unserved emétigyand without that
specific unit.
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3.1.4 Salvage Cost

The salvage value is considered in the cost objective tesemrthe monetary value of added
generating units at the end of the planning horizon. #lgitated at the end of the overall planning
horizon using a salvage factor that is dependent ongéeatonal life of the unit:

T—t+1
Char = (@O TNy Ui Capy oY) (7)

3.2 Flexibility Objective Function

The flexibility needs of power systems to enable efficietggration of VRE were recognized as
early as 2005 [33]. Since then, a substantial body of workhigdighted the increasing
significance of flexibility in future low-carbon power syst& In this context, a report analyzing
the needs of European power systems in 2030 observed that many countries “will strive to draw
32-34% of their electricity from wind and solar by 2030, makimgeased system flexibility
crucial” [34]. In a recent report, the International Energy Agency (IEA) stressed that “power
system flexibility has becomeghobal priority” [35]. An IEA working group on high penetration
of PV systems in electricity grids further pointed out that “flexibility resources are gaining more
and more importance” [36]. There is general agreement that flexibility is becmgrabsolutely
critical to ensure reliable operations in power systeiitts kigh VRE levels. As such, flexibility
has become an important factor to take into account iplémning of future low-carbon power
systems and its explicit inclusion as a separate obgeisticonsidered in this work

Defining flexibility as an objective in a MOO formulatiposes a huge challenge for planners to
evaluate its availability in candidate generation mikeparticular, the computational complexity
should not be too high because the flexibility evaluation m®oeeds to be run many times. For
example, 5000 evaluations will be required if 100 generationmpiilations consisting of 50
candidate generation mixes each are selected for the NSGR low modeling effort
prerequisite precludes flexibility assessment approachesl s highly complex operational
models [37],[38]. Likewise, probabilistic metrics that useadatensive methods to evaluate the
duration, frequency or likelihood that the power system hadficient ramping capability to cope
with net load fluctuations cannot be considered [19],[39],[40].

Less data-intensive metrics have also been develoged\imle a representation of the flexibility
characteristics inherent to the power system resouitespite of their simplicity, they offer a
good insight into the flexibility of generating units througkeithtechnical and operational
constraints. Hence, these screening-level metricc@meenient for assessing the flexibility of
generation mixes in the multi-objective GEP model. Mal €15 proposed a promising “offline”
flexibility index that estimates the individual contributiof generating units to the overall system
flexibility based on ramp rates and operating range. Oree ayeldSHassen [41] formulated a
more comprehensive metric, termed the composite flexilmietric (CFM). It takes into account
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the eight most cited technical flexibility charactecsof generating units as indicators: operating
range OR), minimum stable generation level{R), ramp-up rate (RUR), ramp-down rate (RDR),
start-up time (SUT), shut-down time (SDT), minimum-up tife®JT) and minimum-down time
(MDT). The sequence of steps involved in the constructioth@fCFM is illustrated in Fig. 3.
Using the min-max normalization method, all indicatorsfmse converted to an identical range
between 0 and 1 as follows:

_ Xz —min(x;)
IZ‘k T max(xy)-min(xy) (8)

where %k is the value of indicatoz for generating unit K-k is its normalized equivalent, while
min(x) and max(® are the minimum and maximum values of indicator z agcadisgenerating
units. An Analytic Hierarchy Process (AHP) is then appledjaalitatively assign weights that
reflect the relative importance of indicators in deiamg flexibility availability in generator
units. For this purpose, pairwise comparisons of indicataperformed to express the intensity
of importance of one indicator with respect to anothéarflnencing the flexibility of a generating
unit. The Pearson correlation coefficiery between each pair of indicators x and y is also
computed to determine whether any pair has a high degree efatiom as it may induce an
element of double counting in the CFM:

— 2ixi— X)) (i—¥) (9)

T,
xy (p—1)oxoy

where there are p values of indicators x and y, witli theans being andy and their standard
deviationsox andoy respectively. Subsequently, all indicators are aggregatedrly to give a
measure of the flexibility availability from individual geneng units. The CFM index of each

generating unit k is obtained by:

Flexy = X7=1(Izx X W) (10)

subject t@);, W, = 1 and 0 <W, < 1, where Wis the weight assigned to indicator z.
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Selection of Indicators

(based on relevance, analytical Normalisation Weighting
soundness and measurability) A {to ensure that indicators p (to reflect relative
RUR. RDR. OR. P, are comparable) importatce of indicators)

SUT, SPT, MUT, MDT

Sensitivity Analysis

{to assess robustness of CEM to Aggregation Correlation Analysis
changes in methodological (to combine the indicators K (1o adjust high correlations
choices — preference scores and into a single measure) among indicators)

normalisation procedure)

Fig. 3: Methodology for constructing the Composite Flexypietric [41].

