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ABSTRACT

Organic molecular crystals contain long-range dispersion interactions that can be challenging for solid-state methods such as density
functional theory (DFT) to capture, and in some industrial sectors are overlooked in favor of classical methods to calculate atomistic
properties. Hence, this publication addresses the critical question of whether dispersion corrected DFT calculations for organic crys-
tals can reproduce the structural and energetic trends seen from experiment, i.e., whether the calculations can now be said to be truly
“on-trend.” In this work, we assess the performance of three of the latest dispersion-corrected DFT methods, in calculating the long-range,
dispersion energy: the pairwise methods of D3(0) and D3(BJ) and the many-body dispersion method, MBD@rsSCS. We calculate the ener-
getics and optimized structures of two homologous series of organic molecular crystals, namely, carboxylic acids and amino acids. We also
use a classical force field method (using COMPASS II) and compare all results to experimental data where possible. The mean absolute
error in lattice energies is 9.59 and 343.85 kJ/mol (COMPASS II), 10.17 and 16.23 kJ/mol (MBD@rsSCS), 10.57 and 18.76 kJ/mol [D3(0)],
and 8.52 and 14.66 kJ/mol [D3(BJ)] for the carboxylic acids and amino acids, respectively. MBD@rsSCS produces structural and energetic
trends that most closely match experimental trends, performing the most consistently across the two series and competing favorably with
COMPASS II.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5108829., s

INTRODUCTION

In industry, scientific research and development needs to strike
a balance between how fundamental the research is, and the time
allowed for a product to progress from development through to
market. While the most fundamental research might be the pre-
serve of academia, industry, nevertheless, has a vested interest in
advancing methods and methodology that could ultimately shorten

the time spent in the product pipeline. In the pharmaceutical indus-
try, the ADDoPT project (Advanced Digital Design of Pharma-
ceutical Therapeutics: https://www.addopt.org/about_addopt/) has
combined expertise from industry, academia, and small-to-medium
enterprises (SMEs) in a combined effort to digitalize the tablet-
production pipeline, from the atomistic scale of single molecules
to molecular crystals to macroscopic bulk-scale tablets. Both classi-
cal and first-principles atomistic simulations of organic molecular
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crystals play a role in this pipeline, where their calculated lattice
energies could inform structure, performance, properties, and pro-
cessing,1 such as thermodynamic solubility,2–5 stability,6–8 and crys-
tallization9–11 as well as crystal structure prediction.12,13 Lattice ener-
gies can be calculated using classical, atomistic methods,14–20 i.e.,
molecular mechanics based on force fields, quantum mechanical
methods (see, for example, the work of Yang et al.21 and the 2016
review and references within of Hoja, Reilly, and Tkatchenko22),
and more rarely, hybrid quantum mechanics/molecular mechan-
ics.23,24 The choice of method depends on several factors, such as
in-house expertise, computational resources, and time allotted for
the research, and not least the modeling aims.

By definition, lattice energy corresponds to energy differences
associated with the static lattice, ignoring zero-point vibrations,
at 0 K. Our aim here was to evaluate the performance of lat-
tice energy calculations. Rigorous derivation of experimental lattice
energy would require experimental vibrational energy data and/or
information regarding the zero point vibrational energy levels, cou-
pled with accurate heat capacity data from the experimental tem-
perature to 0 K.25,26 Hence, in keeping with many literature stud-
ies, we employed a common approximation (further detailed in
the section titled “Experimental lattice energies”) to estimate the
experimental lattice energy from the available experimental data at
higher temperatures (typically 298 K). Although, in principle, lattice
energy is a simple concept—the change in energy when infinitely
separated, static gas-phase molecules in their lowest energy con-
formations, condense to form a static lattice6—calculating the lat-
tice energies of organic molecular crystals is not straightforward.
These systems prove challenging to model, thanks to their diverse
inter- and intramolecular forces, such as the covalent forces bind-
ing the atoms within a molecule, and the different kinds of weaker
interactions between molecules, i.e., intermolecular forces. The bal-
ance between the inter- and intramolecular forces results in poly-
morphism, where the same molecules pack in different orienta-
tions and potentially different conformations to produce different
crystal structures.27 The intermolecular forces depend on the elec-
trostatic interactions, polarization, exchange-repulsion, and disper-
sion.28 When viewed through the lens of electronic structure (i.e., the
electron density), the foundations of these interactions are closely
linked.22 When viewed classically, these interactions are separable
and encapsulated by the many terms required to build a typical force
field.29

While dispersion forces are integral to force field modeling,
albeit commonly captured imperfectly,30 they have been largely
absent from quantum mechanical-based electron density model-
ing until relatively recently. Nonetheless, following the introduc-
tion of a semiempirical method to predict intermolecular forces in
1975,31 the application of dispersion-corrected density functional
theory (DFT) (labeled within this work “DFT-DISP” to avoid con-
fusion with “DFT-D” which usually refers solely to Grimme’s meth-
ods) grew steadily throughout the 1990s and then exponentially
through the 2000s,32 and today, the development of accurate meth-
ods for condensed matter systems is thriving. Indeed, it can be said
that progress in DFT-DISP is climbing a “Jacob’s ladder of disper-
sion functionality” analogous to the more familiar Jacob’s ladder of
exchange-correlation functionals.33 On the first step of the disper-
sion stairway is the most basic term required in dispersion—the r−6

term—that describes the asymptotic long-range interaction between

particles (separated by distance r) in the gas-phase. The total energy
is then Etot = EDFT + Edisp, where

Edisp ≙ −∑A,B
C
A,B
6 /r

6
A,B, (1)

and the CA,B
6 terms are the pairwise, additive, direction-independent,

dispersion coefficients between elements A and B, obtained from
a table of constants, which in the case of Grimme’s original DFT-
DISP method34 is based on empirically derived C6 terms.35 The lat-
ter are obtained by least-squares fitting to molecular C6 coefficients
obtained from the dipole oscillator strength distribution method of
Thomas andMeath (e.g., Ref. 36) although this is not the only means
of obtaining the coefficients (see Ref. 32 and the references within for
further examples). The inconsistency of deriving the dispersion coef-
ficients led to the development of Grimme’s DFT-DISP2 scheme,37

where the ionization potentials are coupled with static polarizabili-
ties of isolated atoms to generate a more first-principles scheme for
deriving the C6 coefficients.

The second step of the dispersion stairway was to include the
local chemical environment that accounts for the number of neigh-
bors and hence the hybridization state of elements, which means
that the C6 coefficients are no longer constant but instead decrease
as the number of neighbor atoms increases. Grimme et al. devel-
oped this DFT-D3 scheme38 using two- and three-body terms, where
the former are dipole-dipole interactions and the latter triple-dipole.
The dispersion C6 coefficients are calculated using accurate, ab initio
time dependent DFT (TDDFT)methods and are tabulated in a look-
up table to be employed according to the geometrical environment
of each atom.

