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(ABSTRACT) 

 

Improvements in sensor accuracy, greater convenience and ease of use and expanding 

reimbursement have led to growing adoption of continuous glucose monitoring (CGM). 

However, successful utilization of CGM technology in routine clinical practice remains 

relatively low. This may be due in part to the lack of clear and agreed upon glycemic targets that 

both diabetes teams and people with diabetes can work towards. Although unified 

recommendations for use of key CGM metrics have been established in three separate peer 

reviewed articles, formal adoption by diabetes professional organizations, and guidance in the 

practical application of these metrics in clinical practice has been lacking. In February 2019, the 

Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international 

panel of physicians, researchers, and individuals with diabetes who are expert in CGM 

technologies to address this issue. This article summarizes the ATTD consensus 

recommendations for relevant aspects of CGM data utilization and reporting among the various 

diabetes populations. 
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Adoption of continuous glucose monitoring (CGM), which includes both real-time CGM 

(rtCGM) and intermittently-scanned CGM (isCGM), has grown rapidly over the past few years 

due to improvements in sensor accuracy, greater convenience and ease of use and expanding 

reimbursement. Numerous studies have demonstrated significant clinical benefits of CGM use in 

people with diabetes regardless of insulin delivery method (1-15). In many countries, the benefits 

and utility of CGM are now recognized by national and international medical organizations for 

individuals with insulin-requiring diabetes and/or those at risk for hypoglycemia (16-21). 

However, despite increased CGM adoption (22; 23), successful utilization of CGM data in 

routine clinical practice remains relatively low. This may be due in part to the lack of clear and 

agreed upon glycemic targets toward which both diabetes teams and people with diabetes can 

work.  

In 2012 the Helmsley Charitable Trust sponsored the first expert panel to recommend the 

standardization of CGM metrics and CGM report visualization (24). This was followed by a 

series of CGM consensus statements refining the core CGM metrics but the conclusions were 

never in alignment. In 2017, several articles supported use of systematic approaches to CGM 

data evaluation (18-20). To date, the key CGM metrics remain as unified recommendations in 

three separate peer reviewed articles, yet formal adoption by diabetes professional organizations 

and guidance in the practical application of these metrics in clinical practice has been lacking 

(19). 

In February 2019, the Advanced Technologies and Treatments for Diabetes (ATTD) 

Congress convened an international panel of individuals with diabetes and clinicians and 

researchers expert in CGM. Our objective was to develop evidence-based, clinical CGM targets 

to supplement the currently agreed-upon metrics for CGM derived times in glucose ranges 

(within target range, below target range, above target range) in order to provide guidance for 

clinicians, researchers, and individuals with diabetes in utilizing, interpreting and reporting CGM 

data in routine clinical care and research. Importantly, in order to make the recommendations 

generalizable and comprehensive, the consensus panel included individuals living with diabetes 

and had international representation from physicians and researchers from all geographic 

regions.  
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 The panel was divided into subgroups to review literature and provide evidence-based 

recommendations for relevant aspects of CGM data utilization and reporting among the various 

diabetes populations. Because long-term trials demonstrating how CGM metrics relate to and/or 

predict clinical outcomes have not been conducted, there is suggestive evidence from a number 

of recent studies, one a cross-sectional study correlating current retrospective 3-day TIR with 

varying degrees of diabetes retinopathy (25) and an analysis of the 7-point SMBG data from the 

DCCT (26) have shown correlations of time in target range (70-180 mg/dL [3.9-10.0 mmol/L]) 

with diabetes complication.  Relationships between time in target range and A1C (25; 26) and 

number of severe and non-severe hypoglycemic events (27-31) have also been observed.  

Recommendations from each subgroup were then presented to the full panel and voted upon. 

This article summarizes the consensus recommendations and represents the panel members’ 

evaluation of the issues. 

 

Need for Metrics Beyond A1C 

A1C is currently recognized as the key surrogate marker for the development of long-

term diabetes complications in people with type 1 and type 2 diabetes and has been used the 

primary endpoint for many CGM studies (1; 3; 4; 6; 32; 33). While A1C reflects the average 

glucose over the last 2-3 months, its limitation is the lack of  information about acute glycemic 

excursions and the acute complications of  hypo- and hyperglycemia. A1C also fails to identify 

the magnitude and frequency of intra- and inter-day glucose variation (34; 35). Moreover, certain 

conditions such as anemia (36), hemoglobinopathies (37), iron deficiency (38), and pregnancy 

(39) can confound A1C measurements. Importantly, as reported by Beck and colleagues, the 

A1C test can at times fail to accurately reflect mean glucose even when none of these conditions 

are present (40). Despite these limitations, A1C is the only prospectively evaluated tool for 

assessing the risk for diabetes complications and its importance in clinical decision-making 

should not be undervalued. Rather, the utility of A1C is further enhanced when used in 

combination with CGM data.   

