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The precise mechanisms responsible for the natural dynamos in the Earth and Sun 
are still not fully understood. Numerical simulations of natural dynamos are extremely 
computationally intensive, and are carried out in parameter regimes many orders of 
magnitude away from real conditions. Parallelization in space is a common strategy to 
speed up simulations on high performance computers, but eventually hits a scaling limit. 
Additional directions of parallelization are desirable to utilise the high number of processor 
cores now available. Parallel-in-time methods can deliver speed up in addition to that 
offered by spatial partitioning but have not yet been applied to dynamo simulations. This 
paper investigates the feasibility of using the parallel-in-time algorithm Parareal to speed 
up initial value problem simulations of the kinematic dynamo, using the open source 
Dedalus spectral solver. Both the time independent Roberts and time dependent Galloway-

Proctor 2.5D dynamos are investigated over a range of magnetic Reynolds numbers. 
Speedups beyond those possible from spatial parallelisation are found in both cases. Results 
for the Galloway-Proctor flow are promising, with Parareal efficiency found to be close to 
0.3. Roberts flow results are less efficient, but Parareal still shows some speed up over 
spatial parallelisation alone. Parallel in space and time speed ups of ∼ 300 were found for 
1600 cores for the Galloway-Proctor flow, with total parallel efficiency of ∼ 0.16.

 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dynamo theory seeks to explain the processes that generate magnetic fields in stars, planets, and galaxies. These mag-

netic fields are sustained by currents generated by the flow of a conducting fluid [1,2], such as molten iron in the Earth’s 
core, or plasma in the Sun and stars. The fluid velocity, u, twists, stretches, and shears field lines, counteracting the Ohmic 
diffusion of the magnetic field, B , which would otherwise cause the field to decay [3]. The dynamo problem is typically 
modelled using the induction equation

∂B

∂t
= ∇ × (u × B) +

1

Rm

∇2
B, (1)
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coupled with the momentum equation for the fluid, which determines u. The magnetic Reynolds number is defined by

Rm =
U L

η
, (2)

where U is a characteristic speed, L a characteristic length scale, and η is the magnetic diffusivity [4]. A solution of this 
coupled system is called a dynamo if the magnetic field continues to be generated as time t → ∞. The smallest scale 
of magnetic features created by the evolution of the induction equation (1) is the resistive scale which is proportional to 
Rm

−1/2 [3], so that the spatial resolution required to capture these structures increases as Rm
1/2 . This leads to very high 

computational requirements that limit the parameter regimes that can be studied. Simulations are currently carried out at 
parameter regimes far removed from those found in natural dynamos of real stars and planets [5].

Owing to the complexity of the full dynamo problem much attention has focused on the simpler problem of kinematic 
dynamos where u is prescribed. As the induction equation is linear in B , solutions to the kinematic dynamo problem are 
either exponentially growing or decaying with a well defined growth-rate for a statistically stationary u. Due to a number of 
anti-dynamo theorems [6,7], relatively complex space or time dependent flows are required in order to generate a growing 
magnetic field. Such a problem is difficult to address analytically, so numerical and computational methods are employed.

If u is steady, then the growth-rate can be found by solving an eigenvalue problem, whilst if the flow is periodic in time, 
the growth-rate can be found by solving a Floquet problem. If in addition the flow is independent of one co-ordinate, say 
the z-co-ordinate (2.5D flow), then one can seek monochromatic solutions of the form B(x, y, z, t) = b(x, y, t)eikzz , so that kz
becomes a parameter and the problem becomes 2D. The behaviour of dynamos at different Rm has received much attention 
[8–10]. Low Rm systems are dominated by diffusion, while high Rm systems are dominated by advection. Laboratory and 
engineering type flows tend to have Rm < 1 [11], flows in the Earth’s core are characterised by Rm ∼ 102 − 103 [12], whilst 
flows in the Sun have Rm ∼ 106 − 1010 [13].

Behaviour of dynamos at large Rm is of particular interest astrophysically. If the growth-rate stays bounded away from 
zero as Rm → ∞ then a dynamo is called fast, otherwise it is called slow. It is a necessary (but not sufficient) condition 
that a fast dynamo have chaotic Lagrangian particle paths [14]. In 2.5D flows, this can only be the case for unsteady flows. 
In fully 3D flows, the paths tend to be chaotic even without time dependence. No fast dynamos have yet been proven 
mathematically, but some have been found to act as fast dynamos in numerical simulations.

A particular choice of 2.5D cellular steady flow was considered by Roberts [8]. The Galloway-Proctor circularly polarised 
(CP) [9] flow is an extension of this flow to include time dependence. While the Roberts flow must act as a slow dynamo, 
as it is steady, the Galloway-Proctor dynamo is thought to be fast. The Roberts flow dynamo has been used to investigate 
the experimental dynamo at Karlsruhe [10], whilst the Galloway-Proctor flow was used to investigate the formation of large 
scale magnetic fields at high Rm [15].