Grimme et al.38 extended DFT-D3 further by enabling the cal-
culation of the C6 coefficients on-the-fly and including the local
electron density as opposed to purely geometrical information. As in
DFT-D3, TDDFT polarizabilities are tabulated, but for the extended
(DFT-D4) method, they are scaled according to a calculated charge
(not simply the number and location of the nearest neighbors),
which leads to charge- and coordination number-dependent C6

coefficients.39

On the third step of the dispersion stairway sit the methods
that calculate the dispersion interaction directly from the electron
density, which, in principle, are an improvement over the methods
below on steps one and two, where the C6 coefficients are precal-
culated. The step three methods are described as “nonlocal cor-
relation functionals” because they add long-range correlations to
local or semilocal correlation functionals, perhaps the most well-
known of which is the van derWaals density functional (vdW-DF).40

Although they showed some improvements, further developments
were needed.41,42 Step three and below accommodates methods that
are pairwise additive, which means that two atoms or molecules
have the same dispersion interaction regardless of the other atoms
or molecules with which they interact. Although this seems to be
“good enough” for small molecules in the gas-phase, this is not rep-
resentative of materials in the condensed phase.43 Although organic
molecular crystals are not as densely packed as metals, semiconduc-
tors, and ionic crystals, they contain many-body long-range cor-
relation and dispersion, which explains the instances of failure of
pairwise methods when applied to molecular crystals.25,44,45 (The
interested reader is directed to Ref. 32 for further details of the
step three methods.) Many-body dispersion (MBD) energy includes
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many-body effects such as the dispersion interactions between
two atoms (i.e., the pairwise interactions), between three atoms
described by the Axilrod-Teller-Muto term,46 and between four,
five, six, etc., up to an infinite number of atoms.47,48 In addition,
many-body dispersion inherently includes screened polarizability
effects, which are prevalent in, for example, 2D nanomaterial sys-
tems49,50 where long-range charge fluctuations are present. Consid-
ering the organic molecular crystals under focus in our research,
it could be possible to find 2D planes of aligned molecules form-
ing a metalliclike layer51 and therefore enhanced, screened polar-
izability. Essentially, the many-body effects become significant in
the absence of other interactions dominating, such as covalent and
hydrogen-bonding and where a system is strongly anisotropic.

It is only beyond step three that we find the development
of the many-body dispersion (MBD) method52 that captures the
aforementioned, long-range, many-body dispersion energy that has
shown itself to be accurate for a range of molecular systems.47,53 The
MBD method combines the (step two) van der Waals method of
Tkatchenko and Scheffler54 (TS) with the self-consistent screening
equation of classical electrodynamics. The TS method uses reference
atomic polarizabilities and C6 coefficients from which it is possi-
ble to calculate the C6 coefficients for a pair of unlike atoms. The
dispersion coefficients representing the chemical environment are
obtained from effective atomic volumes by comparing theHirshfeld-
partitioned electron density of an atom-in-a-molecule with that of
a free atom, which gives a C6 scaling factor for a reference atom,
thereby changing the value of the dispersion energy. The MBD
method uses these environment-dependent C6 values including
effective long-range screening in the atomic polarizabilities, together
with a scheme based on the coupled fluctuating dipole model55 to
account for many-body effects.

The original MBD method has since been revised as the range-
separated self-consistent screened MBD, i.e., MBD@rsSCS,56 that
separates short- and long-range correlation, whereby the former
Coulomb interaction is calculated using semilocal or hybrid DFT,
and the latter, long-range correlation using the localized, coupled
atomic response functions of MBD. Determination of the range
separation is achieved via a single parameter that is fitted to accu-
rate quantum chemistry benchmarks (see Ref. 56 for full details).
MBD@rsSCS has been shown to be a highly efficient and accu-
rate method for calculating the long-range correlation energy in
finite-gap systems including molecular crystals–see, for example,
results of Ambrosetti et al.56 for the X23 set of structures.45,57 With
MBD@rsSCS, we have reached the current state-of-the-art model-
ing method for the inclusion of dispersion forces in the condensed
phase, for systems of any size that DFT already models “comfort-
ably,” where “comfortably” means using whatever hardware and
resources are currently used for nondispersion DFT calculations.

Even once the quantum chemical or classical method for com-
puting the energies of the solid state and gas phase structures is
selected, lattice energies can be calculated in a number of different
ways, depending on whether, for example, the unit cell parameters
are allowed to relax or are kept fixed at their experimental values,
the extent to which the gas phase molecules extracted from the crys-
tal structure are allowed to relax.58 The pharmaceutical industry
partners involved in the ADDoPT project mainly employ classical
force field methods for lattice energy calculations. One outcome
of the ADDoPT project was to determine an optimum protocol

for calculating lattice energies of pharmaceutically relevant organic
molecular crystals, and this protocol involves the classical force field
COMPASS II.59 This is an extension of COMPASS60 (condensed-
phase optimized molecular potentials for atomistic simulation stud-
ies) that is itself based on the polymer consistent force field (PCFF)
that forms part of a second generation of closely related force fields
that were designed specifically for polymers and organic materi-
als.61 COMPASS was parameterized using ab initio calculations
and empirical data, which entailed adding new molecular classes
to PCFF. In addition, nonbond parameters were reparameterized,
whereby the electrostatic and van der Waals terms combine quan-
tum mechanical calculations and fitting to experimental condensed
phase properties of liquids and crystals. COMPASS II extends this
to include parameters specific to polymers and druglike molecules,
hence its wide adoption in the pharmaceutical industry. However,
given the current availability of DFD-DISP options, is it time to
rethink this default position of using classical methods to calcu-
late lattice energies? Attempting to answer this question generated
the research we present in this paper, in which we assess whether
state-of-the-art DFT-DISP methods are comparably predictive to,
or better than classical methods. We use two different simulation
methods to calculate the lattice energies of the organic molecular
crystals, namely, classical molecular mechanics using a force field
and ab initio density functional theory (DFT) plus dispersion (DFT-
DISP). The molecular mechanics was performed using the Forcite
module of Materials Studio,62 with the aforementioned COMPASS
II force field, and the DFT-DISP calculations were carried out using
the pseudopotential, plane wave code CASTEP63 employing D3(0)38

and D3(BJ) of Grimme et al.64 and MBD@rsSCS of Ambrosetti
et al.56 (The improvement of CASTEP to implement state-of-the-
art DFT-DISP methods efficiently was catalyzed by the ADDoPT
project: https://www.addopt.org/news/latest_news/castep_archer/.)
These methods are described as “Forcite,” “D3,” “D4,” and “MBD∗”
(and “MBD” in the figures), respectively, from this point onwards.
[At the time of developing CASTEP, implementing Grimme’s
extended DFT-D3 method, i.e., DFT-D4,39 was out-of-scope; for
the purposes of simplifying labeling, the label “D4” is used to dis-
tinguish DFT-D3(BJ) from DFT-D3(0) only.] We also include syn-
thon (i.e., intermolecular) analysis of the dispersion contributions
within the calculated structures, using the software HABIT98.65

(For an overview of synthonic analysis, see, for example, the work
of Roberts et al.66,67) We have chosen two series of homologous
crystals—carboxylic acids and amino acids—wherein both the dis-
persion forces are expected to increase with an increasing number of
carbon atoms, and where the carboxylic acids are expected to have a
higher ratio of van der Waals to hydrogen bonding, and the reverse
is true for the amino acids. The amino acid series also potentially
exhibit charge-charge interactions, due to being zwitterionic in the
solid state.

In the Results and Discussion section, we explore trends in the
calculated lattice energies, compare lattice and molecular structures,
and bonding, as well as the contribution of dispersion energy, with
comparison to the experimental structures and experimental data
where possible. Our aim is to compare the performance of the dif-
ferent methods throughout the two series and to draw conclusions
based on the analysis of their trends as to whether current, “off-
the-shelf” DFT-DISP methods are now worthy of becoming part of
industry’s modeling pipeline toolkit.
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FIG. 1. Carboxylic acid series—
experimental structures (after the
addition of hydrogen atoms where
applicable) of the first 10 carboxylic
acids, the number of carbon (C) atoms,
their symmetry groups, and CSD
REFCODES.