Unlike A1C measurement, use of CGM allows for the direct observation of glycemic 

excursions and daily profiles, which can inform on immediate therapy decisions and/or lifestyle 

modifications. CGM also provides the ability to assess glucose variability (GV) and identify 

patterns of hypo- and hyperglycemia.  
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 Effective use of CGM data to optimize clinical outcomes requires the user to interpret the 

collected data and act upon them appropriately. This requires: 1) common metrics for assessment 

of CGM glycemic status; 2) graphical visualization of the glucose data and CGM daily profile; 

and 3) clear evidence-based clinical targets. 

 

Standardization of CGM Metrics 

In February 2017, the Advanced Technologies and Treatments for Diabetes (ATTD) 

Congress convened an international panel of expert clinicians and researchers to define core 

metrics for assessing CGM data (18). (Table 1)  

 

Table 1. Standardized CGM Metrics 

2017 International Consensus on CGM Metrics (18) 

 1. Number of Days CGM Worn  

 2. Percentage of time CGM is active  

 3. Mean Glucose 

 4. Estimated A1c (eA1C) 

 5. Glycemic Variability (%CV or SD) 

 6. Time >250 mg/dL (>13.9 mmol/L)  

 7. Time >180 mg/dL (>10.0 mmol/L)  

 8. Time 70-180 mg/dL (3.9-10.0 mmol/L) 

 9. Time <70 mg/dL (<3.9 mmol/L)  

10. Time <54 mg/dL (<3.0 mmol/L)  

11. LBGI & HBGI (risk indices) 

12. Episodes (hypoglycemia and hyperglycemia) 15 min 

13. Area under the curve (AUC) 

14. Time Blocks (24-h, day, night) 

Use of Ambulatory Glucose Profile (AGP) for CGM report 

 CV=Coefficient of variation; SD=standard deviation; LBGI=low blood glucose index; HBGI=high blood glucose index. 
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 The list of core CGM metrics has now been streamlined for use in clinical practice based 

on the expert opinion of this International Consensus Group (18). Of the 14 core metrics, the 

panel selected that 10 metrics that may be most useful in clinical practice (Table 2).     

 

Table 2. Standardized CGM Metrics for Clinical Care 

2019 Core CGM Metrics for Clinical Care  (18) 

 1. Number of Days CGM Worn (recommend 14 days) (41; 42) 

 
 2. Percentage of time CGM is active (recommend 70% of data from 14 days) (41; 42). 

 3. Mean Glucose 

 4. Glucose Management Indicator (GMI) (43) 

 5. Glycemic Variability (%CV) Target <36% (44)* 

 6. Time Above Range (TAR) -  % of readings and time >250 mg/dL (>13.9 mmol/L)                    Level 2 

 7. Time Above Range (TAR) -  % of readings and time 181-250 mg/dL (10.1-13.9 mmol/L)          

 

Level 1 

 8. Time In Range (TIR)  -  % of readings and time 70-180 mg/dL (3.9-10.0 mmol/L)                 

 

In Range 

 9. Time Below Range (TBR) -  % of readings and time 54-69 mg/dL (3.0-3.8 mmol/L)                   

 

Level 1 

10. Time Below Range (TBR) - % of readings and time <54 mg/dL (<3.0 mmol/L)                      

 

Level 2 

Use of Ambulatory Glucose Profile (AGP) for CGM report 

 CV=Coefficient of variation; SD=standard deviation; LBGI=low blood glucose index; HBGI=high blood glucose index. 

* Some studies suggest that lower %CV targets (<33%) provide additional protection against hypoglycemia for 

those receiving insulin or sulfonylureas: <33% (44-46) 

 

Fundamental to accurate and meaningful interpretation of CGM is ensuring that adequate 

glucose data are available for evaluation. As shown in studies, >70% use of CGM over the recent 

14 days correlates strongly with 3 months of mean glucose, time in ranges, and hyperglycemia 

metrics (41; 42). In individuals with type 1 diabetes, correlations are weaker for hypoglycemia 

and glycemic variability; however, these correlations have not been shown to increase with 

longer sampling periods (42). Longer CGM data collection periods may be required for 

individuals with more variable glycemic control (e.g., 4 weeks of data to investigate 

hypoglycemia exposure). 
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Time in Ranges  

The development of blood glucose testing in 1965 provided individuals with diabetes the 

ability to obtain immediate information about their current glucose levels and adjust their therapy 

accordingly. Over the past decades, national and international medical organization have been 

successful in developing, harmonizing, and disseminating standardized glycemic targets based 

on risk for acute and chronic complications. CGM technology greatly expands the ability to 

assess glycemic control throughout the day, presenting critical data to inform daily treatment 

decisions and quantifying time below, within, and above the established glycemic targets.  