High accuracy solutions are needed for dynamo simulations and so the majority of studies use spectral methods to 
discretise in space [16], expanding in Fourier series, spherical harmonics, or Chebyshev polynomials as best fits the domain, 
to make use of their spectral convergence properties. Because of the high resolution requirements, very long compute times 
are found for the full dynamo system, even when simulations are run on large numbers of cores in high performance 
computing (HPC) facilities. Matsui et al. [17], for example, tested scaling on up to 16,384 cores while Schaeffer et al. [18]
ran simulations that required over 10 million cpu hours. Transforming between spectral and spatial coordinates, usually via 
Fast Fourier Transform (FFT), acts as a limiting factor on the parallel scalability of pseudospectral codes [19]. Owing to the 
global communications requirements of spectral methods, simulations are currently unable to scale to the huge number of 
processors available in modern HPC facilities. Further ways to parallelize computations are therefore required to investigate 
more realistic parameter regimes.

Parallel-in-time methods can increase scalability of computer simulations beyond saturation of spatial parallelisation [20]

and have been investigated for over 50 years [21]. The most widely studied parallel-in-time algorithm is Parareal [22], 
which was introduced in 2001 and has spurred a renewed interest in the subject. Further parallel in time methods have 
been proposed recently, like PFASST [23], PITA [24], and Paraexp [25]. The Parareal algorithm has been utilised in fluid flow 
problems [26,20], plasma physics [27], financial simulations [28], and in planetary mantle simulations [29]. The method 
has been extensively analysed mathematically by Gander and Vandewalle [30], and is thought to perform badly for purely 
hyperbolic and highly advective systems [31], as it primarily corrects amplitude defects, rather than phase or frequency 
defects [32]. There has been recent work in parallel-in-time for advective problems, where the linear operator was solved 
using the method of characteristics [33]. In this work, however, we seek to inform future studies of the non-linear dynamo 
problem, where the advective terms are no longer linear, and this approach would not be suitable. While some recent works 
demonstrate efficient application of Parareal to hyperbolic PDEs [34], the applicability of the method for dynamo simulations 
has not yet been studied.

The present paper studies the ability of Parareal to speed up kinematic dynamo simulations. It presents the first demon-

stration that parallel-in-time methods can deliver speedup for the induction equation beyond the saturation point of spatial 
parallelization. We introduce an implementation of the Parareal algorithm in the open source spectral solver Dedalus [35]
and investigate its performance for the stationary Roberts [8] as well as the time-dependent Galloway-Proctor [9] flow. 
Although these flows are relatively simple, they generate complex dynamics in the magnetic field and are good initial test 
problems to demonstrate Parareal’s efficiency for dynamo simulations.
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2. The kinematic dynamo problem

In this work, the kinematic dynamo is studied for a subset of the ABC (Arnold, Beltrami and Childress) class of flows

u = (C sin(z) + B cos(y), A sin(x) + C cos(z), B sin(y) + A cos(x)) , (3)

[36], with one of A, B , or C equal to 0, making the flow 2.5D.

2.1. Roberts flow

The Roberts flow is found from the ABC flow by setting A = B = 1, C = 0, giving u = (cos(y), sin(x), sin(y) + cos(x)). 
Noting that ∇ · B = ∇ · u = 0, equation (1) becomes

∂tbx(x, y, t) = −by sin(y) − cos(y)∂xbx − sin(x)∂ybx − (sin(y) + cos(x))ikzbx +
1

Rm

(

∇2 − k2z

)

bx, (4a)

∂tby(x, y, t) = bx cos(x) − cos(y)∂xby − sin(x)∂yby − (sin(y) + cos(x))ikzby +
1

Rm

(

∇2 − k2z

)

by, (4b)

∂bx

∂x
+

∂by

∂ y
+ ikzbz = 0. (4c)

This flow is periodic in x and y, and equations (4) are solved in a 2π square plane with periodic boundary conditions.

2.2. Galloway-Proctor flow

The Galloway-Proctor circularly polarised (CP) flow adds time dependence to a Roberts like flow

u = (C sin(z + sinωt) + B cos(y + cosωt),C cos(z + sinωt), B sin(y + cosωt)) , (5)

with ω = 1 and C = B =
√
3/2, A = 0. We look for solutions of the form B = b(y, z, t)eikxx . When put into (1), we have

∂tby(y, z, t) = bz∂zv − uikxby − v∂yby − w∂zby +
1

Rm

(

∇2 − kz
2
)

by, (6a)

∂tbz(y, z, t) = by∂yw − uikxbz − v∂ybz − w∂zbz +
1

Rm

(

∇2 − kx
2
)

bz, (6b)

ikxbx +
∂by

∂ y
+

∂bz

∂z
= 0. (6c)