CRYSTAL STRUCTURES, MODELS, AND METHODS

Two homologous series of organic molecular crystals were
explored. Series 1 comprises the set of carboxylic acids from 1
to 10 carbon atoms in the hydrocarbon backbone, i.e., formic,
acetic propanoic, butyric, valeric, hexanoic, heptanoic, ocatanoic,
nonanoic, and decanoic acids (see Fig. 1). Series 2 comprises the
amino acids with one to four carbon atoms in the hydrocarbon
backbone: alpha-glycine, L-alanine, L-valine, and L-isoleucine (see
Fig. 2).

All CIF files were obtained from the Cambridge Structural
Database (5.38)68 and uploaded into Materials Studio62 where
they were visualized, inspected, and supplemented with missing
hydrogen atoms by-hand. (All REFCODES can be found in the
supplementarymaterial as well as in Figs. 1 and 2.) The input param-
eters were set (as described below) to optimize the geometry of the
crystal structures, where geometry optimization involved relaxing

FIG. 2. Amino acid series—experimental structures of the first four amino acids,
their symmetry groups, and CSD REFCODES.

the lattice lengths and angles according to the structures’ symme-
try constraints, including all molecules and their constituent atoms.
For the gas-phase calculations for both force field and DFT meth-
ods, a single molecule from each of the unrelaxed crystals was also
geometry-optimized until the respective force field and DFT conver-
gence criteria were met. Lattice energies (LEs) were calculated using
the following equation: LE ≙ Ec

Z
−Eg , where Ec is the total, calculated

energy of the unit cell, Z is the number of molecules per unit cell, and
Eg is the total energy of a single gas-phase molecule. From this point
onwards, “experimental structures” and “pre-optimized structures”
are used interchangeably.

FORCE FIELD CALCULATIONS

All force field calculations were performed using the Forcite
module of Materials Studio. Detailed instructions for how to repeat
these calculations are provided under the section titled “Forcite cal-
culations” in the supplementary material. Following structure pre-
processing, including bond assignment required for force field calcu-
lations, geometry optimizations then proceeded as described above.
The force field used was COMPASS II;59 the total energy was con-
verged to 8.37 × 10−5 kJ/mol, forces to 0.0042 (kJ/mol)/Å, stress (i.e.,
for bulk crystals) to 0.001 GPa, and displacement to 1.0 × 10−5 Å.
Ewald summation69,70 was employed throughout for all electrostatic
interactions.

All Forcite calculations were run using a single core on a
desktop computer [Intel(R) Core(TM) i5-6300U CPU at 2.40 GHz,
7.41 GB usable RAM] running Windows 7 Enterprise (Service Pack
1, 64-bit). Running each optimization operation took under 1 min,
including Forcite module start-up time, based on timing the oper-
ations for L-valine (starting from the CIF file prepared from CSD
refcode LVALIN05).
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DFT CALCULATIONS

All DFT calculations were performed using the plane wave,
pseudopotential code, CASTEP v19.063 and visualized in Materi-
als Studio.62 For the gas phase calculations, a single molecule was
copied from the unrelaxed bulk phase and placed in a cube of
vacuum, 20 Å3. The plane wave basis set representing the valence
electron wave functions was converged to an accuracy of greater
than 0.001 meV/atom (i.e., 0.1 J mol−1), corresponding to a kinetic
energy cutoff of 700 eV. The exchange-correlation interactions
were described by the generalized gradient approximation den-
sity functional of Perdew, Burke, and Ernzerhof, i.e., PBE-GGA,71

and the electron-ion interactions were described by correspond-
ing ultrasoft pseudopotentials generated on-the-fly. Three types of
long-range dispersion forces were applied using the semiempiri-
cal dispersion correction (SEDC) module72 including the many-
body MBD@rsSCS interactions of Ambrosetti et al.56 and the newly
implemented D3(0)38 and D3(BJ) of Grimme et al.64 We also used
PW91-GGA73 without any dispersion corrections to serve as a
control.

For the bulk phase molecular crystals, the Brillouin zone was
sampled on various Monkhorst-Pack grids,74 as listed in Table S1.
For the gas phase molecules, a single sampling point corresponding
to the gamma point was used. The geometry of both the molecu-
lar crystals and the gas-phase molecules was optimized using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,75 and the
electronic method used in the self-consistent field (SCF) calcula-
tions was density mixing. The following convergence criteria were
also applied: electronic energy for the SCF cycles: 1 × 10−12 eV;
total energy following geometry optimization: 5 × 10−8 eV; maxi-
mum force component: 0.001 eV Å−1; and geometrical displacement
5 × 10−4 Å.

All DFT calculations were run using between 24 and 96
core processors (Intel Xeon processors—Ivy Bridge E5-2697v2 2.7
GHz) optimized according to the number of atoms, volume of the
unit cell, and type of calculation. The calculations took from less
than 1 h (formic acid crystal) to approximately 70 h (decanoic
acid crystal), before the aforementioned convergence criteria were
met.

EXPERIMENTAL LATTICE ENERGIES

Sublimation enthalpy data at a defined temperature were
retrieved, or—in the case of valeric acid—estimated (see below),
for all compounds studied, save for the following entries in the
carboxylic acid series: hexanoic (C = 6), heptanoic (C = 7), and
nonanoic (C = 9) acids. Synonyms were retrieved via consulting
the corresponding CSD entry and used to search the US National
Institute for Standards and Technology (NIST) Chemistry Web-
book: https://webbook.nist.gov/chemistry/name-ser/ and the litera-
ture76–80 for standard enthalpy of sublimation data at 298–298.15 K,
or, if no such data were available, enthalpy of sublimation data at the
closest temperature to 298 K. Efforts were made to trace experimen-
tal sublimation data points back to their primary reference although
these could not always be accessed.

In one case (valeric acid), no experimental sublimation
enthalpy could be found. Hence, the approach of Lifson et al.81

was applied: the sublimation enthalpy at 298.15 K was estimated via
adding the melting enthalpy81 to the enthalpy of vaporization81,82 at
298.15 K. In another case (L-valine), the sublimation enthalpy esti-
mate recommended by Dorofeeva and Ryzhova,78 obtained via the
difference in enthalpy of formation in the gaseous and solid states,
was used.

For only one datapoint—one of the datapoints80 retrieved for
decanoic acid linked to CSD refcode ISEPEB—was experimental
metadata identified that allowed confirmation that the sublimation
data corresponded to the polymorph for which the crystal struc-
ture was retrieved from the CSD. However, pairwise differences in
calculated lattice energies and the related2 experimental sublima-
tion enthalpies between polymorphs are reported to typically be less
than 2 kJ/mol (greater than 7.2 kJ/mol in only 5% of cases)83 and
a few percent,84 respectively. Indeed, these are comparable to some
estimates of typical experimental error in sublimation enthalpies,57

albeit these may scale with molecular size,85 and variation between
literature values86 for the same compound. Moreover, an analy-
sis, documented in the supplementary material, of known poly-
morphism for all dataset entries found that only formic acid and
alpha-glycine were associated with known polymorphism in the
CSD (version 5.38).

In the case of decanoic acid and propanoic acid, multiple subli-
mation enthalpy data points were retrieved according to the noted
selection criteria. Hence, the arithmetic mean enthalpy value was
used.