Although each of the core metrics established in the 2017 ATTD consensus conference 

(18) provides important information about various aspects of glycemic status, it is often 

impractical to assess and fully utilize many of these metrics in real-world clinical practices. To 

streamline data interpretation, the consensus panel identified “time in ranges” as a composite 

metric of glycemic control that provides more actionable information than A1C alone. The panel 

agreed that establishing target percentages of time in the various glycemic ranges with the ability 

to adjust the percentage cutpoints to address the specific needs of special diabetes populations 

(e.g., pregnancy, high-risk) would facilitate safe and effective therapeutic decision-making 

within the parameters of the established glycemic goals.  

The composite metric includes three key CGM measurements: percentage of reading and 

time per day within target glucose range (TIR), time below target glucose range (TBR), and time 

above target glucose range (TAR) (Table 3). The primary goal for effective and safe glucose 

control is to increase the TIR while reducing the TBR. The consensus group agreed that 

expressing time in the various ranges can be done as the percentage (%) of CGM, average hours 

and minutes spent in each range or both, depending on the circumstances.  

It was agreed that CGM based glycemic targets must be personalized to meet the needs of 

each individual with diabetes. In addition, the group reached consensus on glycemic cutpoints (a 

target range of 70-180 mg/dL [3.9-10.0 mmol/L] for individuals with type 1 diabetes and type 2 

diabetes and 63-140 mg/dL [3.5-7.8 mmol/L] during pregnancy, along with a set of targets for 

the time per day [% of CGM readings or minutes/hrs]) individuals with type 1 diabetes and type 

2 diabetes (Table 3) and women during pregnancy (Table 4) should strive to achieve. It should 

be noted that premeal and postprandial targets remain for diabetes in pregnancy (ADA Standards 
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of medical care-2019. Diabetes Care 2019: 42 (Suppl 1)) in addition to the new TIR targets for 

overall glycemia. 

 

 

 

 

Table 3. Recommended cutpoints for assessment of glycemic control: Type 1 / Type 2 and 

Older / High-Risk Individuals 

 

Diabetes 

Group 

Time in Range (TIR) Time Below Range (TBR) Time Above Range (TAR) 

% of readings 

time/day 

Target 

Range 

% of readings 

time /day 

Below Target 

Level 

% of readings 

time/ day 

Above Target 

Level 

Type 1* / Type 2 
>70%         

>16hr, 48 min 

70-180 mg/dL 

3.9 -10.0 mmol/L 

<4% 

<1 hr 

<70 mg/dL 

<3.9 mmol/L 

<25% 

<6 hr 

>180 mg/dL 

>10.0 mmol/L 

<1% 

<15 min 

<54 mg/dL 

<3.0 mmol/L 

<5% 

<1 hr, 12 min 

>250 mg/dL 

>13.9 mmol/L 

Older/High-Risk 

Type 1 / Type 2 

>50% 

>12 hr 

70-180 mg/dL 
3.9-10 mmol/L 

<1% 

<15 min 

<70 mg/dL 
<3.9 mmol/L 

<10% 

<2 hr, 24 min 

>250 mg/dL 
>13.9 mmol/L 

Each incremental 5% increase in TIR is associated with clinically significant benefits for              

Type 1 / Type 2 (25; 26) 
* For age <25 yr., if the A1C goal is 7.5%  then set TIR target to ĂƉƉƌŽǆŝŵĂƚĞůǇ ϲϬй͘ ;“ĞĞ ͞CůŝŶŝĐĂů AƉƉůŝĐĂƚŝŽŶƐ ŽĨ TŝŵĞƐ 
ŝŶ RĂŶŐĞ͟ in the text for additional information regarding target goal setting in pediatric management) 

 

 

 Table 4. Consensus guidance on cutpoints for assessment of glycemic control: Pregnancy 

 

Diabetes 

Group 

Time in Range (TIR) Time Below Range (TBR) Time Above Range (TAR) 