The overall flexibility available from all constituent ggating units of a power system ciduus

be computed. Obviously, since the output of a VRE unit is ngpatthable, its associated CFM
index is 0. Besides considering a comprehensive range of cathnd operational constraints,
the CFM has two other distinctive features that make it steted for the GEP-Flexibility
problem. Firstly, it can be used to intuitively compare flexibility availability in differen
candidate generation mixes [41]. Secondly, rather éisaigning a constant flexibility index to a
particular generating unit irrespective of the genergtantfolio in which it participates, the CFM
automatically adapts to the flexibility characteristicsottier units. In other words, the same
generating unit will have a lower CFM when present in aliiffexible generation mix than in
one composed of less flexible units, aadtual power system operations [41].

The CFM index of each Pareto-optimal expansion plan atetid of the planning horizon is
determined by adding the CFM indices of all of its coustit generating units.

Maximize flexibility objective Q:
0, = —[(X4-1 Flex, U}) + (Xn-y Flex, UL )] (11)

whereU! = (XI_, Ut). The negative sign in Eq. (11) indicates that this ¢ivjeds maximized as
opposed to the other two objectives that are minimizéleirframework.

3.3 CO; emissions Objective Function

In order to highlight the growing importance of environmentabkaterations in GEP and in line
with the commitments taken by many countries during succedsitted Nations Climate Change
conferences, minimization of G@missions is considered as the third objective. Evaluatithis
objective is based on the emission rates for generating afndifferent technologies.

Minimize CQ; emissions objective £
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05 = {=1 ZS=1 EZJ: Emi, + Z?:z Zg=1 E; Emi, (12)

3.4 Constraints

Classical GEP formulations consider some capacitighiély and operational constraints on the
power system. The proposed GEP-Flexibility model is suleitie following constraints:

3.4.1 Reserve margin

This constraint requires that the total capacity availabtée power system during any period
should be sufficient to meet the demand plus a prescribedra of reserves.

(1 + R}yn).Dem® < i, TCap), + X541 CapyUs < (14 Rhygy). Dem? (13)
3.4.2 Upper and lower bounds for VRE integration

This constraint not only ensures minimum generation frorg ¥#¢hnologies based on targets set
by policy-makers but also enforces upper limits that wilkeree the stability of the power system.

VREpin < Xj-p Xioy CapiUf /(Ef-, TCapf + X1 CapyUs) < VREfqx (14)
3.4.3 Upper bound on candidate technology capacity

In order to ensure diversity in the generation expansion mraxesnstraint is imposed to limit the
added capacity of each candidate technology type inpeadd.

0 < Ui < Ubmax (15)

4. RESULTS AND DISCUSSION

The proposed MOO GEP-Flexibility model was implemented paraonal computer with a 3.2
GHz quad-core CPU and 16 GB of RAM in MATLAB version 9.2 pksformance was evaluated
on the IEEE Reliability Test System (RTS-96) without hydrdsuriihree different formulations
were applied to explore correlations between the flexbiléconomic and environmental
objectives by analyzing trade-offs among the Pareto-optiewration mixes:

(i) GEP-CFE incorporates all three objectives,

(i) GEP-CF considers the flexibility and cost objectivas

(i)  GEP-CE is the traditional multi-objective GEP modtiedt takes into account the cost and
CO; emissions objectives.
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41  Test System

The IEEE RTS-96 consists of 26 generating units of 8réiffiegeneration technologies with a
combined generating capacity of 3105 MW [42]. This test systesncivasen because it is well
documented and all eight flexibility characteristics of atmstituent units used in the CFM
computation have been provided in the literature. The impiopeErameters of the generating units
are summarized in Table 1. Flexibility characteristiestaken from [42]. Fixed and variable O&M
costs of the IEEE RTS-96 have been updated to present &g wa this study [43 The CFM
indices presented in Table 1 are those of each generataritiiit the IEEE RTS-96 system [41]
Due to the adaptive nature of the CFM highlighted in Sectiortt®22FM indices will change as
new generating units are added to the system during the GEfsexerc

Table 1: Parameters of generating units of IEEE RTS-96[{40]42].

