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Scalable Learning with a Structural Recurrent

Neural Network for Short-Term Traffic Prediction
Youngjoo Kim, Peng Wang, and Lyudmila Mihaylova, Senior Member, IEEE

Abstract—This paper presents a scalable deep learning ap-
proach for short-term traffic prediction based on historical traffic
data in a vehicular road network. Capturing the spatio-temporal
relationship of the big data often requires a significant amount of
computational burden or an ad-hoc design aiming for a specific
type of road network. To tackle the problem, we combine a
road network graph with recurrent neural networks (RNNs)
to construct a structural RNN (SRNN). The SRNN employs a
spatio-temporal graph to infer the interaction between adjacent
road segments as well as the temporal dynamics of the time
series data. The model is scalable thanks to two key aspects.
First, the proposed SRNN architecture is built by using the
semantic similarity of the spatio-temporal dynamic interactions
of all segments. Second, we design the architecture to deal with
fixed-length tensors regardless of the graph topology. With the
real traffic speed data measured in the city of Santander, we
demonstrate the proposed SRNN outperforms the image-based
approaches using the capsule network (CapsNet) by 14.1% and
the convolutional neural network (CNN) by 5.87%, respectively,
in terms of root mean squared error (RMSE). Moreover, we show
that the proposed model is scalable. The SRNN model trained
with data of a road network is able to predict traffic data of
different road networks, with the fixed number of parameters to
train.

Index Terms—Graph theory, intelligent transportation sys-
tems, machine learning, scalability, time series analysis.

I. INTRODUCTION

M aking accurate predictions of traffic data in a road

network of interest is one of the important tasks for

building intelligent transportation systems. The traffic data are

usually obtained by magnetic induction loop detectors installed

on road segments. The traffic data include traffic speed and

flow, where the term traffic flow is used interchangeably with

the terms traffic count or traffic volume. The sequence of traffic

data on each road segment is essentially a time series, which

is also spatially related to traffic in different road segments.

Capturing the spatio-temporal features of the traffic data has

been of great interest of researchers.

Deep learning approaches have recently been applied to

traffic prediction tasks, given the advancement of technologies

for obtaining and managing massive volume of traffic data.

Early deep learning approaches to traffic prediction are based

on convolutional neural networks (CNNs) [1], [2]. They have

been demonstrated to be effective in exploring spatial features.

Studies incorporating recurrent neural networks (RNNs) have

Y. Kim, P. Wang, and L. Mihaylova are with the Department of Automatic
Control and Systems Engineering, The University of Sheffield, Sheffield,
United Kingdom (e-mail: rhymesg@gmail.com, peng.wang@sheffield.ac.uk,
l.s.mihaylova@sheffield.ac.uk).

Manuscript received ; revised .

also been reported, considering the traffic prediction as a

time series forecasting. Different gating mechanisms like long

short-term memories (LSTMs) [2], [3] and gated recurrent unit

(GRU) [4] have been employed in various architectures. A

novel approach has been introduced in [5] where the spatio-

temporal traffic data are converted into images with two axes

representing time and space and the images are fed into a

CNN. This method enables the CNN model capture the spatio-

temporal characteristics of the traffic data by learning the

images. Recently, it has been demonstrated that a capsule

network (CapsNet) architecture proposed in [6] outperforms

the CNN-based method in large, complex road networks. The

dynamic routing algorithm of the CapsNet replaces the max

pooling operation of the CNN, resulting in more accurate

predictions but more parameters to train. Gaussian process

(GP) is another data-driven approach, also known as a kernel-

based learning algorithm. GPs have been demonstrated to be

powerful in understanding the implicit relationship between

data to give estimates for unseen points. Comparative studies

[7], [8] have shown that GPs are effective in short-term

traffic prediction. However, they still suffer from cubic time

complexity in the size of training data [9].