2.3. Morphology of the Roberts and Galloway-Proctor fields

Fig. 1 shows the contours of the y-component of the magnetic field for Rm = 3 and 3000 in the Galloway-Proctor flow, 
and Rm = 4 and 4096 in the Roberts flow. Larger scale and more diffuse structures are present in the Rm = 3 and Rm = 4

simulations. Finer structures emerge in the Rm = 3000 and Rm = 4096 cases, showing the effect of the Rm
−1/2 scaling on 

the smallest structures. The Galloway-Proctor magnetic field morphology changes over time, with the periodic change in the 
velocity field, which leads to the more complicated pattern shown in Fig. 1d. For the Roberts flow, the magnetic field has a 
constant morphology and simply grows exponentially in magnitude.

3. Parareal algorithm

We give only a brief description of the Parareal algorithm, for a more detailed description see for example the works by 
Lions et al. or Gander and Vandewalle [22,30]. Parareal is an iterative method for solving initial value problems (IVPs) of the 
form

∂U

∂t
= f (U (t), t) , U (0) = U0, 0 ≤ t ≤ T (7)

where the right hand side f typically comes from spatially discretizing a partial differential equation. Parareal uses two 
different time stepping methods, the coarse method G and the fine method F . The time domain is split up into Np time 
slices, defined by the time-points 0 = t0 < t1 < ... < tNp−1 < tNp = T , where Np is the number of processors available for 
time parallelisation. We assume that all time slices are of equal length �T = T /Np . The fine time stepping method has time 
step δt , while the coarse method has time step �t .

Parareal starts with running the coarse solver from t = 0 to t = T , giving an initial approximation to the solution U at 
time tn , Uk=0

n , for every n = 0, 1, ..., Np , where k denotes the Parareal iteration number, and n denotes the time slice. Then, 
the approximation is refined using the iteration
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Fig. 1. Contour plots of the y-component of the magnetic fields for the labelled flows at time T = 50. The left hand side shows the low Rm field whilst 
the right hand plots show the high Rm fields. Much finer structures are apparent in the high Rm cases, due to the Rm

−1/2 scaling of the spatial structures. 
The Galloway Proctor field shows more spatial variability, due to the time dependence of the flow. The Roberts field stays effectively fixed in space, only 
varying in magnitude over the course of the simulation, whilst the morphology and magnitude of the Galloway Proctor field changes over time.

Uk+1
n+1 = G(tn+1, tn,U

k+1
n ) +F(tn+1, tn,U

k
n) − G(tn+1, tn,U

k
n). (8)

Computing the fine method can be parallelized across time slices. However, the correction from the coarse propagator 
has to be computed in serial, propagating the Parareal correction throughout the time domain.

3.1. Convergence and performance

As k → Np , Parareal converges to the solution that would have been obtained through the use of the fine method in serial 
over the time domain [0, T ] [30]. Achieving speed up, however, is dependent upon converging to an acceptable tolerance tol
within a much smaller number of iterations than Np . We test for convergence by measuring the relative two-norm defect 
at the last time slice between successive iterations

σ =

∥

∥

∥
Uk

Np
− Uk−1

Np

∥

∥

∥

2
∥

∥

∥
Uk

Np

∥

∥

∥

2

. (9)

We denote as kcon the number of iterations required until σ ≤ tol. Speed up s of Parareal can be estimated as

s =
[(

1+
kcon

Np

)

Rc

R f

+
kcon

Np

]−1

, (10)
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where Rc is the runtime of the coarse method over one time slice and R f is the runtime of the fine method over one time 
slice. Speed up is bounded by

s ≤ min

{

Np

kcon
,
R f

Rc

}

, (11)

[30]. The bound illustrates the trade off that needs to be optimised to gain optimal performance with Parareal. On the one 
hand, the ratio between the run times of the fine and coarse solvers should be large, so that the second bound is high. 
This can be achieved by using a very coarse and cheap G . However, the method also needs to converge in a small number 
of iterations to ensure that the first bound is high. A less accurate coarse solver will typically require a larger number of 
iterations to converge. Finding a good compromise between these two competing factors is key to gaining high speed up 
with Parareal. Parallel efficiency is defined as

ǫ =
s

Np

=
parallel speed up

number of processors
, (12)

where ideal scaling s = Np would give an efficiency of one. Parareal has an efficiency bound of 1/kcon , which highlights the 
need to keep the number of iterations low. The need to test for convergence between two successive iterations of Parareal 
means there is an effective limit of 1/2 for parallel efficiency when using Parareal.