Unit Type No. of Size(MW) FOR (%) O& M var O&Mrix  Emi (KgCO2e Initial CFM

Units ($MWh) ($'/kW-yr) /MWh) index
Oil/Steam 5 12 2 42.74 13.17 320.87 0.589
QOil/ICT 4 20 10 71.92 7.04 302.00 0.643
Coal/Steam 4 76 2 14.93 51.4 396.37 0.559
Oil/Steam 3 100 4 42.74 13.17 320.87 0.537
Coal/Steam 4 155 4 14.93 51.4 396.37 0.425
Oil/Steam 3 197 5 42.74 13.17 320.87 0.481
Coal/3Steam 1 350 8 14.93 51.4 396.37 0.424
Nuclear 2 400 12 4.60 93.3 0.00 0.498

4.2 Model Parameters

The performance of the proposed model is demonstrated rsideoing a 12-year planning
horizon, divided into 4 stages of 3 years each. A loadlgrsimilar to that of IEEE RTS-96 is
used, with a peak load of 3000 MW at the start of the planningdodt is assumed that the peak
load increases at a yearly rate of 7.5%. Future costbssn@unted to yield net present values using
an annual interest rate of 8.5%.

Five candidate technologies are considered as expanpiion® for the GEP: supercritical
pulverized coal (SPC), open cycle gas turbine (OCGT), combiyid gas turbine (CCGT), wind
and solar photovoltaic (PV). They represent a good mi¥RE, flexible and more efficient
conventional technologies to support both growing load andasarg integration of VRE during
the planning horizon. None of the existing technologies@nsidered as candidates for expansion.
Technical and economic parameters of all candidate geweratits are given in Table 2 and the
flexibility characteristics of the thermal units areydded in Table 344],[45].
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VRE integration targets are assumed to grow progressivatystage 2 to 4 as follows: 5-10%,
10-15% and 15-25%. Accordingly, the planning reserve margieases gradually to ensure
system reliability as more VRE resources, typified by lapecity values, are added to the system.
Thus, the lower limits for reserve margin are taken as 123%% and 140% of their respective
peak demands for stages 2, 3 and 4 respectively while the uppeislicoibstrained at 150%.
Unserved energy is penalized at a rate of $5/kWh. The maxinwmber of units that can be
added during each stage is limited to 5 for the VRE techredagd 3 for the other technologies.

A salient feature of NSGA-II is that, unlike many contemppeaolutionary MOO algorithms, it
does not require any additional parameters beyond standantgiars such as population size
number of generations, crossover probability and mutatiobapility [46]. Its outcome is
therefore less sensitive to user-defined parameter val0@sdependent test runs were conducted
with different combinations of parameters to determine riwst appropriate combination.
Subsequently, the NSGA-was run for 100 generations of population size 50 along with a
simulated binary crossover probability of 0.833 and a polynomiahtion probability of 0.067.
Recognizing the stochastic nature of the NSGA-II algorittnmitiple runs of the simulation for
the GEP-CFE, GEP-CF andEG-CE formulations were carried out and the results pteden

this section represent the typical non-dominated solut@mnsne run.

Table 2: Parameters of candidate generating units

Unit Type Size FOR O&Mvar O&Mrix Inv. costs Emi Life
(MW) (%) ('MWh) ($kW-yr) ($kW) (KgCOe/  (yrs)
MWh)

SPC 250 9.7 3.1 38.85 2215 743 50
CCGT 130 8 5.4 7.69 840 349 40
OCGT 176 7.5 7.7 3.08 558 515 30
Wind 100 7.3 10 34.62 1962 0 20

Solar PV 100 5.9 0 19.23 1808 0 25

Table 3: Flexibility characteristics of candidate units

Unit Type Pmn (%) OR  RUR RDR SUT  SDT  MUT MDT
(MW) (MW/hr (MW/hr— (hr)  (hr)  (hr)  (hr)

SPC 0.4 250 180 180 3 2 6 4
CCGT 0 130 130 130 1 1 4 2
OCGT 0 176 176 176 0 0 0.5 0.5
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4.3  Optimal expansion plans

A broad overview of the differences in optimal expansmans obtained from the three
formulations is first discussed. Table 4 summarizesahges of the objective function values for
the non-dominated solutions output by each model. Thenidespread differences between the
ranges depending on the objective functions involved. Appiyie@dditional flexibility objective

to the traditional GEP-CE model expands the total cost rage scaling the C@emissions
range marginally. On the other hand, replacing the €@issions objective in GEP-CE by
flexibility considerably reduces both limits of the total camtge, suggesting that integrating
flexibility in GEP can significantly alter optimal gentoan portfolios and lower total costs.

The tractability of the proposed approach is evidenced déydlatively short solution times of
3595, 3761 and 3841s for GEP-CE, GEP-CF and GEP-CFE respectivelyredrtpahose of
combined GERJC formulations covered in Section 1, which often takeesshdays.