The main contributions of this work are as follows: i) a

structural RNN (SRNN) approach for traffic prediction that

incorporates the topological information of the road network

is proposed; ii) it is shown that the SRNN models well both the

spatial and temporal dynamics of the traffic; iii) the scalability

of the proposed SRNN is demonstrated and validated with real

data. Our work is mainly inspired by ideas from [10], [11].

We build a spatio-temporal graph representation of the road

network by considering each road segment as a node. All the

nodes and edges are associated with RNNs that are jointly

trained. It has been demonstrated in our preliminary work

[12] that the SRNN is more computationally efficient than the

image-based state-of-the-art. In this paper, we introduce an

advanced SRNN architecture with more details and provide a

comprehensive demonstration for comparison with the image-

based methods. More importantly, we show the proposed

model is scalable; the SRNN model trained with a road

network is capable of predicting traffic states in other road

networks that have different network topologies (the number of

road segments and how they are connected with one another).

The proposed SRNN model is evaluated with the real dataset

from the case studies of the SETA EU project [13].

The rest of this paper is organized as follows. It starts with

discussing the related work regarding deep learning methods

for traffic prediction and SRNNs in Section II. We address

the proposed architecture of the SRNN for traffic prediction
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in Section III. The proposed approach and results of the

performance evaluation with a real dataset are given in Section

IV. Finally, Section V discusses the results.

II. RELATED WORK

In this section, we give a detailed overview of the relevant

literature about previous works on deep learning for traffic

prediction and SRNN. This will help readers figure out the

background and differentiate our work from the existing

works.

A. Deep Learning for Traffic Prediction

Recently, the notion of big data has been introduced to

transportation research [14] and deep learning approaches have

been actively used to address traffic prediction problems. One

of the early approaches is based on a stacked auto-encoder

model [1]. Whereas this has a fully-connected structure, a

method based on a CNN has been proposed [2]. However,

this method treats the time dimension of the traffic flow as a

channel of image data and therefore the temporal features of

the traffic flow are ignored. The spatio-temporal features of

the traffic have been of great interest of researchers.

One recent approach [5] converts the traffic data into an

image with two axes representing time and space and applies

a CNN to capture the features of the spatio-temporal images. A

CapsNet has also been used to improve the performance [6] by

effectively capturing the relationship between distant local fea-

tures. A major drawback of these image-based methods is that

the computational complexity increases as the number of road

segments increases. Besides, a combination of a CNN, RNN,

and attention model has been studied [4] for mining spatial

features, temporal features, and periodic features separately.

However, this model aims for a simple network topology

that consists of road segments along a straight path without

intersections.

In this study, we attempt to develop a compact neural

network model that is capable of learning spatio-temporal

relationship regardless of the type of network topology. To

broaden the applicability, we assume we are using only the

historical traffic data and the topological information expressed

as an adjacency matrix. The traffic data and the topological

information are generally available for any road networks of

interest.

B. Structural Recurrent Neural Network

The SRNN has been proposed in [10] with the application

in human motion forecasting, human activity anticipation, and

driver maneuver anticipation where the connected components

in a system of interest are represented as nodes in a graph.

The SRNN is based on the spatio-temporal graphs which

are usually used to model spatial and temporal reasoning

[15]. The spatial and temporal interactions between nodes

are parametrized with a factor graph [16]. As the principles

described in [10] implies, the SRNN is applicable to any

systems that can be expressed as spatio-temporal graphs.

An attention model has recently been applied to the SRNN

[11] to find subsets of human crowds within which humans

interact with each other, instead of using a fixed graph to

represent the connection among the humans. This approach

deals with only one kind of nodes, humans, to predict human

trajectories, which resembles the problem of short-term traffic

prediction.

Inspired by these two works [10], [11] on the SRNN, we

apply the SRNN to the short-term traffic prediction problem.

We consider road segments as nodes that are semantically

the same but use a road network topology to construct the

spatio-temporal graph. Moreover, we verify the scalability of

the SRNN by using training and evaluation datasets that have

different network topologies.