3.2. Coarse solvers

A number of strategies have been proposed to design coarse solvers for Parareal. The most simple to implement is an 
increase in time step size for the coarse solver compared with the fine solver, whilst leaving the timestepping method and 
spatial discretization unchanged [20,37]. A second strategy is to use an implicit time stepping method with large step size 
for the coarse solver, with explicit time stepping for the fine solver [38]. Further strategies to find a coarse solver include 
simplifying the physics so that a less complicated model can be used [39–41]. Another strategy to be considered is to use a 
reduced spatial resolution, along with a larger time step [42]. Using this strategy, the method of interpolation from coarse 
to fine grids has been found to be important to Parareal convergence [43]. In section 5.2 we explore different options in the 
context of the kinematic dynamo problem.

4. Implementation

This work was carried out using the Dedalus [35] open source, spectral solver. We use a collocation-based pseudo-
spectral method. Spectral methods benefit from spectral convergence: for a sufficiently smooth solution, the error of the 
method is O[(1/Ns)

Ns ] for a discretisation with Ns collocation points. This compares favourably with a standard finite 
difference discretisation, which has error O[(1/N)p] for a pth order method. Because of the periodic domain, Fourier bases 
are used. Dedalus uses the FFTW library to perform fast parallel transforms between real and spectral space and parallelizes 
in space over n − 1 dimensions of an n dimensional domain using the mpi4py library [44].

Dedalus offers a number of different time stepping methods up to 4th order, including multi-step and Runge Kutta im-

plicit/explicit (IMEX) methods [45–47]. Because multi-step methods in Parareal require restarting in every time slice and 
every iteration, we focus on Runge-Kutta methods. For optimal serial performance, we rely on IMEX Runge-Kutta meth-

ods [45]. Here, we integrate the terms (u ·∇)B and (B ·∇)u explicitly, whilst the diffusion term is treated implicitly. Below, 
we compare the IMEX Runge-Kutta methods RK111 (1 implicit stage, 1 explicit stage, 1st order), RK222 (2 implicit stages, 2 
explicit stages, 2nd order), and RK443 (4 implicit stages, 4 explicit stages, 3rd order) to determine the most efficient serial 
fine solver against which to compare Parareal.

Simulations are carried out in a periodic domain with side length 2π . The spatial resolution is measured in terms of 
the number of spectral modes in x and y, (Nx , and N y respectively) for the Roberts flow, or number of modes in y and z, 
(N y and Nz respectively) for the Galloway-Proctor flow. Since the domain is a square, we set Nx = N y = N for the Roberts 
flow and N y = Nz = N for the Galloway-Proctor flow in all examples, so that the total spatial problem size is N2 . The initial 
conditions were set to a random perturbation of magnitude 10−5 for Bx and B y in the Roberts flow, and for B y and B z in 
the Galloway Proctor flow.

In the kinematic approach, the simulation time needs to be long enough that the largest growing mode can be found 
and a steady growth rate calculated. In this work, this time was found to be around 10-20 turnover time periods. However, 
in a fully dynamic simulation, much longer simulation times are required to reach a statistically steady state in both the 
fluid flow and the magnetic field. For example, Smith et al. [48] ran simulations until T = 450 to achieve a statistically 
steady flow. As the aim of the work is to inform future studies of dynamic simulations, we choose a longer time interval of 
50 turnover times.

Parareal was implemented by splitting the MPI world communicator into a space communicator and a time communi-

cator. The space communicator was utilised by Dedalus to parallelize in space, whilst the time communicator was used to 
communicate between time slices. Two instances of Dedalus were created on each time slice, one with the coarse resolu-
tion (NC spectral modes in each direction) and time step �t , and one with the fine resolution (N F spectral modes in each 
direction) and time step δt . Interpolation from coarse to fine grids, and restriction from fine to coarse grids, were carried 



6 A.T. Clarke et al. / Journal of Computational Physics: X 7 (2020) 100057

out using the Dedalus set_scales(ratio) method on the field objects, which allows efficient interpolation based on 
Fourier re-sampling.

4.1. Pseudo-code for the Parareal algorithm in Dedalus

// Initialization
space_communicator=MPI.COMM_WORLD.Split(time_slice, key);
time_commnicator=MPI.COMM_WORLD.Split(space_slice, key);
calculate time slice size, start and end of time slice for each time slice;
create 2 instances of dedalus solver on each time slice, using the space communicator, with same equations, but 
different time step sizes and resolutions;
set initial conditions of fine solver;
restrict initial conditions down to size of coarse solver, and set coarse solver initial conditions;

// Initial coarse run
for each time slice from 0 to T_end do

if first time slice then
get initial conditions

else

time_communicator.Recv(coarse_fields,source=time_communicator.rank-1);