% of readings 

time/day 

Target 

Range 

% of readings 

time /day 

Below Target 

Level 

% of readings 

time/ day 

Above Target 

Level 

Pregnancy    

Type 1 § 

>70% 

>16 hr, 48 min 

63-140 mg/dLΏ 

3.5-7.8 mmol/LΏ 

<4% 

<1 hr 

<63 mg/dLΏ 

<3.5 mmol/LΏ <25% 

<6 hr 

>140 mg/dL 

>7.8 mmol/L <1% 

<15 min 

<54 mg/dL 
<3.0 mmol/L 

Pregnancy §   

Type 2 / GDM 

see Pregnancy 

section 

63-ϭϰϬ ŵŐͬĚLΏ 

3.5-ϳ͘ϴ ŵŵŽůͬLΏ 

 see Pregnancy 

section 

фϲϯ ŵŐͬĚLΏ 

<3.5 ŵŵŽůͬLΏ  see Pregnancy 

section 

>140 mg/dL 

>7.8 mmol/L <54 mg/dL 
<3.0 mmol/L 

Each incremental 5% increase in TIR is associated with clinically significant benefits for              

Pregnancy Type 1 (47; 48) 

Ώ Glucose levels are physiologically lower during pregnancy 

§ Percentages of time in range are based on limited evidence. More research is needed.  
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Although the composite metric includes TIR, TBR and TAR, achieving the TBR and TIR 

goals would result in reduced time spent above range and thereby improve glycemic control. 

However, some clinicians may choose to target the reduction of the high glucose values and 

minimize hypoglycemia, thereby arriving at more time in the target range. In both approaches, 

the first priority is to reduce TBR to target levels and then address TIR or TAR targets.  

 Note that for people with type 1 diabetes, the targets are informed by the ability to reach 

the targets with hybrid closed-loop therapy (11), the first example of which is now commercially 

available, with several more systems in final stages of testing. Importantly, recent studies have 

shown the potential of reaching these targets with CGM in individuals using multiple daily 

injections (MDI) (6). In type 2 diabetes, there is generally less glycemic variability and 

hypoglycemia than in type 1 diabetes (46). Thus, people with type 2 diabetes can often achieve 

more time in target range while minimizing hypoglycemia (4). As demonstrated by Beck et al., 

individuals with type 2 diabetes increased their TIR by 10.3% (from 55.6% to 61.3%) after 24 

weeks of CGM use with slight reductions in TBR (4). Most recently, the beneficial effects of 

new medications, such as sodium glucose cotransporter-2 (SGLT-2) agents have helped 

individuals with type 1 diabetes increase TIR (49-51). Targets for type 1 diabetes and type 2 

diabetes were close enough to combine them into one set of targets, outside of pregnancy.  

 Another way to visualize the CGM-derived targets for the four categories of diabetes is 

shown in Figure 1 which displays and compares the targets for time in range (TIR - green), time 

below range (TBR - 2 categories in light and dark red) and time above range (TAR -2 categories 

in yellow and orange). It becomes clear at a glance that there are different expectations for the 

various time in ranges relating to safety concerns and efficacy based on currently available 

therapies and medical practice.  
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Figure 1. International consensus on time in range: CGM-based targets for different types of 

diabetes 

 

 

Clinical Validity of Measures 

 To fundamentally change clinical care with use of the new metrics, it would be important 

to demonstrate that the metrics relate to and predict clinical outcomes. In this regard, longer-term 

studies relating to time spent within specific CGM glycemic ranges, diabetes complications, and 

other outcomes are required. However, there is evidence from a number of recent studies that 

have shown correlations of TIR (70-180 mg/dL [3.9-10.0 mmol/L]) with diabetes complications 

(52; 53) as well as a relationship between TIR and A1C (25; 26). Although there is no evidence 

regarding time in range for older and/or high-risk individuals, numerous studies have shown the 

elevated risk for hypoglycemia in these populations (54-59). We have lowered the TIR target 

from >70% to >50% and reduced TBR to <1/%  at <70 mg/dL (<3.9 mmol/L) to place greater 

emphasis on reducing hypoglycemia with less emphasis on maintaining target glucose levels 

(Table 3). 

 

Type 1 Diabetes and Type 2 Diabetes 

Association with Complications 
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 Associations between TIR and progression of both diabetic retinopathy (DR) and 

development of microalbuminuria were reported by Beck and colleagues, using the Diabetes 

Control and Complications Trial (DCCT) data set (7-point blood glucose profiles) to validate the 

use of TIR as an outcome measure for clinical trials (53). Their analysis showed that the hazard 

rate for retinopathy progression increased by 64% for each 10% reduction in TIR. The hazard 

rate for microalbuminuria development increased by 40% for 10% reduction in TIR. A post-hoc 

analysis of the same DCCT data set showed a link between glucose of <70 mg/dL (<3.9 mmol/L) 

and <54 mg/dL (<3.0 mmol/L) and an increased risk for severe hypoglycemia (60).  