After all crystal structures were associated with a single sub-
limation enthalpy datapoint, the experimental lattice energy (LE)
was estimated from the (average) sublimation enthalpy (deltaH-
sub) using the following approximate relationship,2,25 where R is the
molar gas constant and T is the temperature in Kelvin, which ranged
from 223 to 455 K, across different dataset entries: LE = −deltaHsub
− 2RT. N.B. The assumptions made in obtaining this relationship
are discussed in the cited references. These approximate experi-
mental lattice energies were used to benchmark the lattice energy
calculations obtained in the current work.

An Excel workbook linking all CSD refcodes, compound
names, sublimation enthalpy data/experimental estimates, and
the sublimation datapoint specific reference is provided in the
supplementary material. In addition, the experimental lattice ener-
gies derived from these data, along with a Python script for per-
forming the derivation, is also provided in the supplementary
material.

SYNTHON ANALYSIS

Synthon analysis was carried out on all of the geometry-
optimized structures with the aim of rationalizing the contribution
of dispersion forces to the overall lattice energy. The dispersion syn-
thons were approximated by measuring the distance between the
centers of the molecules in the relaxed crystals and comparing this
distance to the distance measured between the two same molecules
in the pre-optimized structure. Although this is not a direct compar-
ison with the analysis of the DFT dispersion energy contributions of
the relaxed MBD∗, D3, and D4 structures to the total energy, both
types of analyses (classical and DFT) are expected to produce similar
trends.
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RESULTS AND DISCUSSION

Carboxylic acid series: Series 1

Crystal structure and lattice energies

Table I gives the details of the experimental lattice energies, lat-
tice lengths, and angles for the pre-optimized CIF (labeled “Expt.”)
and all structures (except PW91) following relaxation using Forcite,
MBD∗, D3, and D4, together with the mean absolute errors (MAEs)
of the calculated lattice energies, volumes, and β-angles. These and
further details of carbonyl and hydroxyl torsions and hydrogen
bond lengths are shown in the graphs of Fig. 3. Figures of the
crystal structures obtained following relaxation under each method
(except PW91) can be found in Fig. S17 of the supplementary
material.

The lattice energies for the dispersion corrected calculations
generally showmonotonic increases in magnitude (i.e., they become
increasingly negative) with an increasing number of carbon atoms
(see Fig. 3). This is also the general trend for the nondispersion
corrected calculations of PW91 although the increase in magni-
tude is much less significant. Consequently, we do not include any
further analysis of the PW91-relaxed structures. The experimen-
tal values for hexanoic, heptanoic, and nonanoic acids have been
interpolated by drawing straight lines between the lattice energies
of valeric, octanoic, and decanoic acids. The Forcite lattice energies
underestimate themagnitudes of the experimental lattice energies by
6–12 kJ/mol, whereas the MBD∗ values typically overestimate the
experimental values by between 5 and 15 kJ/mol, with the largest
difference occurring for decanoic acid. This larger difference occurs
because the MBD∗ trend is slightly positively quadratic compared
to the experimental values that show a more linear trend. For the
carboxylic acids with up to three carbon atoms, MBD∗, D3, and D4
have similar lattice energies and agree with the experimental value
from between 10% and 15%; this trend is broken by butyric acid,
whose D3 and D4 lattice energies are smaller (in magnitude) than
that calculated using MBD∗, and for valeric acid, the reverse is true.
For butyric acid, the MBD∗, D3, and D4 lattice energies are 16%,
10%, and 12% larger than the experimental value, and for valeric
acid, they are 11%, 25%, and 26%, respectively. The lattice energy
MAE follows the trend D3 >MBD∗ > Forcite > D4 within the range
8.52–10.57 kJ/mol, although within each method, the variation in
values is largest in D4 where the lattice energy differs by approxi-
mately 5–23 kJ/mol from the experimental value. The MAEs were
calculated using the experimental values available and hence do not
reflect the off-trend values seen in D3 and D4 for hexanoic acid. To
check the sensitivity of the optimization parameters on the lattice
energy, two additional lattice energy values were calculated for hex-
anoic acid by using a different k-point set (see the brown “pluses”
on the top graph of Fig. 3 and Table S1 for details) and these are
lower by about 9 kJ/mol than those already discussed. Although
the lattice energy decreased further, the structure of hexanoic acid
did not distort further, and so future reference to hexanoic’s lattice
energy concerns its highest lattice energy value and corresponding
structure.

Considering the lattice volumes, there is a monotonic increase
in lattice volumes with an increasing number of carbon atoms,
except for D4 from five to six carbon atoms. In every case except
formic acid, the MBD∗ volume decreased from the experimental

value, whereas the D3 and D4 volumes increased for formic, acetic,
and valeric acids, decreased for butyric, hexanoic, and nonanoic
acids, and both increased (D3) and decreased (D4) for heptanoic,
octanoic, and decanoic acids. Nonetheless, the D3 and D4 calcu-
lated volumes are always larger than the MBD∗ calculated volumes.
Throughout Series 1, the experimental volumes are typically the
largest or close to the largest, which is not surprising given that the
X-ray crystallography experiments are carried out at temperatures
higher than the 0 K, DFT calculation temperature, and therefore
will include a crystal expansion. Even so, the experimental volumes
are closely matched by the D3 and D4 volumes where these have
increased. The Forcite and MBD∗ volumes are also close to one
another and are consistently smaller than D3, D4, and experimental
volumes. The difference between the two groups (Forcite andMBD∗

vs D3 and D4) increases with the number of carbon atoms.
In keeping with the observation regarding the change in opti-

mized volumes, the lattice lengths of the D3 and D4 structures are
generally larger than the experimental, Forcite, and MBD∗ calcu-
lated lattice lengths, and the latter two methods produce similar
lattice lengths. TheMAE of the lattice volumes decreases in the order
MBD∗ > Forcite > D4 > D3 with the range being from 60.75 to
18.77 Å3.

The beta angles of the molecular crystals that most closely
match those of the pre-optimized CIFs are calculated by Forcite, and
in general, there is close agreement among all methods, except for
the hexanoic acid structures relaxed using D3 andD4. Although they
closely match one another, they deviate significantly (∼30○) from the
experimental, Forcite, andMBD∗ beta angles. This difference clearly
indicates that the crystal structures of the two sets are different.
An examination of Fig. 4 shows that, in the D3 and D4 optimized
structures, the molecules appear to have “stretched” although in
reality, they have rotated along the x-axis and relaxed to become
more parallel to the x-axis. The crystal structure of hexanoic
acid is unique among the carboxylic acids insofar as the dimer-
bonded molecules are aligned directly along the x-z axis (see
Fig. S1 for comparison). The MAE of the beta-angles decreases
in the order D3 > D4 > MBD∗ > Forcite within the range
4.50○–1.33○.