III. STRUCTURAL RECURRENT NEURAL NETWORK FOR

SCALABLE TRAFFIC PREDICTION

A. Problem Definition

In this study, we address the problem of short-term traffic

speed prediction based on historical traffic speed data and

a road network graph. Suppose we deal with N road seg-

ments where the loop detectors are installed. Let xt
u represent

the traffic speed on road segment u at time step t. Given

a sequence of traffic speed data {xt
u} for road segments

u = 1, 2, ..., N at time steps t = tc − l + 1, ..., tc, we predict

the future traffic speed xtc+1
u on each road segment where

tc denotes the current time step and l denotes the length of a

historical data sequence under consideration. The road network

graph is denoted as G = (V, E) where G denotes the graph,

V denotes the set of nodes, and E denotes the set of edges

connecting two nodes in V . In this study, the nodes in the

graph correspond to road segments of interest. Thus, |V| = N .

We use a directed adjacency matrix A to represent the edges

in the graph. For example, suppose the traffic flow comes from

node u to node v. This means there is an edge e linking nodes

u and v. Thus, A(u, v) = 1 and e = (u, v) ∈ E . We say two

nodes u and v are connected if either (u, v) ∈ E or (v, u) ∈ E .

Note that we use e to denote an edge in general or the form

of (u, v) with parentheses to reveal the nodes connected by

the edge.

B. Spatio-Temporal Graph Representation

The SRNN is constructed based on a spatio-temporal graph

that is obtained by unrolling the spatial graph G over time. We

use a spatio-temporal graph representation GST = (V, ES , ET ).
Let GST denote the spatio-temporal graph. V , ES , and ET
denote the set of nodes, the set of spatial edges, and the set

of temporal edges, respectively. Note that E = ES .

The spatial edges in ES represent the dynamics of traffic

interaction between two adjacent road segments, and the

temporal edges in ET represent the dynamics of the temporal

evolution of the traffic speed in road segments. Fig. 1(a)

shows an example spatio-temporal graph. Nodes u, v, w ∈ V
represent road segments. The connections between the road

segments are represented by spatial edges in ES . Note that

our approach differs from [11] in that the spatial edges are

established if the two road segments are connected, whereas

[11] employs an attention model on a fully-connected graph.

Besides, a temporal edge originated from node u is pointing to
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(a) Spatio-temporal graph

(b) Unrolled over time

Fig. 1: An example spatio-temporal graph. (a) Nodes represent

road segments and the nodes are linked by edges in ES and

temporal edges in ET . (b) The spatio-temporal graph that is

unrolled over time through the temporal edges in ET . The

edges are labelled with the corresponding feature vectors.

node u. The spatial graph (V, ES) is unrolled over time using

temporal edges in ET to form GST as depicted in Fig. 1(b)

where the edges are labelled with the corresponding feature

vectors.

The feature of node u ∈ V at time step t is xt
u, denoting

the traffic speed on the road segment. The feature vector of

spatial edge (u, v) ∈ ES at time step t is x
t
(u,v) = [xt

u, x
t
v],

which is obtained by concatenating the features of nodes u

and v. As explained above, the spatial edge (u, v) means that

the traffic flow comes from node u to node v. If the traffic

flow goes in the opposite direction, the edge will be denoted

as (v, u) and associated with the different feature vector,

x
t
(v,u) = [xt

v, x
t
u]. Note that we employ one spatial edge for

each link between two nodes whose feature vector suffices

to represent the directionality of the interaction between the

nodes, as opposite to our preliminary work [12] using two

spatial edges for each link. The feature vector of temporal

edge (u, u) ∈ ET at time step t is x
t
(u,u) = [xt−1

u , xt
u], which

is obtained by concatenating the features of node v at the

previous time step and the current time step.