 Similar associations between DR and TIR were reported in a recent study by Lu and 

colleague in which 3,262 individuals with type 2 diabetes were evaluated for DR, which was 

graded as: non-DR; mild nonproliferative DR (NPDR); moderate NPDR; or vision-threatening 

DR (VTDR) (52). Results showed that individuals with more advanced DR spent significantly 

less time within target (70-180 mg/dL [3.9-10.0 mmol/L) and that prevalence of DR decreased 

with increasing TIR.  

 

Relationship Between TIR and A1C 

 Analyses were conducted utilizing datasets from four randomized trials encompassing 

545 adults with type 1 diabetes who had central-laboratory measurements of A1C (25). TIR (70-

180 mg/dL [3.9-10.0 mmol/L]) of 70% and 50% strongly corresponded with an A1C of 

approximately 7% (53 mmol/mol) and 8% (64 mmol/mol), respectively. An increase in TIR of 

10% (2.4 hours per day) corresponded to a decrease in A1C of approximately 0.5% (5.0 

mmol/mol); similar associations were seen in an analysis of 18 RCTs by Vigersky et al. that 

included over 2,500 individuals with type 1 diabetes and type 2 diabetes over a wide range of 

ages and A1C levels (26). (Table 4)  
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Table 4. Estimate of A1C for a given TIR level based on type 1 diabetes and type 2 diabetes 

studies 
 

Beck et al. (n=545 type 1 diabetes participants) (25) Vigersky et al. (n=1,137 type 1/type 2 participants) (26) 

TIR  

70-180 mg/dL          

(3.9-10.0 mmol/L) 

A1C 

% (mmol/mol) 

 

95% CI for 

predicted values 

TIR  

70-180 mg/dL        

(3.9-10.0 mmol/L) 

A1C 

% (mmol/mol) 

 

20% 9.4 (79) (8.0, 10.7) 20% 10.6 (92) 

30% 8.9 (74) (7.6, 10.2) 30% 9.8 (84) 

40% 8.4 (68) (7.1, 9.7) 40% 9.0 (75) 

50% 7.9 (63) (6.6, 9.2) 50% 8.3 (67) 

60% 7.4 (57) (6.1, 8.8) 60% 7.5 (59) 

70% 7.0 (53) (5.6, 8.3) 70% 6.7 (50) 

80% 6.5 (48) (5.2, 7.8) 80% 5.9 (42) 

90% 6.0 (42) (4.7, 7.3) 90% 5.1 (32) 

Every 10% increase in TIR = 0.5% (5.5 mmol/mol) A1C 

reduction 

Every 10% increase in TIR = 0.8% (8.7 mmol/mol) A1C 

reduction 

*The difference between findings from the two studies likely stems from differences in number of studies analyzed 

and subjects included (RCTs with type 1 vs. RCTs with type 1/type 2 with CGM and SMBG).  

 

Pregnancy 

 During pregnancy, the ambition is to safely increase TIR as quickly as possible, while 

reducing TAR and glycemic variability. The first longitudinal CGM data demonstrated a 13- 

percentage point increase in TIR (43% to 56% TIR 70-140 mg/dL [3.9-7.8 mmol/L]) (61). The 

TBR < 50 mg/dL reduced from 6% to 4%, although the higher TBR <70 mg/dL was high (13-

15%) using older generation sensors. With improved sensor accuracy, recent type 1 diabetes 

pregnancy studies report a lower threshold of <63 mg/dL (<3.5 mmol/L) for TBR and ≥63 

mg/dL (≥3.5 mmol/L) for TIR (47; 48). Data from Sweden, and the CONCEPTT control group, 

report 50% TIR in the first trimester, improving to 60% TIR in the third trimester, reflecting 

contemporary antenatal care. Of note, these data confirm that the TBR <63 mg/dL (<3.5 

mmol/L) recommendation of <4% is safely achievable, especially after the first trimester. 