The intermolecular hydrogen bonds (see Fig. 3) were measured
within Materials Studio and were indicated by a distance between a
hydrogen donor and oxygen acceptor less than or equal to 2.5 Å,
with an angle of at least 90○. The hydrogen bond lengths remain
fairly consistent within each of the five methods with the largest
variation in length seen in the experimental structures, where the
hydrogen bond lengths found in propanoic acid are approximately
0.2 Å shorter than those found in all other experimental struc-
tures. The average lengths of the hydrogen bonds are approximately:
experimental: 1.78 Å, Forcite: 1.68 Å, D3 and D4: 1.57 Å, and
MBD∗: 1.53 Å. In formic and acetic acids, the two hydrogen bonds
(H-bonds) per molecule are between two other molecules forming
strongly hydrogen-bonded sheets of molecules in the y-z plane that
are weakly bound in the x-direction. Generally, the H-bonds in the
experimental crystal structures are longer by an approximate aver-
age of 14% than those of the relaxed Forcite, MBD∗, D3, and D4
structures, which is to be expected given that their positions are
difficult to obtain experimentally. Also, the experimental structures
reflect the effects of thermal expansion at nonzero Kelvin as well as
zero-point motion. For each of the remaining crystals of Series 1,
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TABLE I. Lattice energies and structures of the carboxylic acid series. a, b, and c are lattice lengths (per row); v is the unit cell volume (per row); and α, β, γ are the lattice
angles (per row). The experimental lattice energy values are calculated from enthalpies of sublimation using the approximation: ΔHsub = −lattice energy − 2RT, where R is the
gas constant and T is the experimental temperature. Experimental values for hexanoic, heptanoic, and nonanoic acids could not be found in the literature. MAE: mean absolute
error of lattice energies, volumes, and β-angles.

Lattice energy magnitude (kJ/mol) Lattice lengths (Å), Lattice angles (deg)

Structure Expt. Forcite MBD∗ D3 D4 Expt. Forcite MBD∗ D3 D4 Expt. Forcite MBD∗ D3 D4

Formic 65.07 55.84 70.89 72.44 71.34 a: 10.24 10.46 10.42 10.72 10.53 α: 90.00 90.00 90.00 90.00 90.00
acid b: 3.54 3.48 3.66 3.63 3.66 β: 90.00 90.00 90.00 90.00 90.00

c: 5.36 5.38 5.33 5.47 5.38 γ: 90.00 90.00 90.00 90.00 90.00
v: 194.4 195.9 203.4 213.1 207.5

Acetic 70.71 63.22 79.83 80.78 77.56 a: 13.15 14.28 12.93 13.23 13.14 α: 90.00 90.00 90.00 90.00 90.00
acid b: 3.92 3.81 3.94 3.93 3.95 β: 90.00 90.00 90.00 90.00 90.00

c: 5.76 5.26 5.73 5.86 5.83 γ: 90.00 90.00 90.00 90.00 90.00
v: 297.3 286.5 291.6 305.1 302.4

Propanoic 77.37 67.36 85.34 85.02 82.43 a: 4.04 3.88 3.91 3.96 3.95 α: 90.00 90.00 90.00 90.00 90.00
acid b: 9.06 8.96 8.77 9.23 9.02 β: 91.25 90.76 92.48 85.00 89.26

c: 11.00 10.81 11.03 11.17 11.08 γ: 90.00 90.00 90.00 90.00 90.00
v: 402.5 375.9 377.7 406.8 395.3

Butyric 80.12 74.62 92.59 87.69 89.36 a: 8.01 7.75 7.74 8.09 8.00 α: 90.00 95.49 96.78 96.85 96.49
acid b: 6.82 6.68 6.58 6.60 6.67 β: 111.45 114.05 112.5 109.8 110.9

c: 10.14 9.92 10.09 10.31 10.13 γ: 90.00 96.04 91.07 91.22 91.16
v: 515.6 460.9 470.9 513.1 500.6

Valeric 88.46 82.37 98.56 110.97 111.17 a: 5.55 5.51 5.52 5.56 5.50 α: 90.00 90.00 90.00 90.00 90.00
acid b: 9.66 9.19 9.57 10.33 11.05 β: 101.82 101.65 101.3 100.3 99.21

c: 11.34 11.14 10.93 11.27 10.96 γ: 90.00 90.00 90.00 90.00 90.00
v: 595.4 552.8 566.1 637.3 657.8

Hexanoic . . . 86.10 107.85 117.36 120.18 a: 15.02 14.61 14.8 18.76 18.59 α: 90.00 90.00 90.00 90.00 90.00
acid b: 5.02 4.83 4.89 4.03 4.02 β: 106.55 106.7 109.2 78.04 78.98

c: 9.94 9.95 9.36 9.24 9.08 γ: 90.00 90.00 90.00 90.00 90.00
v: 719.0 673.4 638.9 683.8 666.5

Heptanoic . . . 95.29 115.49 110.72 110.00 a: 16.01 14.81 14.42 15.61 15.22 α: 90.00 90.00 90.00 90.00 90.00
acid b: 5.08 4.87 4.89 5.17 5.14 β: 92.86 92.14 91.70 89.66 89.99

c: 10.16 10.28 10.29 10.24 10.23 γ: 90.00 90.00 90.00 90.00 90.00
v: 824.6 741.5 725.3 827.3 801.0

Octanoic 118.26 101.12 125.66 118.05 118.55 a: 18.66 18.35 18.17 19.11 19.02 α: 90.00 90.00 90.00 90.00 90.00
acid b: 4.98 4.93 4.85 5.04 4.90 β: 95.77 93.33 93.07 94.46 96.34

c: 9.57 9.24 9.21 9.47 9.52 γ: 90.00 90.00 90.00 90.00 90.00
v: 884.6 835.3 810.8 909.1 881.2

Nonanoic . . . 110.51 137.20 134.19 129.00 a: 21.11 18.99 18.45 21.15 21.63 α: 90.00 90.00 90.00 90.00 90.00
acid b: 4.92 4.71 4.78 4.93 4.82 β: 93.78 99.05 99.60 95.54 94.61

c: 10.12 10.41 10.33 9.76 9.53 γ: 90.00 90.00 90.00 90.00 90.00
v: 1048 919.9 897.7 1012 991

Decanoic 129.16 117.51 144.99 145.80 138.36 a: 22.84 23.18 22.48 23.44 23.45 α: 90.00 90.00 90.00 90.00 90.00
acid b: 4.96 4.86 4.81 4.98 4.92 β: 93.56 94.97 96.07 92.70 92.52

c: 9.40 8.88 9.05 9.24 9.12 γ: 90.00 90.00 90.00 90.00 90.00
v: 1063 997.2 972.4 1077 1050

MAE . . . 9.59 10.17 10.57 8.52 v: . . . 50.81 60.75 18.77 25.24 β:. . . 1.33 1.76 4.50 3.80
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FIG. 3. Analysis of carboxylic acid series, exploring lattice energies, volumes, beta angles, length of hydrogen bonds, and torsion angles of the carbonyl (C==O) bond relative
to the hydrocarbon backbone, and of the hydroxyl (OH) bond relative to the C−−C==O group. The lattice energy graph shows two extra data points (D3∗ and D4∗) for hexanoic
acid (C = 6) that were calculated using a different set of k-points (see the section titled “Results and discussion” for Series 1). The lattice parameters of hexanoic acid’s D3,
D3∗, D4, and D4∗ relaxed structures were not significantly different; the analysis presented in the text is for the D3 and D4 hexanoic acid structures unless otherwise
stated.
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FIG. 4. The original .cif structure (far
left hand side) and relaxed structures of
hexanoic acid (C = 6).

the hydrogen bonds form dimer-pairs. The average H-bond lengths
increase in the order MBD∗ < D4/D3 < Forcite.