C. Model Architecture

In our SRNN architecture, the sets of nodes V , spatial edges

ES , and temporal edges ET are associated with RNNs denoted

as nodeRNN, RV , spatial edgeRNN, RES
, and temporal

edgeRNN, RET
, respectively. The SRNN is derived from

the factor graph representation [10]. Our architecture is the

simplest case where the nodes, spatial edges, and temporal

Fig. 2: Architecture of the SRNN in perspective of node u

drawn with the spatio-temporal graph.

edges are sharing the same factors, respectively. This means

we assume the dynamics of the spatio-temporal interactions

is semantically same for all road segments, which keeps the

overall parametrization compact and makes the architecture

scalable and independent of the road network topology. Read-

ers interested in the factor graph representation can refer to

[16].

Fig. 2 visualizes the overall architecture. For each node

u, a sequence of node features {xt
u}

tc
t=tc−l+1 is fed into the

architecture. Every time each node feature enters, the SRNN

is supposed to predict the node label ytu, which corresponds to

the traffic speed at the next time step, xt+1
u . The input into the

edgeRNNs is the edge feature x
t
e of edge e ∈ ES ∪ET , where

the edge is incident to node u in the spatio-temporal graph.

The node feature xt
u is concatenated with the outputs of the

edgeRNNs to be fed into the nodeRNN. We use LSTMs for

the RNNs.

D. Forward Path Algorithm

In this subsection, we provide a detailed explanation on

how our SRNN algorithm works in a forward path. Before

we run the forward path, we assure the adjacency matrix, A,

describing the road network topology is read to form the set

of spatial edges, ES . The set of spatial edges connected to

node u is then obtained as C(u) = {(u, v) ∈ ES or (v, u) ∈
ES , ∀v ∈ V}.

For each time step t, the node feature, xt
u for u ∈ V , the

spatial edge feature, xt
e for e ∈ ES , the temporal edge feature,
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x
t
e for e ∈ ET , are fed into the architecture. The inputs to the

RNNs are converted into fixed-length vectors by an embedding

function, denoted as φ(·). The embedding function applies a

linear transformation to the input with a rectified linear unit

(ReLU) activation and dropout. For each node u, the following

RNNs are executed to predict the node label ytu.

1) Spatial EdgeRNN: The spatial edgeRNN, RES
, takes the

spatial edge features, {xt
e}e∈ES

, and the hidden state, ht−1
S , as

inputs. The hidden state, ht−1
S , has a dimension of |ES | ×λES

where λES
is the size of the spatial edgeRNN. The spatial

edge features are fed into a LSTM cell after converted into a

fixed-length vector atS by an embedding function as:

a
t
S = φ({xt

e}e∈ES
;WE

S ) (1)

ht
S = LSTM(atS , h

t−1
S ;WL

S ) (2)

where φ(·) denotes the embedding function, WE
S denotes

the weight associated with the embedding function, and WL
S

denotes the weight associated with the LSTM cell.

2) Temporal EdgeRNN: The temporal edgeRNN, RET
,

takes the temporal edge features, {xt
e}eT∈ET

, and the hidden

state, ht−1
T , as inputs. The hidden state, ht−1

T , has a dimension

of |ET |×λET
where λET

is the size of the temporal edgeRNN.

Similarly to the spatial edgeRNN, the temporal edge features

go through the embedding function and a LSTM cell as:

a
t
T = φ({xt

e}e∈ET
;WE

T ) (3)

ht
T = LSTM(atT , h

t−1
T ;WL

T ) (4)

where φ(·) denotes the embedding function, WE
T denotes

the weight associated with the embedding function, and WL
T

denotes the weight associated with the LSTM cell.

3) NodeRNN: The nodeRNN, RV , takes the node features,

{xt
u}u∈V , the hidden state, ht−1, and the outputs of the spatial

edgeRNN and the temporal edgeRNN as inputs.