// next step gets fine solver ready for parareal iterations
coarse_fields.set_scales(N_fine/N_coarse);

fine_fields=np.copy(coarse_fields)
end

for i in range(N_time_steps_per_slice_coarse) do
coarse_solver.step(coarse_time_step)

end

time_communicator.Send(coarse_fields,dest=time_communicator.rank+1);

end

// Beginning of Parareal iterations
while not converged do

// Parallel step
for i in range(N_time_steps_per_slice_fine) do

fine_solver.step(fine_time_step)

end

// Serial Step
for every time slice do

if first time slice then
get initial conditions

else

time_communicator.Recv(fine_fields,source=time_communicator.rank-1);

end

// Parareal correction
fine_fields.set_scales(N_coarse/N_fine);

coarse_fields=np.copy(fine_fields);

for i in range(N_time_steps_per_slice_coarse) do
coarse_solver.step(coarse_time_step)

end

carry out correction (new_coarse - old_coarse + new_fine);

fine_fields = new_coarse_result - old_coarse_result + fine_fields;
if not last time slice then

time_communicator.Send(fine_fields,dest=time_communicator.rank+1);

end

save corrected solution;
set time to t_start for each slice (coarse and fine);

end

if final time slice then

check for convergence with previous solution;
end

end
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Fig. 2. Graphs showing spatial convergence of the solvers for the two flows investigated. Spectral order of convergence is observed, with the decrease in 
error accelerating as the number of spectral modes, N , is increased. The line at 10−5 shows the required level of accuracy in the solution. The number of 
modes required for each Rm follows the predicted Rm1/2 scaling.

// Saving state
Function Save_state():

analysis=fine_solver.evaluator.add_file_handler(file_name,iter=1);

analysis.set_num=time_communicator.rank analysis.add_system(fine_solver.state,layout=’g’);

fine_solver.step();

analysis.iter=np.inf;

return

5. Results

To ensure that reported speedups are a like-to-like comparison and meaningful, we need to make sure that the solution 
provided by Parareal is of the same accuracy as the fine solver used serially. Given the need for highly accurate results 
in dynamo simulations, we aim for an accuracy of 10−5 . Furthermore, we need to compare Parareal against an efficient 
fine solver – achieving speedup with Parareal when a much more efficient alternative to the fine solver exists would not 
provide convincing evidence of Parareal’s usefulness. Therefore, we first find the optimal fine solver in Dedalus to deliver 
the required accuracy and then parallelise it with Parareal.

5.1. Fixing the fine solver

First, we need to fix the required spatial resolution for F . Convergence in space was tested by running simulations at 
double the previous spatial resolution until the normalised L2 difference between two solutions was ∼ 10−15 . At this point, 
the error from the spatial discretisation is of the order of machine precision. We denote UN as the solution vector containing 
bx and by in real space with resolution N . The lower resolution solution was interpolated onto the same grid size as the fine 
solution using spectral interpolation so that the difference could be computed. The most highly resolved solution, UNmax , 
was then used as a reference solution to compute relative error of each UN . The results are shown in Fig. 2, confirming 
the expected spectral convergence behaviour. For each Rm , we set N F to the smallest value that gives a solution with error 
smaller than 10−5 (indicated by the dashed red line). Because higher magnetic Reynolds numbers produce smaller scale 
features, they require better spatial resolution to match our error tolerance.

Next, we fix the time stepping method and time step. Creating a reference solution with a temporal error of the order of 
machine precision proved to be unfeasible, due to computational constraints, especially in the higher Rm cases. Therefore, a 
result with error lower than 10−7 was used as a reference solution for setting δt . This is two orders of magnitude smaller 
than the desired result of 10−5 and should provide an accurate estimation of the error due to time-stepping. A comparison 
of the Runge-Kutta time steppers available in Dedalus is shown in Fig. 3. Because RK443 reaches the required tolerance of 
10−5 with the smallest number of evaluations of the right hand side function, it is the most efficient choice. Similar results 
were found for other magnetic Reynolds numbers. We therefore use RK443 for the fine method F throughout this work.

Fig. 4 shows the dependence of the solution error on time step size for a range of Rm for the Roberts and Galloway-

Proctor flows. All simulations were carried out with the optimal N F found from the spatial resolution study (Fig. 2). We can 
see that smaller step sizes are required to meet a given level of accuracy for the Galloway-Proctor flow than for the Roberts 
flow. This is likely due to the Galloway-Proctor flow depending explicitly on time. In the case of the Roberts flow, a δt small 
enough to satisfy the stability requirements for a given N F is sufficient to also satisfy the accuracy requirement of 10−5 , 
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Fig. 3. Work required for different time stepping methods to obtain solutions of a certain accuracy, measured as the relative two-norm of each solution Uδt

and the solution obtained using the smallest timestep with the RK443 stepper (Umin
δt ). The number of evaluations required to compute from T = 0 to T = 1

are shown. This number depends on δt and the number of stages in each time-stepping method. For any degree of accuracy better than 10−2 , the RK443 
time-stepper requires fewer evaluations than either RK111 or RK222. Results shown are for the Galloway-Proctor flow with Rm = 300, N F = 256.