The torsion angles are measured with respect to the carbonyl
(C≙≙O) angle to the hydrocarbon backbone and the subsequent devi-
ation of the hydroxyl group (HO) from that (O≙≙C−−C−−C) plane.
The experimental and Forcite structures show the least variation in
the C≙≙O torsion throughout the series, and the Forcite structures
show the least variation in the OH torsion, meaning that the car-
boxylic group of the Forcite structures is close to planar throughout
the series. D3, D4, and MBD∗ show very similar variations in the
range of C≙≙O torsions across the series with a notable exception at
C = 5, where D3 and D4 show a less planar carboxylic group than
that found by MBD∗. These D3 and D4 results correspond with a
nonplanar carboxylic group in the experimental CIF although in the
latter, the nonplanarity is much larger. In general, where the pre-
optimized CIF (i.e., experimental) carboxylic group is nonplanar, all
modeling methods produce some degrees of nonplanarity although
this is least pronounced in the Forcite models, especially for C = 3, 4,
and 5. Given that the crystals of butyric acid (C = 4) and valeric acid
(C = 5) from the CSD contained no hydrogen atoms and that these
were added via the Materials Studio interface, the variation across
all model results in the torsions of the carboxylic group components
implies that no bias was introduced by themanually applied, and ori-
entation of, hydrogen atoms that represent those within the physical
crystal structures.

In formic acid, the hydroxyl torsions and H-bonds decrease on
relaxation causing a slight change in the orientation of the formic
acid molecules in MBD∗, D3, and D4, mostly causing a slight expan-
sion of the lattice parameters. In acetic acid, the hydroxyl torsions
and H-bonds also decrease on relaxation with all modeling meth-
ods, with an increase in lattice lengths for the D3 and a mixed
increase and decrease for Forcite, MBD∗, and D4. The main dif-
ference between formic and acetic acid molecules is one methyl
group, which suggests that the presence of van der Waals inter-
actions in acetic acid crystals counterbalances the strength of the
H-bonding, which is the sole interaction in formic acid crystals,
hence the reduced expansion of crystals of acetic acid compared to
formic acid.

Figure 5 shows the dispersion energy contributions to the total
energy for the DFT, semiempirical dispersion contribution (SEDC)
methods MBD∗, D3, and D4, as well as for the classical method
using synthon analysis. ForMBD∗, the SEDC contribution increases
monotonically with an increasing number of carbon atoms both
in the bulk crystal and for the gas-phase molecules where the

dispersion is purely intramolecular. Similarly, D3 and D4 show non-
monotonic increases in SEDC for the bulk state, except for valeric
(C = 5) and hexanoic (C = 6) acids, where there are larger-than-
would-be-interpolated increases in the SEDC energies. This con-
trasts with the gas-phase, where the D3 and D4 SEDC values mirror
MBD∗ in that they show a monotonic increase in intramolecular
SEDC energy, with the trend in gradients, of the trendline between
SEDC and number of carbons, beingD4 >MBD∗ >D3. The percent-
age SEDC contributions to the total energy reveal that, for both the
gas-phase molecules and the bulk crystals, the dispersion energies
are leveling-off for all three methods with the proportion of D3 con-
tributions to the total energy decreasing the fastest. The overall rates
of decrease are faster for the gas-phase molecules than for the bulk
crystals, which is somewhat reassuring because a gas-phase molecule
should only have intramolecular interactions, and, given the
“linear” chainlike nature of carboxylic acids, such self-interactions
are minimal.

The absolute and percentage SEDC contributions to the total
lattice energy (Fig. 5 middle row, right) show linear, monotonic
trends for MBD∗ and similar trends for D3 and D4 with lower
absolute and percentage SEDC contributions above C = 6. All trend-
lines show that the dispersion energy contributions increase with
an increasing number of carbon atoms, from 30% (formic acid) to
between 65% and 80% (decanoic acid). The synthon analysis (Fig. 5
bottom row) of the percentage change in the van der Waals dis-
tance between two molecules (i.e., carbon-to-carbon) in the relaxed
crystal compared to the pre-optimized structure shows that up to
C = 7, the relaxed molecules mostly moved closer together and
less often, further apart than they were prior to relaxation under
all methods. Beyond C = 7, the molecules move closer together
on relaxation under all methods. Furthermore, following relax-
ation, molecules with more than seven carbon atoms will be found
10%–15% closer together than their pre-optimized parent structures.
This implies that the attractive part of the dispersion energy domi-
nates as the molecules increase in length, and indeed, this is sup-
ported by the increasing contribution of the dispersion energy to the
overall lattice energy.

As previously noted, the D3 and D4 calculated lattice energies
for valeric and hexanoic acids lie outside the general trends iden-
tified for these methods. These larger-than-would-be interpolated
lattice energies both have larger-than-would-be-interpolated SEDC
energies in the bulk crystal. In the relaxed D3 and D4 crystal struc-
tures of valeric acid, the outstanding feature compared to the Forcite
andMBD∗ crystals is the larger torsion of the carboxylic group. This
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FIG. 5. Top row, semiempirical dispersion correction energies of the three DFT-DISP methods applied to the carboxylic acid series. Middle row left, the percentage of the
SEDC energy contributions to the overall total energy; middle row right, the absolute and percentage contributions of the SEDC energy to the total lattice energy. Bottom row,
average change in distances after optimization between centers of the molecules (i.e., van der Waals distances) relative to the pre-optimized structures.
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FIG. 6. Supercells of relaxed valeric acid
(C = 5) structures showing difference in
orientation parallel to the y-axis. The dot-
ted line of the z-axis is to indicate that it
is pointing out-of-the-page.

larger torsion enables adjacent molecules to lie slightly staggered
parallel to the y-axis, whereas in the Forcite and MBD∗ structures,
adjacent molecules lie in a plane parallel to the y-axis (see Fig. 6).
This would affect the dispersion energy between adjacent molecules
in the bulk crystal without an accompanying dramatic change in the
crystal structure.

Contrasting with the subtle change in the valeric acid crystal
are the D3 and D4 hexanoic acid crystal structures where, as pre-
viously described, their beta-angles are approximately 30○ smaller
than those seen in the pre-optimized, Forcite, and MBD∗ crystals.
Like valeric acid, the D3 and D4 SEDC energy contributions in the
bulk crystal are larger-than-would-be-interpolated, and the corre-
sponding carboxylic torsions are this time, only slightly larger than
those found in the Forcite and MBD∗ crystals.

A closer examination of the overlap between adjacent
molecules along the c-length reveals that in the Forcite and MBD∗

crystals, the carboxyl groups of adjacent (nonbonded) dimer pairs
are well-aligned with and slightly nonparallel to the c-length (see
Fig. 7), whereas those of D3 and D4 lie at a more acute angle to the
c-length. In the D3 andD4 structures, adjacent molecules are rotated
by about 120○, whereas in Forcite, they are rotated by 75○ and in
MBD∗ about 90○. The rotations and alignments in the D3 and D4
structures have decreased the ß-angle and elongated the a-length,
with a consequent increase in the magnitude of the SEDC energy.
Hexanoic acid was also sensitive to the k-point spacing during relax-
ation under D3 and D4 (see D3∗ and D4∗ lattice energies in Fig. 3),
whereas MBD∗ was not. Increasing the fineness of the k-point grid
(from 0.07 to a maximum of 0.04 Å−1) led to an increase in the
magnitude of the D3∗ and D4∗ lattice energies by about 9 kJ/mol,

whereas for MBD∗, the corresponding increase in lattice energy was
less than 0.02 kJ/mol.