Table 4: Range of Objective Function values for Paretorapsolutions for the three models

GEP-CFE GEP-CE GEP-CF
Total Cost (10° x $) 9.63-15.12 10.35-14.59 9.60-11.91
CO2 emissions (10" kgCO2e) 1.60-2.45 1.57-2.41
Flexibility (CFM) 20.16-27.60 25.29-27.77

4.4  Decision-making

There is no single optimal solution to a multi-objeetoptimization problem when at least one of
the objectives is in conflict with another of the ohijexs, as is the case here. Instead, a family of
solutions is sought. This Pareto-optimal set of solutissé in which each solution is considered
as equally good mathematically. Improving one such soluticanynone objective inevitably
results in degrading at least one of the remaining tijectives. If a DM is not involved to
articulate additional preference information, it is idifft to choose a particular compromise
solution as none of the Pareto-optimal solutions carsdié to be inferior to the others.
Determining the most preferred solution requires DMs t@ lsagood knowledge of the problem
at hand. Moreover, they must have a good understanding obtrelations among the objectives
and decision variables. With all this information in minkeyt will be in a position to elicit
preferences with respect to the importance that thagrass the objectives. At the same time,
they can gather valuable insights from the interdepenegamnong the objectives revealed by the
proposed framework to refine their choice. Thus, using tmssghts and their domain-specific
knowledge, they are able to determine which solution offerdest compromise with respect to
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the competing objectives.

The GEP-CFE formulation is used as an example to illestratv DMs could proceed to select
the most appropriate investment plan from the set nfdaminated solutions. Table 5 presents
four solutions selected from the GEP-CFE Pareto-optsoaltion set. Solutions 1, 2 and 3
represent investment plans that have the best vaduabd objective functions total cost, €0
emissions and flexibility, respectively. It implies thalusion 1, with a total cost of 9.63 (x 3%),

is an appropriate solution if cost is a critical cancl®r DMs. Similarly, solution 2 is suitable if
the country has set very stringent emission targets thre planning horizon, although its cost is
significantly higher than that of solution 1. The underlymgnciple of Pareto-optimality is also
clearly evidenced by these three solutions. Thus, any meestplan cannot be improved in one
objective without making it worse in at least one of the temaining objectives. A comparison
of solutions 1 and 2 shows that curtailing the.@®issions drastically from 2.45 to 1.60 (X%0
kgCOe) results in a substantial rise in the total cost fi@88 to 14.60 (x 1), while
simultaneously lowering the flexibility index of the generatportfolio considerably from 25.29
to 22.52. A similar cause-effect pattern is noted when soki@and 3 are contrasted. A large
improvement in the CFM from 22.52 to 27.60 leads to a detenoratithe CQ emissions from
1.60 to 1.95 (x 18 kgCOre) and a small benefit in total cost from 14.60 to 13.63 )10

Therefore, choosing one of these three solutions enstaeshe DMs get the best out of one
objective at the expense of at least one of the remaibjegtores. As illustrated in this case, when
the other objectives are conflicting with the favored,dhe former are adversely affected to a
large extent. Hence, DMs must analyze trade-offs amonghjextives to assist them in the
selection of a compromise solution. Typically, the DMB be aware of the emission reduction
commitments along with the RE integration targets séhéyolicy-makers over the GEP horizon.
In addition, they will be well informed about the finadaiesources and priorities of the utility
over the planning period. Using this knowledge, DMs can diffetenamong the solutions and
choose the one that has the best potential to ftliBllemission and RE obligations while staying
within a reasonable budgetary envelope. For example, § BM looking for a solution whose
emission and flexibility values are closer to the besues among all solutions but with
intermediate cost, solution 4 represents a suitable @nlutiis a good compromise solution whose
cost lies nearly midway between the limits of the totat cange (12.82 within a range of 9.63-
15.12 while its CQ emissions are closer to the lovilmundary of its overall solution range (1.90
within a range of 1.60-2.45) and its flexibility index lies e tsuperior segment of its overall
solution range (25.06 within a range of 20.16-27.60). For soldtjoof course, an informed
domain-experDM will be best placed to make this chaic
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Table 5: Objective function values of four solutions setkdtem the GEP-CFE Pareto-optimal
set

Solution no. Total Cost CO2z Emissions Flexibility
(10°x $) (10 x kgCO2€) (CFM)
1 9.63 2.45 25.29
2 14.60 1.60 22.52
3 13.63 1.95 27.60
4 12.82 1.90 25.06

4.5  Correlations among the objectives of GEP-CFE

Viewing and understanding interdependencies between two objectindse readily done using

scatter plots. However, extracting meaningful informatiom scatter plot representations with 3
or more objectives is extremely difficult, let aloreading the objective function values of the
solutions. Parallel coordinates plots provide a more auawé way of visualizing and analyzing

the solutions of such problems [47]. Rather than pladiegobjective axes orthogonally to each
other as done in scatter plots, the parallel coordinategsinserts them parallel to each other,
mostly vertically and equidistant. Each solution in tien-dominated population set is then
represented by joining its objective function values amgmir of axes by a line.