Fig. 4. Convergence with respect to time step size for the different flows and Rm simulated. The Roberts flow, which is independent of time, shows high 
accuracy for the highest stable time step for all simulations except Rm = 4. The Galloway Proctor flow has a larger error for the same time step size. This 
is believed to be because of the incorporation of time on the right hand side of the equations. Galloway-Proctor flows therefore require smaller time step 
sizes to reach the desired accuracy. Where the error goes past the top of the figure, the solver has diverged and is unstable for this time step size.

except for the most simple case of Rm = 4. This affects the performance of Parareal through the ratio of computational run 
times R f /Rc because we have to use essentially the same time step for both the coarse and fine method. In contrast, for 
the Galloway-Proctor simulations, satisfaction of the stability requirement did not guarantee accuracy within the required 
tolerance, and a reduced δt must be used for the fine solver, leading to a better coarse-to-fine computation time ratio.

5.2. Fixing the coarse solver

The N F and δt determined in Section 5.1 are used in the fine solver. We now discuss the different possibilities available 
for choosing a coarse solver. Using the same spatial resolution with �t > δt was not suitable for the Roberts flow, as δt
was the largest stable time step for a given resolution. It was also unsuitable for the Galloway-Proctor simulations, as the 
ratio of �t/δt was not large enough to give meaningful speedup. Use of a fully implicit coarse solver was rejected, as the 
spectral spatial discretisation meant that a dense matrix solve would be required at each time step. This large increase 
in computational complexity would reduce the difference in computations required between the fine and coarse solvers, 
leading to smaller speed ups. There was little scope to attempt to use reduced physics in this study, as we are already 
considering the simplest form of dynamo problem. However, this strategy may be useful in further work on a non-linear 
dynamo. Coarsening in both space and time was found to be the most promising strategy. As time step stability is linked 
to spatial resolution, reducing spatial resolution allows a larger time step to be taken, even where the fine solver is at 
the largest stable time step. This means that NC < N F and �t > δt , opening up the possibility of a large difference in 
computational complexity between the coarse and fine solvers. However, too aggressive coarsening will lead to a very 
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Fig. 5. Error vs. time step size for a range of spatial resolutions (N) for the Roberts and Galloway-Proctor flows. Accuracy is constrained by spatial resolution, 
until the finest resolution is reached in each case. As the resolution reduces, the largest stable time step increases as expected. Error increases above 101
(off the top of the graph) indicate that the method has become unstable at that time step. Accuracy for a given resolution/time step size is higher for the 
Roberts flow than the Galloway-Proctor flow.

Fig. 6. (a) Speedup vs ratio of coarse, fine spatial resolutions for Roberts flow, with Rm = 512, N F = 160, and δt = 10−2 . Long run times are found for 
very low coarse resolutions as the estimated solution is not accurate enough to allow quick convergence. As NC increases, the run time reduces due to the 
reduced number of Parareal iterations required to converge. The best performing coarse solver has a resolution of 0.5NF . Further increasing the resolution 
of the coarse solver increases the complexity of the coarse solver to a level close to that of the fine solver, reducing any speed up possible. (b) Graph 
showing how defect to previous solution changes with number of Parareal iterations for different resolutions of the coarse solver. Very low resolutions 
results in Parareal taking many iterations to converge, reducing opportunity for speed up. High resolutions show quicker convergence.

inaccurate coarse solver and slow convergence. The most efficient amount of spatial coarsening was studied by carrying out 
Parareal simulations with a wide range of coarse method spatial resolution.

Simulations were carried out for the Roberts flow with Rm = 512. This is moderately high, whilst allowing relatively 
modest compute resources to be used. The fine solver parameters were fixed, with N F = 160, and δt = 10−2 , while the 
coarse step �t was set to the highest stable step for the given NC . This was found by estimating the error at different time 
steps for each resolution, as shown in Fig. 5a. A similar study was carried out for the Galloway-Proctor flow (Fig. 5b). The 
number of Parareal time slices NP was fixed at 10. Fig. 6 shows that the peak speed up is acquired when NC = 0.5N F . 
When NC < 0.5N F , the speed up is reduced by the extra number of Parareal iterations required to converge, and when 
NC > 0.5N F , the difference in computational complexity between the coarse and fine solvers is insufficient.

5.3. Scaling results

Scaling tests were carried out for both the Roberts flow and the Galloway-Proctor flow. Simulations of the Roberts flow 
were carried out on the ARC 3 HPC facility at the University of Leeds, made up of Intel Xeon E5-2650v4 (Broadwell) CPUs, 
with a total of 6,048 cores. Simulations of the Galloway-Proctor flow were carried out on the ARCHER HPC facility, made up 
of Intel Xeon E5-2697v2 (Ivy Bridge) CPUs, with a total of 109,056 cores.
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Table 1

Parameters for simulations. Rm: magnetic Reynolds number, kz: wave number in z co-ordinate, kx: 
wave number in x co-ordinate, N F : number of modes in fine propagator, NC : number of modes in 
coarse propagator, δt: time step for fine propagator, �t: time step for coarse propagator, Growth 
rate indicates growth rate of the magnetic field.