Furthermore, 33% of women achieved the recommendation of 70% TIR 63-140 mg/dL (3.5-7.8 

mmol/L) in the final (>34) weeks of pregnancy. Preliminary data suggest that closed-loop may 

allow pregnant women to safely achieve 70% TIR, at an earlier (>24 weeks) gestation (62; 63). 
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Law et al analyzed data from two early CGM trials (64; 65) describing the associations between 

CGM measures and risk of large for gestational age (LGA) infants. Taken together, the Swedish 

and CONCEPTT data confirm that a 5-7% higher TIR during the second and third trimesters is 

associated with decreased risk of LGA and neonatal outcomes, including macrosomia, shoulder 

dystocia, neonatal hypoglycemia and NICU admissions. More data are needed to define the 

clinical CGM targets for pregnant women with type 2 diabetes, who spend one third less time 

hyperglycemic than women with type 1 diabetes, and achieve TIR of 90%  (61). Because of the 

lack of evidence on CGM targets for women with GDM or type 2 diabetes in pregnancy, 

percentages of time spent in range, below range, and above range have not been included in this 

report. Recent data suggest that even more stringent targets (66) and greater attention to 

overnight glucose profiles may be required to normalize outcomes in pregnant women with 

gestational diabetes (67). 

 

Older and/or High-Risk Individuals with Diabetes  

Older and/or high-risk individuals with diabetes are at notably higher risk for severe 

hypoglycemia due to age, duration of diabetes, duration of insulin therapy, and greater 

prevalence of hypoglycemia unawareness (54-58). The increased risk of severe hypoglycemia is 

compounded by cognitive and physical impairments and other co-morbidities (56; 59). High-risk  

individuals include those with a higher risk of complications, comorbid conditions (e.g., 

cognitive deficits, renal disease, joint disease, osteoporosis, fracture, and/or cardiovascular 

disease), and often require assisted care, which can complicate treatment regimens (59). 

Therefore, when setting glycemic for high-risk and/or elderly people, it is important to 

individualize and be conservative, with a strong focus on reducing the percentage of time spent 

<70 mg/dL (<3.9 mmol/L) and preventing excessive hyperglycemia.  

 

Standardization of CGM Data Presentation  

As noted above, in 2013, a panel of clinicians with expertise in CGM published 

recommendations for use of the Ambulatory Glucose Profile (AGP) as a template for data 

presentation and visualization. Originally created by Mazze et. al. (68), the standardized AGP  

report was further developed by the International Diabetes Center and now incorporates all the 

core CGM metrics and targets along with a 14-day composite glucose profile as an integral 
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component of clinical decision making (24). This recommendation was later endorsed at the 

aforementioned international consensus conference on CGM metrics (18) and is referenced as an 

example in the American Diabetes Association (ADA) 2019 Standards of Care (16) and in an 

update to the American Association of Clinical Endocrinologists (AACE) consensus on use of 

CGM (69). The AGP report, in slightly modified formats, has been adopted by most of the CGM 

device manufacturers in their download software. An example of the AGP report, updated to 

incorporate targets, is presented in Figure 2. In the AGP report, glucose ranges are defined as 

“Very High” (Level 2), “High” (Level 1), “Low” (Level 1) and “Very Low” (Level 2). A 

“mmol/L” version is provided in Supplemental Figure 1. 

 
Figure 2. Ambulatory Glucose Profile  
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There is a general consensus that a useful CGM report is one that can be understood by 

clinician and people with diabetes. While there may be some terms (e.g., glucose variability) that 

are less familiar for many people with diabetes to understand, the value of a single-page report 

that the medical team can review and file in the electronic medical record and can be used as a 

shared decision-making tool with people with diabetes was considered to be of value (70-73). 

More detailed reports (e.g., adjustable data ranges, detailed daily reports) should remain 

available for individualized review by or with people with diabetes. 

 

Clinical Application of Time in Ranges 
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Despite its demonstrated value, clinical utilization of CGM data has remained 

suboptimal. Although time constraints and reimbursement issues are clearly obstacles, clinician 

inexperience in data interpretation and lack of standardization software for visualization of CGM 

data have also played a role (74). The proposed standardized report enables clinicians to readily 

identify important metrics such as the percentage of time spent within, below and above each 

individual’s target range, allowing for greater personalization of therapy through shared decision 

making. 

Using the standardized report the clinician can also address glucose variability (e.g., 

%CV metric) (75) or use glucose management indicator (GMI) metric (43) to discuss the 

possible discrepancies noted in glucose exposure derived from CGM data versus the individual’s 

laboratory-measured A1C (40; 76). With appropriate educational materials, time and experience, 

clinicians will develop a systematic approach to CGM data analysis and the most effective ways 

to discuss the data with patients in person or remotely.   

 

Goal Setting 

 Numerous studies have demonstrated the clinical benefits of early achievement of near-

normal glycemic control in individuals with type 1 diabetes and type 2 diabetes (77-83). 