Fig. 4 shows the parallel coordinates plot of the nonidai®d solutions for the GEP-CFE
formulation. Each pair of connected lines denotes ondignl For example, the two pairs of
connected blue lines represent the two investment plahshighest flexibility index of 27.60.
Connected line pairs in green represent the remaining nomdatmu solutions. A careful
interpretation of the pattern of lines between two adjaobjective axes can reveal important
information about any correlation between them. It magdmessary to re-order the axes in order
to identify interdependencies between non-adjacent axdsasube total cost and G@mission
axes in Fig. 4. Accordingly, Fig. 5 displays the saolat®n set but with the total cost and £0
emissions objective axes adjacent to each other. Oilg Estifiable characteristic from the
parallel coordinates plot is the degree of conflict betvieenobjectives. This is indicated by the
number of intersecting lines between their axes. A latgeber of crossing lines points to heavy
conflict. This is the case for the total cost and.@@issions objectives in Fig. 5, implying that
they are negatively correlated. Moreover, the linesrgaict within a narrow band in the space
between the two axes. This behavior suggests that theséralationship is consistent, even if it
is not exactly linear. Therefore, higher investments moestly associated with lower GO
emissions for this particular case study.

There are also several intersecting lines between thectitbnd flexibility objectives in Fig., 4
although the number is lower than in the previous casele\this is not always the case, higher
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costs also generally translate into lower flexibility ne tgeneration expansion portfolios for the
IEEE RTS-96 system. Since the points of intersecticcuoalong most of the flexibility axis
length, the magnitude of this general negative correlaioariable. In contrast, the line crossing
pattern is more erratic between the flexibility and-@mission objectives. For this reason, no
definite correlation between these two objectiveshEamferred from parallel coordinates plots.

The four non-dominated GEP-CFE solutions that were presenieable 5 are highlighted in Fig.
5. The parallel coordinates plot makes it easy for the tbMistinguish solutions with the best
values in each objective function. Thus, solutions 1 arla minimize total cost and GO
emissions respectively intersect the corresponding atxéne lowest point, that is 9.63 x*$dor
total cost and 1.60 x 10kgCOe for CO, emissions. On the other hand, the flexibility axis is
crossed at its highest point of 27.60 by solution 3 as it magsrthis objective. The parallel
coordinates plot also simplifies trade-off analysis bybéng a quick assessment of the extent to
which the other objectives are affected by favoring dojeabive in a particular solution. Solution
4, for example, illustrates an investment plan whose €&@fssions and flexibility are closer to the
best values while its total cost is intermediate as exgdhin Section 4.4.
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Fig. 4: Parallel coordinates plot of the GEP-CFE non-domméhaolution set for objective order:
Total Cost, Flexibility, CQ Emissions.
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Fig. 5: Parallel coordinates plot of the GEP-CFE non-domthaolution set for objective order:
Total Cost, CQemissions, Flexibility.

4.6 Impact of flexibility

To gain more insight into the impact of modeling flexibilityégitly as an objective on total cost
and CQ emissions, a detailed analysis of the Pareto-optingresion plans is performed. The
statistics of the constituent candidate generating wiitsll non-dominated generation mixes
resulting from the three formulations are synthesineithe box-plot of Fig. 6. Some distinctive
trends can be observed in the Pareto-optimal expandmms,pleading to some general
observations for this specific IEEE RTS-96 case study. Ngtatthen generator operational
constraints are omitted from the framework in the GEPf@mulation, the optimal investment
plans contain significantly more inflexible SPC units. THeEP-CE solutions contained between
2 to 6 SPC units compared to 0 to 3 for GEP-CF. The smaileber of more expensive SPC
units justifies the much lower total costs of GEP-CF p&mepposed to GEP-CE plans noted in
Table 4. The scarcity of SPC units in the GEP-CF solsti®offset by higher numbers of cheaper
and more flexible CCGT and OCGT units compared to GEP-CE, leadimgproved CFM
indices. There is an average of nine units of both CCE@TCGT for GEP-CF as opposed to 4.1
and 6.3 respectively for GEP-CE.
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Fig. 6: Distribution of candidate units in Pareto-optinggneration mixes for the three
formulations.

GEP-CE plans have higher variability in the number of egah 0f candidate unit in comparison

with those of GEP-CFE. In contrast, GEP-CF generatio@srare characterized by the smallest
spread in number of units, justifying its limited range of diijecvalues observed in Table 4. The
limited spread is explained by the fact that since the CFMetwo VRE technologies is 0, the

diversity of GEP-CF solutions that maximize flexibility laast cost with the remaining three

candidate technologies is restricted.