For each node u ∈ V , rows of the hidden state of the spatial

edgeRNN associated with the spatial edges connected to node

u are selected as:

ht
C(u) = ht

S(C(u)) (5)

where ht
C(u) has a dimension of |C(u)| × λES

. We add up the

row vectors of ht
C(u) to get the spatial edges’ contribution to

the nodeRNN as:

ht
Su

= sum(ht
C(u)) (6)

where ht
Su

, encapsulating the average spatial influence to

node u, has a dimension of 1× λES
. We employ summation,

rather than concatenation, here to realize a fixed architecture

regardless of the graph topology. This is one of key efforts

to control the number of parameters by representing the

variable context with a fixed-length vector. A row vector of the

hidden state of the temporal edgeRNN associated with node

u, denoted as ht
Tu

, is concatenated with ht
Su

to form

Ht
u = concat(ht

Tu
, ht

Su
) (7)

where Ht
u has a dimension of 1 × (λET

+ λES
). Vertically

concatenating these row vectors for all nodes in V provides

an input to the nodeRNN, denoted as Ht. Each row of Ht

represents the influence of the spatio-temporal edges to the

corresponding node feature.

The node features, {xt
u}u∈V , and the concatenated hidden

state, Ht, are fed into a LSTM cell after converted into fixed-

length vectors by embedding functions as:

a
t = φ({xt

u}u∈V ;W
E) (8)

a
t
H = φ(Ht;WE

H ) (9)

ht = LSTM(concat(at,atH), ht−1;WL) (10)

{ytu} = WOht (11)

where φ(·) denotes the embedding function, WE denotes the

weight associated with the embedding function for node fea-

tures, WE
H denotes the weight associated with the embedding

function for the concatenated hidden state, and WL denotes

the weight associated with the LSTM cell. The output hidden

state of the nodeRNN is passed through a linear layer with

WO to provide the output node features {ytu} that represent

the predicted labels for all nodes.

E. Training the Structural Recurrent Neural Network

In order to train the SRNN model, the traffic speed mea-

surements for every time step t are used to comprise the

edge features, {xt
e}e∈ES

and {xt
e}e∈ET

, and the node features

{xt
u}u∈V , as described in Section III-B. The directional adja-

cency matrix, A, is read to form C(u) for u ∈ V .

After the forward path addressed in Section III-D is exe-

cuted, the prediction error, {xt+1
u } − {ytu}, is jointly back-

propagated through the nodeRNN, the spatial edgeRNN, and

the temporal edgeRNN involved in the forward path. We

employ mean squared error (MSE) as a loss function.

Note that the trainable parameters of this SRNN are

{WE
S ,WL

S ,WE
T ,WL

T ,WE ,WE
H ,WL,WO} whose size is in-

dependent of the size of the spatio-temporal graph. It only

depends on the sizes of the RNNs.

IV. VALIDATION WITH REAL DATA

This section presents the proposed approach and results of

performance validation. The purpose of the experiment is to

demonstrate: 1) the SRNN outperforms the image-based state-

of-the-art methods, CapsNet [6] and CNN [5], in learning the

spatially-related time series data; and 2) the SRNN is scalable

regardless of the network topology. The detailed methods for

preparing the dataset and the neural networks are described in

Section IV-A.

A. Implementation Details

In this subsection, we present how datasets are set up and

how the different neural networks are implemented for the

performance validation.
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Fig. 3: Road segments marked in blue and red in the road

network are the road segments of interest in which the

sensors are installed and the traffic data are available. Road

segments marked in red are belong to road subsets used in the

performance validation. The road networks around the three

road subsets are magnified below. Next to each road segment

is a unique ID number for the segment.