Amino acid series: Series 2

Table II gives the details of the lattice energies, lattice lengths,
and angles for the pre-optimized CIF (labeled “Expt.”) and all struc-
tures (except PW91) following relaxation using Forcite, MBD∗, D3,
and D4. These and further details of hydrogen bond lengths (as
defined for Series 1) are shown in the graphs of Fig. 8. Images
of the crystal structures obtained following relaxation under each
method (except PW91) can be found in the supplementary mate-
rial in Fig. S18. In the bulk crystal, the amino acid molecules are
zwitterions, whereas in the gas-phase, they become neutral in the
DFT geometry optimizations and are built as neutral molecules in
the Forcite calculations (see the section titled “Zwitterion workflow”
in the supplementary material for further details). In the following,
the number of carbon atoms represents those along the linear chain
of the amino acids and does not include the carbon atoms that form
branches.

The experimental lattice energies increase monotonically from
α-glycine (C = 1) to L-alanine (C = 2) and then decrease in magni-
tude for both L-valine (C = 3) and further again for L-isoleucine (C
= 4). The Forcite lattice energies are the largest in magnitude with
the most negative value calculated for α-glycine. The calculated lat-
tice energies for MBD∗, D3, and D4 are very similar and show an
increase in magnitude with an increasing number of carbon atoms.
The general trend for the nondispersion corrected calculations of
PW91 is similar to the experimental trend although with much

FIG. 7. Hexanoic acid (C = 6) show-
ing differences in orientation of the car-
boxyl groups with respect to the z-axis.
The dotted line of the y-axis is to indi-
cate that it is pointing into-the-page.
The green dotted line is drawn between
like-rotated molecules connecting their
hydroxyl groups through the intermediate
dimer pair. These distances are given in
Angstroms.
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TABLE II. Lattice energies and structures of the amino acids. a, b, and c are lattice lengths (per row); v is the unit cell volume (per row); and α, β, and γ are the lattice angles
(per row). The experimental lattice energy values are calculated from enthalpies of sublimation using the approximation: ΔHsub = −lattice energy − 2RT, where R is the gas
constant and T is the experimental temperature. All experimental and calculated lattice energies were negative. MAE: mean absolute error of lattice energies, volumes, and
β-angles.

Lattice energy magnitude (kJ/mol) Lattice lengths (Å) Lattice angles (deg)

Structure Expt. Forc MBD∗ D3 D4 Expt. Forc MBD∗ D3 D4 Expt. Forc MBD∗ D3 D4

α-glycine 143.16 511.16 151.20 154.24 150.89 a: 5.09 4.50 5.08 5.15 5.14 α: 90.00 90.00 90.00 90.00 90.00
b: 11.77 12.93 11.86 11.98 11.90 β: 111.99 114.59 111.42 110.99 110.77
c: 5.46 5.37 5.44 5.46 5.45 γ: 90.00 90.00 90.00 90.00 90.00
v: 303.2 283.8 305.2 314.3 311.8

L-alanine 149.76 454.22 153.97 155.89 152.74 a: 5.93 6.01 5.89 6.67 6.10 α: 90.00 90.00 90.00 90.00 90.00
b: 12.26 12.58 12.18 11.46 12.02 β: 90.00 90.00 90.00 90.00 90.00
c: 5.79 5.15 5.82 5.83 5.83 γ: 90.00 90.00 90.00 90.00 90.00
v: 421.1 389.7 416.8 445.2 427.4

L-valine 143.86 489.63 160.67 163.58 157.66 a: 9.67 9.56 9.66 9.67 9.67 α: 90.00 90.00 90.00 90.00 90.00
b: 5.27 4.86 5.17 5.27 5.24 β: 90.80 99.16 90.47 91.30 91.16
c: 12.06 11.83 11.54 11.88 11.74 γ: 90.00 90.00 90.00 90.00 90.00
v: 615.2 544.3 576.6 605.2 594.7

L-isoleucine 127.67 484.83 163.51 165.78 161.80 a: 9.68 9.55 9.58 9.68 9.67 α: 90.00 90.00 90.00 90.00 90.00
b: 5.30 4.93 5.23 5.30 5.27 β: 96.16 87.88 93.02 95.59 95.74
c: 13.96 13.98 13.45 14.02 13.88 γ: 90.00 90.00 90.00 90.00 90.00
v: 712.1 658.0 673.1 716.04 703.44

MAE . . . 343.85 16.23 18.76 14.66 v: . . . 43.95 20.98 12.29 11.02 β: . . . 4.81 1.01 0.52 0.50

smaller (in magnitude) lattice energies. Consequently, we do not
include any further analysis of the PW91-relaxed structures. Of this
group, the trend in magnitude of the lattice energies is D3 >MBD∗

> D4, the D3-MBD∗-D4 variation is from between 4 to approxi-
mately 7 kJ/mol, and they are larger than the experimental values by
between 2% to 30%. The MAE of the lattice energies decreases from
Forcite >D3 >MBD∗ >D4 within the range 14.66–18.76 kJ/mol for
D3, MBD∗, and D4.

The lattice volumes of the D3, D4, MBD∗, and experimen-
tal structures agree to within approximately 1%–6%, whereas the
Forcite volumes are consistently smaller than the pre-optimized vol-
umes by between approximately 7% and 12%. All volumes increase
monotonically with an increasing number of carbon atoms, and the
MAE of the lattice volumes decreases from Forcite > MBD∗ > D3
> D4 within the range 43.95–11.02 Å3.

The beta angles of D3, D4, and MBD∗ agree with the exper-
imental beta angles to within approximately 3%, as do those of
Forcite for α-glycine and L-alanine. For L-valine and L-isoleucine,
the Forcite beta angles are larger and smaller, respectively, than the
experimental values by approximately 10%. The MAE of the beta-
angles decreases from Forcite >MBD∗ > D3 > D4 within the range
4.81○–0.50○.

The hydrogen bond lengths are longest in the pre-optimized
structures (as expected and discussed previously with reference to
Series 1) and shortest in the Forcite structures. D3 and D4 produce

very similar hydrogen bond lengths as exemplified by the trends seen
in Fig. 8 and the average values in Table III. In the MBD∗ structures,
the average minimum H-bond is shorter than D3/D4, and the aver-
age maximum H-bond longer, with the consequence that the range
of H-bond lengths seen in the MBD∗ structures is wider than those
seen in D3 and D4. The average H-bond length increases Forcite
< D3/D4 <MBD∗.

The dispersion energy contributions (Fig. 9) for D3, D4, and
MBD∗ show similar trends in both the bulk crystal and gas-phase,
and there is near-perfect agreement between the SEDC energies of
D4 and MBD∗ in the bulk crystal and agreement to within approxi-
mately 10 kJ/mol in the gas-phase. D3 calculates the smallest SEDC
energies in both bulk and gas-phase and as the amino acids increase
in size, the D3 SEDC energy increasingly diverges from that of D4
and MBD∗. The percentage SEDC contributions to the overall total
energy (Fig. 9, middle row, left) show a widening gap between the
D3 contributions and those of MBD∗ and D4 for both the gas-phase
molecules and the crystal. Interestingly, the percentage D3 contri-
bution decreases slightly rather than increasing for the crystal of
L-alanine, which could be due to the slightly larger distances (than
those of the D4 structures) between the methyl groups of the amino
acids in the D3 L-alanine structure.