Flow Rm kz kx N F NC δt �t Growth rate

Roberts 512 2.87 160 80 10−2 2× 10−2 0.11

4096 7.5 512 256 2.5× 10−3 5× 10−3 0.097

Galloway-

Proctor

3 0.57 16 8 5× 10−3 10−1 0.15

300 0.57 128 64 10−3 2× 10−2 0.3

3000 0.57 512 256 10−4 5× 10−3 0.3

A range of Rm were simulated to see the effect on Parareal performance (see Table 1). Scaling performance was compared 
with pure spatial scaling of the Dedalus solver. Fully parallel in space and in time simulations were also carried out in 
order to show how Parareal can increase scalability beyond the saturation of spatial scaling. Validation was carried out by 
comparing computed growth rates with those found in the literature. Growth rates for the Roberts dynamo were found to be 
consistent with those obtained by Plunian and Radler [10], which were reported to 2 significant digits, with the peak growth 
rate for each Rm occurring at the same kz wave number reported. Growth rates for the Galloway-Proctor simulations were 
consistent with those found by Charbonneau et al. [49], with the peak growth rate occurring at a kx of 0.57. The Galloway-

Proctor flow had the correct behaviour in terms of growth rate for large Rm , with the growth rate staying positive, showing 
the expected fast-dynamo behaviour.

5.4. Roberts flow

Scaling results for the Roberts flow are shown in Fig. 7 for Rm = 512 (upper figures) and Rm = 4096 (lower figures). For 
both values of Rm , both parallel scaling and efficiency in space are superior to Parareal at low processor counts. As expected, 
spatial scaling is better for the Rm = 4096 case with higher spatial resolution, due to higher workload per processor. While 
Parareal alone is not competitive, in both cases a combined space-time parallelization generates slightly more speedup than 
a pure spatial parallelization. The theoretical maximum efficiency for Parareal is 1/3, indicated by a horizontal dashed line, 
due to the simulation requiring three iterations to converge. However, because of the relatively expensive coarse solver, 
Parareal’s observed efficiency is mostly substantially lower. As the efficiency of the combined space-time parallelisation is 
the product of the parallel in space efficiency and the parallel in time efficiency, it is low for high numbers of processors 
because of the low efficiency of Parareal for the Roberts flow. Despite the larger overall speedup, with efficiencies below 0.1, 
space-time parallelization using Parareal may not be particularly attractive.

5.5. Galloway Proctor flow

Results for Rm= 3, 300 and 3000 for the Galloway Proctor flow are shown in Fig. 8. Performance of Parareal is much 
better than for the Roberts flow. Parareal speed up is competitive with spatial parallelisation at a relatively low number of 
processors. In all of these cases, the number of iterations required to converge was three, so that the efficiency is bounded 
by 1/3, and the efficiency of Parareal stays close to this bound over a range of Np , and does not fall much as the number of 
processors increases. The poor performance of Dedalus in parallelising the Rm=3 case is attributable to the fact that there 
are only 162 spectral modes. In the Rm = 3000 case using 32 processors in space, the results show that speed up above 
that of spatial parallelisation alone is possible, with an efficiency around 0.16. In all cases, Parareal has not yet reached 
saturation in its scaling performance, and has almost ideal scaling behaviour, except for a constant offset due to the bounds 
on Parareal scaling. This is shown in Fig. 9, where the efficiency of the method is tracked over the different Rm . Efficiency 
is close to the bound of 1/3, and Parareal efficiency does not fall with increasing Rm . Pure Parareal efficiency was estimated 
in the Rm = 3000 case by dividing by the efficiency of the spatial parallelisation found for that particular N S (32). In that 
case, total parallel efficiency is lower than for the other Galloway-Proctor cases due to the combination of the spatial and 
temporal parallelisation, and is approximately the product of the two, as expected. This reduction in overall efficiency is 
unavoidable, as parallel in space is more efficient than Parareal for lower numbers of processors, and Parareal only becomes 
competitive after spatial efficiency falls away. Also shown on this Figure are the efficiencies obtained at different Rm for the 
Roberts flow, highlighting the difference in performance of the method for the two cases.