1) Datasets: We use the traffic speed data that had been

gathered in the city of Santander, Spain during the year

of 2016, which are available from the case studies of the

SETA EU project [13]. Traffic speed measurements taken by

magnetic loop detectors on road segments are aggregated every

15 minutes and each sparsely missing measurement is masked

with an average of the speed data recorded at the same time

in the other days. The overall dataset contains 35,040 speed

readings per road segment. We use data of the first 9 months as

the training set and the remaining data of the last 3 months as

the evaluation set. We scale the traffic speed data into the range

[0,1] before feeding into the neural networks. In addition, the

SRNN uses the adjacency matrix that represents the directional

connections between the road network. The adjacency matrix

for the road segments with sensors installed, which are of our

interest, is extracted from the adjacency matrix for the whole

network by taking only the rows and columns associated with

the road segments with sensors.

On top of Fig. 3 is the road network of the city of Santander.

The blue lines denote the road segments of interest where the

traffic data are available. Since such road segments are sparsely

located, the road network of interest is a disconnected graph

where there is at least one unreachable node, or road segment,

starting from a different node in the graph. The road network

consists of many small connected graphs whose size varies

(a) Road subset 1 (R1) (b) Road subset 2 (R2)

(c) Road subset 3 (R3) (d) Road subset 4 (R4)

Fig. 4: Graph representation of four road subsets used in the

performance validation. Nodes in the shape of grey circle,

with the corresponding ID numbers, denotes road segments.

The arrows denote spatial edges that represent directional

connection between two adjacent road segments. R4 is the sum

of sets R1, R2, and R3. ID numbers for the road segments are

presented in the nodes.

from 1 to 9. We deal with these connected road subsets because

we believe traffic data from the adjacent road segments are

correlated, which is referred to as their spatial relationship to

be learnt by the SRNN. We use three largest connected sets

for validation and denote them as Road subset 1 (R1), Road

subset 2 (R2), and Road subset 3 (R3), as shown in Fig. 3.

R1 and R2 have 5 road segments and R3 consists of 9 road

segments. Next to each road segment is a unique ID number

for the segment.

In the experiment, we use traffic speed data and adjacency

matrices for 4 road subsets including Road subset 4 (R4) that

is the sum of sets R1, R2, and R3. Their graph representation

illustrated in Fig. 4 clarifies the spatial connections between

the nodes.

2) Neural Networks: We compare the performance of the

traffic speed prediction provided by the 3 different neural

networks:

• Proposed SRNN

• CapsNet [6]

• CNN [5]

Here we provide a detailed description of how these neural

networks are implemented. All the neural networks employ

MSE as a loss function and Adam optimizer [17] to minimize

the sum of the MSE.

The architecture of the proposed SRNN can be referred to

Section III. The SRNN shows its best performance with the

following hyperparameters. The hidden state of the nodeRNN

has a size of 64, and that of the edgeRNNs has a size of

64 as well. We employ embedding layers in the network that

convert the inputs into a 32-dimensional vectors with a dropout
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TABLE I: Hyperparameters of the proposed SRNN.

Hyperparameter Value

NodeRNN size, λ 64

Spatial edgeRNN size, λES
64

Temporal edgeRNN size, λET
64

Embedding size 32

Learning rate 0.0005

Decay rate 0.99

Dropout rate 0.5

rate of 0.5. SRNN is trained with the starting learning rate

of 0.0005 and the exponential decay rate of 0.99. The major

hyperparameters of the SRNN are summarized in Table I.

The SRNN is built based on the Pytorch implementation of

[11]. The computational complexity of the SRNN is O(W )
since the SRNN consists of 3 RNNs (a nodeRNN, a spatial

edgeRNN, and a temporal edgeRNN executed sequentially)

and the computational complexity of a RNN with a LSTM is

O(W ) [18] where W is the number of trainable parameters.

Note that the number of trainable parameters is independent

of the size of the road network as discussed in Section III-E.