However, when advising people with diabetes, goal-setting must be collaborative and take into 

account the individual needs/capabilities of each patient and start with the goals that are most 

achievable. An early study by DeWalt and colleagues found that setting small, achievable goals 

not only enhances people’s ability to cope with their diabetes, but that people with diabetes who 

set and achieved their goals often initiated additional behavioral changes on their own (84). One 

approach to consider is the S.M.A.R.T. Goal (Specific, Measurable, Achievable, Relevant, Time 

bound) intervention, which is directly applicable to setting targets for times in ranges. First 

described by Lawlor and Hornyak in 2012 (85), this approach incorporates four key components 

of behavioral change relevant to goal setting: 1) the goal is specific and defines exactly what is to 

be achieved; 2) the goal is measurable and there is tangible evidence when it has been achieved; 

3) the goal is achievable but stretches the patient slightly so that he/she feels challenged; and 4) 

the goal should be attainable over a short period of time.  

Effective goals should utilize CGM data to identify specific instances for the patient to 

take measurable action to prevent hypoglycemia. Although analysis of the AGP reports provides 
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an opportunity for meaningful discussion, individuals should be counseled to look at patterns 

throughout the day to see when low glucose events are occurring and make adjustments in their 

therapy to reduce these events.  

When applying the CGM metrics in clinical practice, it may be more meaningful and 

motivating to communicate to people with diabetes the importance of working to reduce the time 

spent <70 mg/dL (<3.9 mmol/L) to less than one hour per day and less than 15 minutes per day 

<54 mg/dL (<3.0 mmol/L) rather than using <4% and <1% respectively, as the goal. However, as 

discussed earlier, targets must be personalized to meet the needs and capabilities of each person, 

focusing on small steps and small successes. Individuals with diabetes should work with their 

physician and/or educator to develop a SMART goal to reduce time below range.  

Individualized goals are particularly important for pediatric and young adult populations. 

The International Society for Pediatric Diabetes (ISPAD) recommends that targets for  

individuals ≤25 years aim for the lowest achievable A1C without undue exposure to severe 

hypoglycemia balances with quality of life and burden of care (86). An A1C target of 7.0% (53 

mmol/mol) can be used in children, adolescents and adults ≤25 years who have access to 

comprehensive care (86).  However, a higher A1C goal (e.g., <7.5% [<58 mmol/mol] may be 

more appropriate in the following situations: inability to articulate hypoglycemia symptoms; 

hypoglycemia; hypoglycemia unawareness; history of severe hypoglycemia, lack of access to 

analog insulins and/or advanced insulin delivery technology, inability to regularly check glucose 

(86). This would equate to a TIR target of  ~60% (Table 4).  

 The consensus group recognized that achieving the targets for the various time in ranges 

is aspirational in some situations and many individuals will require ongoing support, both 

educational and technological, from their healthcare team. Importantly, as demonstrated by Beck 

et al. (25), Vigersky et al. (26) and Feig et al. (47), even small, incremental improvements yield 

significant glycemic benefits. Therefore, when advising individuals with diabetes (particularly 

children, adolescents, high-risk) about their glycemic goals, it important to take a step-wise 

approach, emphasizing that what may appear to be small, incremental successes (e.g. 5% 

increase in TIR) are, in fact, clinically significant in improving their glycemic control (25; 26; 

47). However, when counseling women planning pregnancy and pregnant women, greater 

emphasis should be placed on getting to goal as soon as possible (47; 48). 
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Conclusions 

 Use of CGM continues to expand in clinical practice. As a component of diabetes self-

management, daily use of CGM provides the ability to obtain immediate feedback on current 

glucose levels, direction and rate of change in glucose levels. This information allows people 

with diabetes to optimize dietary intake and exercise, make informed therapy decisions regarding 

meal-time and correction of insulin dosing and, importantly, react immediately and appropriately 

to mitigate or prevent acute glycemic events (87-89). Retrospective analysis of CGM data, 

utilizing standardized data management tools such as the AGP, enables clinicians and people 

with diabetes to work collaboratively in identifying problem areas and then set achievable goals 

(71-73). We conclude that, in clinical practice, time in ranges (within target range, below range, 

above range) are both appropriate and useful as clinical targets and outcome measurements that 

complement A1C for a wide range of people with diabetes, and that the target values specified in 

this paper should be considered an integral component of CGM data analysis and day-to-day 

treatment decision making. 