6. Conclusions

The Parareal algorithm has been found to offer parallel speed up for kinematic dynamo simulations beyond what can be 
achieved through spatial parallelisation alone. In the case of the simpler steady Roberts dynamo, the speed up is modest 
and parallel efficiencies are low. Here, owing to the steady nature of the imposed velocity, the difference in computational 
complexity of the coarse and fine methods is found to be too small for good performance of Parareal. The issue was that the 
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Fig. 7. Speed up (a), (c) and parallel efficiency (b), (d) of the Parareal method compared with spatial parallelisation for simulations of Roberts flow with 
Rm=512 (a), (b) and Rm=4096 (c), (d). Total number of processors is calculated as number of processors in space (NS ) multiplied by number of processors 
for Parareal (NP ). Speed up and efficiency are both poor for low numbers of processors for Parareal, but as the parallelisation in space saturates, further 
gains can be made from Parareal, although they are small. Parareal does not offer any gain over parallelisation in space until parallel efficiency is less than 
0.1, and does not come close to the theoretical maximum of 1/k, where k is number of Parareal iterations.

time step size was not a limiting factor on the accuracy of the fine solver; as long as the time step was stable, it was within 
the accuracy required. Therefore, there was little room to use a coarser resolution for the coarse propagator in Parareal.

Performance for the time-dependent Galloway-Proctor flow was better and the efficiency stayed close to the theoretical 
limit over a wide range of magnetic Reynolds numbers, while scaling well to large numbers of processors. In this problem, 
since evolution of the magnetic field depends explicitly on the current time, the accuracy of the solution depends more on 
the size of the time step. This means that a time step in the coarse solver much larger than that of the fine step is possible, 
allowing for better Parareal performance.

To summarise the difference in performance of the two problems, the Roberts flow fine solver is accurate with relatively 
high timestep size (close to the stability limit). This means that the coarse solver timestep is only a little larger (∼ 2 times) 
than the fine timestep. In the Galloway-Proctor flow, the accuracy of the fine solver requires a timestep lower than the 
stability limit −− due to the time dependence of the driving flow. Therefore, the coarse solver, which only has to be stable, 
can have a timestep ∼ 20 times larger than the fine solver in this case. This leaves more potential for speedup.

Fully coupled dynamic dynamo simulation is complicated, and has non-linear dependencies, and so the accuracy of the 
fine solver is expected to behave more like the Galloway Proctor flow. Therefore, the good performance of Parareal for 
the Galloway-Proctor flow suggests that good performance can be expected also for more complex dynamos. This paper 
therefore gives an interesting example of how studying too simple a problem can lead to an overly negative assessment of 
the performance of Parareal.

The parallel efficiency of the Parareal algorithm applied to the Galloway Proctor dynamo is close to the theoretical 
maximum of 1/kcon . This means that the overheads due to communication are small, in comparison to the serial cost of 
the coarse method, pointing to an efficient implementation of the algorithm. Performance of the algorithm when applied to 
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Fig. 8. Speed up and parallel efficiency of the parareal method compared to parallelisation in space for Rm of 3, 300, and 3000, Galloway Proctor flow. Total 
number of processors is calculated as number of processors in space (NS ) multiplied by number of processors for Parareal (NP ). In the case of Rm=3000, 
parareal simulations were carried out with 32 processors in space, as serial runs with one processor were time intensive. Spatial resolutions required were 
162 , 1282 , and 5122 respectively. Results here are more promising than in the Roberts flow. Parareal becomes more efficient than spatial parallelisation 
for smaller processor numbers, and keeps higher efficiency for longer, closer to the theoretical maximum of 1/k (k: number of Parareal iterations). Scaling 
saturation for parareal has not been reached even at 1600 processors in the Rm=3000 case.
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Fig. 9. Parallel efficiency vs Rm for Galloway-Proctor and Roberts dynamos. Galloway-Proctor results show higher efficiency than the Roberts flow. Parallel 
efficiency of the method does not appear to degrade with increasing Rm . There is a reduction for total efficiency for Rm=3000, however, this is due to a 
combination of the efficiency of the spatial parallelisation with the parareal efficiency. Efficiency of parareal alone is comparable to the efficiency of the 
lower Rm simulations in the Galloway-Proctor case.

this problem does not appear to degrade with increased Rm , as can be seen in Fig. 9. Performance has remained constant, 
with Parareal efficiency not much lower than 1/3 for Rm = 3, Rm = 300 and Rm = 3000. This is noteworthy since highly 
advective problems are thought to cause problems with Parareal convergence, but this has not yet been found in the highly 
advective case with Rm up to ∼ 103 .

The results in this paper show that parallel in time methods can speed up kinematic dynamo simulations and are there-
fore worthy of further study. Better parallelization would enable the study of dynamos at larger magnetic Reynolds numbers 
by reducing simulation times by harnessing the ever growing number of available cores in HPC facilities. Current and future 
work involves extending our analysis to non-linear dynamic dynamo systems and the interaction of magnetic fields with 
convection. The development of successful parallel-in-time methods for these problems could allow the integration of geo-
and astro-dynamo simulations in parameter regimes closer to reality than have been hitherto possible.
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