The CapsNet and CNN are built based on the Tensorflow

implementation of [6]. In summary, they convert the spatio-

temporal traffic data into an image with two axes representing

space and time and apply the deep learning methods for cap-

turing the relationship between the spatio-temporal features in

the image. Only one max pooling operation is used in the CNN

implementation because the spatio-temporal images from the

datasets are small (e.g., 5 segments for R1 and R2). Both of

the networks show their best performance with the common

starting learning rate of 0.0005 and the exponential decay

rate of 0.9999. The computational complexity of the CNN

is proportional to the spatial size of the output feature map

[19], which is proportional to the number of road segments in

our problem, given the number of filters and the filter size are

constant. Thus, the CNN has O(N). On the other hand, the

computational complexity of the CapsNet will be proportional

to O(N2) since it runs routing-by-agreement between capsule

features in two convolutional layers [20].

3) Task: Given the datasets, the neural networks are sup-

posed to give 15-min prediction of traffic speed based on 150-

min data, which corresponds to a short-term prediction for

the next time step based on data of previous 10 time steps

(l = 10).
4) Performance Metrics: We use the root mean squared

error (RMSE) as a performance metric for assessing the

prediction accuracy as:

RMSE =

√

∑I

i=1 (y
(i) − ŷ(i))2

I
(12)

where ŷ(i) and y(i) denote the i-th speed prediction and its

true value, respectively. Here, I represents the number of the

speed data in the evaluation set. Although there are other

metrics such as mean relative error (MRE) and mean absolute

error (MAE), we believe the RMSE suffices to show the per-

TABLE II: Prediction performance in RMSE (unit: km/h).

R1 R2 R3 R4

SRNN 6.877 8.537 9.419 9.322

CapsNet 9.416 9.931 10.52 9.910

CNN 7.329 9.075 10.54 10.36

formance difference between the neural networks employing

MSE as a loss function. The MRE and MAE show a similar

tendency as the RMSE in this experiment [12].

Besides the accuracy, we compare the number of trainable

parameters of the neural networks. Since computation time

depends on the type of software platform, computing machine,

code optimization, and the usage of graphics processing unit

(GPU), we see the number of trainable parameters as an em-

pirical measure of the computational complexity. The number

of trainable parameters is obtained by counting the number of

variables that are optimized by back-propagation, such as the

weights and biases in the neural networks.

B. Learning Spatio-Temporal Relationship

Here we verify the SRNN is capable of learning the spatio-

temporal relationship accurately, requiring fewer parameters

to train. Whereas the RNN learns the time series data on each

road as if data on different roads are independent, the SRNN

takes the road graph as well as the historical traffic data and

learns the spatial relationship between data from different road

segments and temporal relationship of time series data on each

road.

The three neural networks are trained and evaluated with

the datasets R1, R2, R3, and R4. Each dataset contains the

1-year traffic speed data, where the data of the first 9 months

constitute the training set and the remaining data of the last 3

months are taken as the evaluation set. We run 10 epochs of

training and evaluation and take the average performance as

the result. Table II shows the average prediction performance

of the methods on each dataset. One can observe that the CNN

performs better than the CapsNet for datasets R1 and R2,

but worse for datasets R3 and R4. This observation confirms

the result reported in [6] that the CapsNet is more effective

when the image size (the number of road segments) is larger.

Meanwhile, the SRNN outperforms both of the image-based

methods. In average, the SRNN is better than the CapsNet and

the CNN by 14.1% and 5.87%, respectively, in RMSE. Note

that the performance is realized with the smaller number of

parameters to train. The number of trainable parameter of the

SRNN is 8.79×104 whereas that of the CapsNet ranges from

5.59 × 105 (R1 and R2) to 7.44 × 106 (R4) and that of the

CNN ranges from 3.75×105 (R1 and R2) to 4.26×105 (R4).

C. Scalability to Network Topology

In order to demonstrate the scalability, we evaluate the three

neural networks by using datasets different from the dataset

used in training. For example, the neural networks trained with

the training set (data of the first 9 months) of R1 are evaluated

with the evaluation set (data of the last 3 months) of the other
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TABLE III: Prediction performance in RMSE, trained and

evaluated with different road networks (unit: km/h).