To better understand the effects of ignoring flexibilitiaP, the CFM of GEP-CE Pareto-optimal
expansion plans are computed post-optimization. It is fauatdthe flexibility indices of the GEP-
CE solutions lie in the range of 18.68 to 24.06. Thus, thensigra mixes of GEP-CE andEP-
CF are mutually exclusive since the least flexible GEP-@\Rien has a CFM index of 25.29, as
indicated in Table 4. It follows that none of the exgian portfolios output by the GEP-CE would
be considered optimal if the environmental objective wapkoed by the flexibility objective.

5. VALIDATION OF GEP+LEXIBILITY FRAMEWORK

The proposed GEP-Flexibility framework relies heavily on @M to provide a meaningful
indication of the ability of the generation portfolio e&spond to net demand variability. However,
there is no evidence so far that a generation partfeiih a CFM index of 27, for example, is
actually more robust to net load variations than one Witk value of 24. In addition, it has not
yet been demonstrated that more severe net load ammtenvill call for generation fleets with
higher CFM indices to ensure feasible operations. dieroto validate the proposed MOO GEP-
Flexibility framework and demonstrate the effectivenessttef CFM in this process, the
operational feasibility of optimal expansion plans sted by applying a UC formulation that
captures the full range of generator technical constraints.
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51 Unit Commitment model

The UC model minimizes the total operational costs, comprisf variable costs, start-up costs,
shut-down costs and no-load costs, while accounting foeiglit operational constraints of
conventional generators. This model is applied to the IEE&-96 system for a scheduling period
of 24 hours, where each hour is divided into four 15-minutepsuiods to capture realistic sub-
hourly operational dynamics. It is assumed that chamgé®icommitment status of units as well
asinitiation of start-up and shut-down procedures occur ortlyeastart of sub-periods. Moreover,
the power generation level of an online unit is assumdx tconstant during a sub-period. The
15-minute demand data is obtained from the power systemmusedC study by Pozo et al. [48
and scaled according to the projected IEEE RTS-96 systeandiimthe final year of the planning
horizon. VRE generation data is also taken from theesstmdy [48] and adjusted so that the
renewable integration rate lies in the 15-25% range assuwnebef final phase of the planning
horizon. Three scenarios are considered to test sileenee of generation portfolios to different
net load variability conditionga) “normal” net load where mean value of VRE generation data is
considered, (b) “high” variability net load where renewable output and demand are changing
simultaneously in opposite directions, and (c) “moderate” variability net load whose variability is
intermediate between the first two scenarios. Fig.otshhe total system demand as well as the
net loads for the three scenarios. VRE curtailmenptsnodeled to sustain the UC process, as the
aim of the validation exercise is to verify the abibifygeneration portfolios to maintain operations
throughout the scheduling horizon.
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Fig. 7: System demand and net load for the three variabdéparios
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5.2 Unit Commitment Results

The sub-hourly UC model is applied to selected optimal inwest plans output by each of the
three formulations. Generation portfolios subjected toad&€chosen such that their CFM values
(for CEP-CF and GEP-CFE) and total cost values (for GEpPa@&Eevenly spaced over their whole
range of values given in Table 4. In this way, the seteptans provide a consistent representation
of the entire solution space. Table 6 presents the oetedran GEP-CE, GERF and GEP-CFE
portfolios are tested with the three net load profildse feasibility of the UC exercise is indicated
either by “Yes” if successful or by the time at which the generation mix first fails to follow the net
load. In the former case, the operational cost fera#h-hourUC exercise is also provideBor
example consider the first two GEP-CF generation mixes in T&blhen they are subjected to
the moderate-variability net load profile (cells shadedr&y). It is observed that the plan with
CFM index of 25.29 is unable to complete th€ exercise as it encounters a flexibility deficit at
22.15 h. On the other hand, the investment plan with CFMkind®6.02 can be successfully
scheduled to match the net load. The total operationalf@oghis plan to meet the moderate-
variability net load is 4,574,000 $ for the 24-hour period underidenzgion.