The absolute and percentage SEDC contributions to the total
lattice energies (Fig. 9, middle row right) show near-identical trends
between the three DFT methods, with contributions to the lattice
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FIG. 8. Analysis of amino acid series, exploring lattice energies, volumes, beta angles, and maximum and minimum lengths of hydrogen bonds (bottom right).

energy increasing with the number of carbon atoms, and the per-
centage contribution increases from about 35% to 50% across
Series 2. The synthon analysis (Fig. 9, bottom row) shows that under
MBD∗ and D4, the molecules (beyond C = 1) move closer together,
under D3, they move slightly apart (including C = 1), and under
Forcite, the molecules move closer together and closer than is seen
under the DFT methods, except for C = 2, where under both Forcite
and D3, the molecules move further apart by approximately 2%.
Forcite shows the largest variation in changes in van der Waals dis-
tances (−15% to +2%) and MBD∗, D3 and D4 produce changes in
distances between −2 and +2%.

The preceding analysis shows that Forcite has not performed
as well as the DFT methods in the energetics and (for two of the
crystals) the structure. Examining the output files of the Forcite
calculations carried out within Materials Studio (not shown here)
reveals relative positive, nonbonded (i.e., van der Waals and electro-
static) intramolecular energies of the gas-phase (neutral) molecules.

In the crystal, the nonbonded energies (the sum of intra- and
intermolecular) are positive for α-glycine and L-alanine and nega-
tive for L-valine and L-isoleucine although except for α-glycine, they
are proportionately smaller in magnitude than the nonbonded ener-
gies found in the gas-phase. In α-glycine, the crystal contains pairs of
hydrogen-bonded amino acids that are “stacked” along the b-length

TABLE III. Average maximum and average minimum lengths of hydrogen bonds
found across the whole of the amino acid series (each structure contains a different
number of various lengths of hydrogen bonds).

Method Expt. Forcite MBD∗ D3 D4

Minimum (Å) 1.81 1.58 1.65 1.69 1.68
Maximum (Å) 2.27 2.10 2.22 2.10 2.12
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FIG. 9. Top row, semiempirical dispersion correction energies (SEDC) of the three DFT-DISP methods for the amino acid series. Middle row left, the percentage of the SEDC
energy contributions to the overall total energy; middle row right, the absolute and percentage contributions of the SEDC energy to the total lattice energy. Bottom row,
average change in distances after optimization between centers of the molecules (i.e., van der Waals distances) relative to the pre-optimized structures.
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and weakly bound by van der Waals forces, which would explain
the positive, nonbonded energy found in this crystal. In L-valine
and L-isoleucine, the molecules are hydrogen-bonded in bimolec-
ular layers, leaving the main, nonbonded interactions to be weak
van der Waals between opposing hydrocarbon backbones (within
the bilayers) and methyl groups (between opposing bilayers). In
the smaller L-alanine crystal, the molecules are hydrogen-bonded
throughout the crystal with the nonbonded interactions confined
to staggered methyl-methyl interactions. The changes in the tor-
sion angles between the gas-phase NH2⋯COH and the bulk, crystal
phase NH3

+⋯COO-groups are larger in all of the Forcite mod-
els (see Table S2) than in any of the DFT models, which means
that there is greater molecular distortion in the Forcite crystals.
This appears to be due to overshortening of the hydrogen bonds
and is particularly visible in L-valine and L-isoleucine to the extent
that the foreshortening has drawn the molecules within the crystal
closer together, thereby affecting the beta angles of the two crys-
tals. In general, modeling hydrogen bond-dominated systems might
be improved by using a hybrid exchange-correlation functional
(plus MBD∗) such as PBE0,87 where in similar studies, it outper-
formed PBE (plusMBD∗).45,56 Unfortunately, PBE0 is computation-
ally more expensive than PBE and therefore unsuitable for inclusion
in our exploration of trends across increasingly large systems.

SUMMARY

By including an exchange-correlation functional without any
dispersion corrections (i.e., PW91-GGA), the results show that
across the two series—the van der Waals-dominated carboxylic
acids and the polarized- and hydrogen bond-dominated amino
acids—dispersion corrections are essential to reproduce experi-
mental trends in lattice energies. Of the dispersion corrections,
MBD@rsSCS has performed the most reliably producing consistent
trend lines in lattice energetics and structure. Grimme D3(0) and
D3(BJ) performed similarly well with D3(BJ) returning the small-
est MAE for lattice energies (8.52 and 14.66 kJ/mol for Series 1
and 2, respectively) although this is excluding hexanoic acid from
the energetics, which is sensitive to the number of sampling points
under D3(0) andD3(BJ). Themany-body nature of theMBD@rsSCS
dispersion interactions has kept the structure and energetics of hex-
anoic acid “on-trend” during optimization. The smallest lattice vol-
ume MAEs were produced by D3(0) (18.77 Å3) for Series 1 and
D3(BJ) (11.02 Å3) for Series 2. The smallest MAEs in the beta-angles
were given by Forcite (1.33○) for Series 1 and D3(BJ) (0.5○) for
Series 2. The average length of H-bonds shows the shortest calcu-
lated by MBD@rsSCS and the longest by Forcite for Series 1, and
this order is reversed for Series 2. D3(BJ) was developed to remove
the artificial repulsion originating from the damping function of
D3(0), and herein, its overall slightly better performance than D3(0)
encourages its recommendation as the preferred DFT-D3 func-
tional, in agreement with the review of Grimme et al.88 However,
within the dispersion corrected DFT methods, MBD@rsSCS cap-
tures more of the different chemical environments than does D3(0)
and D3(BJ), which is attributed to the inclusion of the many-body
terms in MBD@rsSCS.

The performance of MBD@rsSCS competes favorably with the
COMPASS II force field method used in Forcite, in the calcu-
lated energetics as well as the structural features and outperforms

it for the polarized- and hydrogen bond-dominated series of amino
acids. The MBD@rsSCS performs sufficiently consistently through-
out Series 1 that the addition of a size-independent, constant shift
in the lattice energy would produce an almost exact match with the
experimental lattice energies for these types of organic molecular
crystals.

CONCLUSION

In terms of functionality, the latest solid state DFT-DISP meth-
ods compete well with classical methods although computationally
they are more demanding of hardware and computational time.
In particular, the many body dispersion term, MBD@rsSCS, has
almost consistently reproduced experimental energetic and struc-
tural trends across two homologous series separately dominated by
(1) van der Waals and (2) polar and hydrogen bond interactions.
The pairwise DFT-DISP methods [D3(0) and D3(BJ)] perform sim-
ilarly well across both series with a couple of energetic and struc-
tural exceptions that undermine their reliability, and supervision is
recommended when performing batches of calculations. The classi-
cal method employing the COMPASS II force field reproduces the
experimental and structural trends well for the van der Waals dom-
inated carboxylic acids but not for the polar and hydrogen bond
dominated amino acids.

The advantage of probing two series rather than a set of diverse
structures is that physically explicable trends can be identified, as
exemplified by the predicted and simulated increasing contribu-
tion of the dispersion energy to the lattice energy, with increasing
number of carbon atoms in the backbone chain. In turn, deviations
from those trends allowed anomalies, such as those produced by the
pairwise methods (for hexanoic acid) to be identified, which could
then be explored further to determine where the sources of error lie
(currently beyond the scope of this work).

Depending on the output required—e.g., structure, energetics,
and general trends—all three “off-the-shelf” DFT methods are suf-
ficiently “on-trend” to be used as alternatives or complementary to
classical, force field methods. We intend to test their functionality
further with our next goal being to use the above methods to cal-
culate the lattice energies and elastic constants of a diverse set of
organic molecular crystals.

SUPPLEMENTARY MATERIAL

Supplementary material includes the following: a ZIP file con-
taining the Python scripts, an Excel file with experimental subli-
mation data, CSV files with the experimental lattice energies, and
a document capturing the information referred to throughout this
paper as “supplementary material.”
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