(a) SRNN

Train

Eval
R1 R2 R3 R4

R1 6.877 8.697 9.504 9.455

R2 6.990 8.537 9.653 9.444

R3 7.141 9.450 9.419 10.06

R4 6.871 8.714 9.400 9.322

(b) CapsNet

Train

Eval
R1 R2 R3 R4

R1 9.416 23.46 - -

R2 21.26 9.931 - -

R3 - - 10.52 -

R4 - - - 9.910

(c) CNN

Train

Eval
R1 R2 R3 R4

R1 7.329 23.57 - -

R2 18.77 9.075 - -

R3 - - 10.54 -

R4 - - - 10.36

datasets: R2, R3, and R4. This is repeated for evaluations with

training sets of R2, R3, and R4, respectively.

Table III summarizes the result. The number in i-th row and

j-th column denotes the RMSE obtained with the training set

of Ri and the evaluation set of Rj. The diagonal terms are

equal to the result in Table II. The SRNN shows consistent

performance for all the combinations of training sets and

evaluation sets. The evaluation performance tends to depend

on the dataset used in evaluation, regardless of the dataset used

in training.

On the other hand, the image-based methods are not able to

predict traffic data for datasets having the different number of

road segments. Moreover, even if the number of road segments

is equal for a training set and an evaluation set extracted

from different datasets, it is obvious that the image-based

methods will fail to provide accurate predictions because the

image-based methods learn the specific features of the spatio-

temporal images that are unique for each dataset. Table III

shows that the predictions of CapsNet and CNN on different

datasets are erroneous. Fig. 5 shows the average RMSEs of

Fig. 5: Average performance of methods in RMSE, evaluated

with the same dataset and the different dataset with the training

dataset.

Fig. 6: Number of trainable parameters of the SRNN, CapsNet,

and CNN.

the diagonal elements and off-diagonal elements for the three

methods in Table III. The SRNN shows similar performance

on the same dataset and the different datasets whereas the

CapsNet and CNN show a large difference in the performance

between the two cases.

We compare the number of trainable parameters in Fig. 6.

As the number of nodes, N , increases, the number of trainable

parameters of the SRNN remains the same while those of the

CapsNet and the CNN keep increasing. When N = 50, the

number of trainable parameters of the CapsNet is over 100
times larger than that of the SRNN.

Therefore, the SRNN shows better scalability than the

image-based methods in terms of the number of road segments

and the applicability to other road networks that have the

different number of road segments and different topologies.

D. Discussion

As one can observe in Section IV-B and Section IV-C,

the proposed SRNN outperforms the image-based methods

and is applicable to different datasets with different network

topologies. This is contributed by the network design where

the dynamics of the spatial and temporal edge features learned
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by the SRNN can be generalized. The result implies that the

SRNN is scalable between disjoint road networks (e.g., R1

and R2 where R1 ∩ R2 = ∅) and also between a subset and

a superset (e.g., R1 and R4 where R1 ⊂ R4). Besides, the

evaluations on road network R4 verify that the SRNN is able

to predict traffic data in a road network that is not a connected

set.

Moreover, the number of trainable parameters of the SRNN

is independent of the number of the road segments. The size of

each RNN, not the number of nodes, determines the number

of trainable parameters of the SRNN. The SRNN is able

to provide accurate predictions with the smaller number of

parameters to train, which will become more advantageous

for larger networks.

V. CONCLUSION

We present an SRNN architecture that learns the spatial

and temporal relationship between the traffic data represented

as a spatio-temporal graph. With the real traffic speed data

measured by induction loop detectors in the city of San-

tander, we demonstrate that the proposed SRNN is compu-

tationally more efficient than the image-based state-of-the-

art approaches. More importantly, we show that the proposed

method is scalable. When trained with data of a road network,

the proposed SRNN model is able to predict traffic data of

different road networks, with the fixed number of parameters

to train. The proposed model can be integrated into the traffic

management systems or route planning systems to provide

accurate predictions on future traffic states by an efficient and

scalable means.
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