The most prominent result is that when flexibility isieged in the GEP process, the resulting
optimal generation portfolios are unable to meet net ladmoderate or high variability. Many
GEP-CE investment plans even fail to match the noxaa&bility net load profile. The deficit of
flexibility in the generation mixes is encountered between 2(h8®@3a.30 h for the normal- and
moderate-variability net loads. As illustrated in Figa 8teep ramp-up is experienced at a net load
level higher than 5000 MW during this time interval. The UGilketeveal that the most flexible
units in the generation portfolios are already comuhittemeet the previous steep ramp-up which
occurred between 07.00 and 10.00 h, leaving the system vuléoadhibsequent upward ramps.
Moreover, when GEP-CE generations portfolios are sultietctehe high-variability net load
profile, it is observed that the UC process is aborted readter, between 07.30 and 09.30 h. This
time interval corresponds to a sustained extreme ramp-ar present in this net load scenario.
It can therefore be concluded that while the GEP-CE investpians have adequate capacity,
they lack sufficiently flexible units to manage the ressed net load variability. This
predisposition to flexibility deficiency was correctly indted by the low CFM indices of the GEP-
CE investment plans. As expected, the only two feasibl®-GE plans that successfully
completed the UC exercise under the normal-variabilitylosd scenario have CFM indices of
24.06 and 23.12, that is, close to the upper limit of the fletyibrdinge.

In contrast, all selected GEP-CF optimal generation snta@ be successfully scheduled to match
the normal-variability net load profile. This performamas anticipated as they all have CFM
indices higher than the upper flexibility limit for GEP-C@wions. All of them can also follow
the moderate-variability net load with the exception efldast flexible expansion plan. It is also
noted that all selected GEP-CF investment plans succggstuiue the UC exercise beyond the
extreme ramp-up event encountered initially in the higlelbdity net load profile between 06.00
to 10.00 h. However, those with CFM indices less than 2dradele to go through the acute ramp-
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down event occurring around 22.00 h. The nearly verticallyedesing net load requires several
already committed units with fast RDR to ramp down simultaneo8sigh a condition is satisfied
only in generation portfolios with very high CFM ind&ceAgain, the CFM provides a good
indication of the ability of the generation fleet topesd to net load fluctuations. Finally, the same
trend in performance is observed for GEP-CFE generpt#ons with respect to their CFM indices.

An analysis of the UC results for all three models enatbleggeneral inference that generation
portfolios with CFM indices higher than 23, 26 and 27 catcimthe net load profiles with normal-

, moderate- and high-variability respectively for this patic power system. Naturally, more
flexibility is required from the generation fleet to maintaecurity of supply as the variability of
net load becomes more severe. These results suattahe outcomes of previous studies which
concluded that neglecting flexibility in GEP with large skaoé VRE will result in expansion
plans that are infeasible in operations [4]][15

It is also obvious from Table 6 that operational costegaly tend to decrease as the flexibility
of the expansion plan increases. For example, ifwleeGEP-CF expansion plans found at the
extremities of the flexibility range are considered umaemal-variability net load, a drop of 34%
in operational costs is noted for a CFM index insesaf about 2.5. In the case of the two boundary
GEP-CFE solutions under the same net load variabilityasteroperational costs decrease by
about 33% as the CFM index rises by 4. This negative latiore occurs because fewer flexible
generation mixes force more units than required to stay order to ensure that there is enough
ramping capability available to cater for the enhanced nelt Vaaability. The standby online
status of less flexible units affects the operationats considerably due to the high start-up and
no-load costs normally associated with them. In additidrgroimproved technical constraints also
contribute towards lower operational costs. Thus, reduced onnistable generation allows
additional output at lower costs by already committed gangrainits, thereby supplanting
costlier generation from other units. Similarly, shok#yT/MDT times enable savings on fuel
costs. The above results are entirely consistehttivt conclusions of earlier research on this topic
[49],[50],[51].

Finally, it is also observed that operational costs gsickly for the same expansion plan as the
degree of net load variability increases. For instaneepterational costs of the UC process for
the same GEP-CFE solution with CFM index of 27.60 inceaygel9.3% and 41.6% if the net
load variability scenario changes from normal to mo@esat] high respectively. Greater net load
fluctuations imply more frequent generator cycling with resntrstart-ups and shut-downs, faster
up and down ramps and frequent operations at minimum gendeatis It follows that the start-
up, shut-down and production costs are inflated.

It must also be pointed out that in actual operations, “flexibility-aware” GEP-CFE generation
mixes are better prepared to cope with a number of issuem#tyasirise in flexibility-deficient
GEP-CE solutions, including VRE output curtailment and load shgddn the long term,
avoiding these issues is expected to result in additi@valgs. Besides, higher flexibility in the
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generation fleet facilitates the displacement of cativeal generation by VRE production,
resulting in less cycling and operation of thermal gemeyatinits. Therefore, planning for
additional system flexibility at an early stage enabtest-effective integration of large VRE shares
in the future. Finally, the decision to incorporate flexiphs a separate objective in the framework
is validated by the UC results of the traditional GEP-Qfntilation. They clearly illustrate that
omission of flexibility has resulted in generation pdit®that are operationally infeasible as VRE
integration in the grid increases.

Table 6: Feasibility of operations for GEP-CE, GEP-CF and-GEP generation portfolios

M odel CFM Feasbility
index NL_Normal NL_M oderate NL_High
Tot Cost Feas. Op. Cost Feas. Op. Cost Feas. Op. Cost
(10%%) (Yes/Time) (10°%) (Yes/Time) (10°%) (Yes/Time) (10°%)
10.40 24.06 Yes 3568 22.30 09.30
GEP- 10.79 23.17 Yes 3822 22.15 09.30
CE 11.43 22.57 21.15 21.45 09.15
12.03 20.03 21.00 21.00 09.00
12.53 21.35 20.45 20.30 08.30
13.25 21.64 20.45 20.00 08.00
13.96 20.74 20.30 20.15 07.30
14.47 18.68 20.00 20.00 h 07.30
25.29 Yes 3939 22.15 22.15
GEP-CF 26.02 Yes 3751 Yes 4574 22.30
26.61 Yes 3248 Yes 4030 22.30
27.19 Yes 2878 Yes 3537 Yes 4183
27.77 Yes 2601 Yes 3118 Yes 3701
20.16 21.00 20.00 09.15
21.64 21.15 20.30 09.15
22.76 21.15 20.30 09.30
GEP-CFE 23.59 Yes 3568 22.00 09.30
24.08 Yes 3378 22.15 09.45
25.28 Yes 3422 22.30 22.15
26.25 Yes 2945 Yes 3697 22.30
27.60 Yes 2408 Yes 2872 Yes 3409
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6. CONCLUSIONS

This paper presents a novel multi-objective frameworkdagiterm GEP with high shares of
VRE that incorporates flexibility screening of candidate strent plans. The framework relies
on a composite metric to assess the flexibility avadlablgeneration portfolios, thus enabling
flexibility to be considered as a fully-fledged objective.eTépplication of the model on an
illustrative planning case study has clearly demonstratediuding flexibility as an objective
radically changes the composition of investment plans lagid abjective function values. More
importantly, results show that omission of flexibilityoin the planning exercise gives rise to
flexibility-deficient energy mixes that are unable to mat@hrnore frequent and steeper variations
in net load. Analysis of the set of Pareto-optimal sohgigenerated by the framework for the
different formulations showed some pertinent relatigpsbetween the objectives for this specific
case study.

It is important to remember that the framework carriesaohigh-level evaluation of the overall
flexibility available from generation portfolios. The mairesigth of the framework lies in the low
modeling effort it requires to shed light on a key aspépbwer system planning. Evaluating a
multi-dimensional concept like power system flexibility withén highly complex planning
problem represents a significant challenge. It necessitatgs historical databases of load,
generation and weather datsmall temporal resolution, together with accurate powstegy
information and considerable computational power. Thegeireanents soar as the assessment
period becomes longer. This CFM-based framework is figtd to power systems for which
these data are not available. It provides quick and inturifeemation about the generation mixes
that are most likely to abide with existing economic, beliiy and environmental restrictions.
DMs can subsequently decide which objectives they witifaxhen selecting the most appropriate
generation mix. Hence, the proposed framework can corgributleaner generation, security of
supply and coseffective electricity for the overall benefit of sotyie

Nevertheless, the simplicity of the proposed framewak lbeen made possible at the expense
some limitations. Understanding these limitations ndy ensures that meaningful insights are
obtained into the outcomes of the proposed frameworkldwthelps in identifying opportunities
for future research. In particular, the contributionystem flexibility from sources other than the
generation fleet have been ignored since the mairvat@n is to optimize the flexibility available
from the non-dominated generation plans. For examplergg storage, interconnections to
neighboring power grids and flexible demand technologies sudemsnd-side management
techniques and electric vehicle batteries, can relieedotirden of flexibility provision from the
generation resources. They could be integrated in th@pedpgmathematical formulation either in
the form of additional parameters or by adding their daution in the flexibility objective.
Furthermore, the proposed framework assumes an optimiaegntission system as it omits
transmission constraints. Including the latter inftaenework can provide useful insights into the
possible impacts that an imperfect transmission systenm@ee on future investment plans and
on the flexibility requirements of the power system. Bnahis work has studied the GEP
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problem from the perspective of a vertically integrateagr system and the proposed framework
also holds for a perfectly competitive market. In akegbased environment, different bidding
strategies will affect the market operation unevenly ancgdhdhe economic value associated
with flexible generation. Further research could investigigterent approaches to the formulation
of bids for both flexible and inflexible generation and tlzeitcomes on the market. Eventually,
such work could explore the conditions under which the mamketides adequate incentives for

rewarding the supply of flexible generation.
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