 

Author Contributions  

 T.B., R.M.B., W.C., T.D., S.G., L.H. I.M..B., C.M., H.M., S.A., R.N., K.D., C.G.P. and 

M.P. wrote and revised the initial manuscript drafts. All authors reviewed, provided input, and 

approved the final manuscript. T.B. is the guarantor of this work and takes full responsibility for 

the integrity of the information included in the report.     

 

 

Acknowledgements 

 The consensus group participants wish to thank Advanced Technologies and Treatments 

for Diabetes (ATTD) for organizing and coordinating the meeting. We also wish to thank Rachel 

Naveh for assistance in organizing the meeting. We would like to thank Courtney Lias from the 

U.S. Food and Drug Administration for her participation as an observer at the consensus 

conference.  

 

Funding 



 22 

 Support for the CGM consensus conference and development of this manuscript was 

provided by the Advanced Technologies and Treatments for Diabetes (ATTD) Congress. Abbott 

Diabetes Care, Astra Zeneca, Dexcom Inc., Eli Lilly & Company, Insulet Corporation, 

Medtronic, Novo Nordisk, Roche Diabetes Care, and Sanofi provided funding to ATTD to 

support the consensus meeting. All consensus participants were reimbursed for travel to the 

ATTD conference and one night lodging; no honoraria were provided. Editorial support was 

provided by Christopher G. Parkin, MS, CGParkin Communications, Inc. 

 

Financial Disclosures 

Tadej Battelino - T.B. has received honoraria for participation on advisory boards for Novo 
Nordisk, Sanofi, Eli Lilly & Company, Boehringer, Medtronic and Bayer Health Care and as a 
speaker for Astra Zeneca, Eli Lilly & Company, Bayer, Novo Nordisk, Medtronic, Sanofi and 
Roche. TB owns stocks of DreamMed Diabetes; his institution has received research grant 
support and travel expenses from Abbott Diabetes Care, Medtronic, Novo Nordisk, GluSense, 
Sanofi, Sandoz and Diamyd.  

Thomas Danne - T.D. has received speaker honoraria, research support and consulting fees from 
Abbott Diabetes Care, Bayer, BMS, AstraZeneca, Boehringer Ingelheim, Dexcom, Eli Lilly & 
Company, Medtronic, Novo Nordisk, Sanofi, and Roche Diabetes Care; he is a shareholder of 
DreaMed Diabetes.  

Stephanie A. Amiel -  S.A.A. declared no conflicts of interest. 

Roy Beck - R.W.B. is an employee the Jaeb Center for Health Research, which has received 
grant support from Dexcom, Animas, Bigfoot, Tandem, non-financial study support from 
Dexcom, Abbott Diabetes Care, and Roche Diabetes Care, and consulting fees from Eli Lilly and 
Company and Insulet; he has no personal financial arrangements with any company.   

Richard M. Bergenstal - R.M.B. has received research funding and served as a consultant and 
served on advisory boards for Abbott Diabetes Care, Becton-Dickinson, DexCom, Eli Lilly and 
Company, Glooko, Helmsley Charitable Trust, Hygieia, Johnson & Johnson, Medtronic, Merck, 
Novo Nordisk, Roche, Sanofi, and Senseonics; his employer, non-profit HealthPartners Institute, 
contracts for his services and no personal income goes to R.M.B.  

Torben Biester -  T.B. declared no conflicts of interest. 

Emanuele Bosi -  E.B. received honoraria for participation on advisory boards and speaker 
bureaus from Abbott Diabetes Care, Astra Zeneca, Medtronic, Novartis, Roche, and Sanofi. 

Bruce Buckingham -  B.B. declared no conflicts of interest. 

William Cefalu  - W.C. declared no conflicts of interest.  

Kelly L. Close -  K.L.C. is an employee of Close Concerns and diaTribe, which receive funding 
CGM manufacturers, including Medtronic, Dexcom and Abbott Diabetes Care.  

Claudio Cobelli -  C.C. declared no conflicts of interest. 



 23 

Eyal Dassau -  E.D. has received consulting fees and honoraria for participation on advisory 
boards for Animas, Insulet, Eli Lilly and Company and research support from Dexcom, Insulet, 
Animas, Xeris.  

J. Hans DeVries -  J.H.DV. has received speaker honoraria and research support and has 
consulted for Abbott Diabetes Care, Dexcom, Medtronic, MSD, Novo Nordisk, Sanofi, Roche, 
Senseonics and Zealand.  

Kim Donaghue -  K.D. declared no conflicts of interest. 

Klemen Dovc -  K.D. declared no conflicts of interest. 

Francis J. Doyle III - F.J.DIII. has received consulting fees from ModeAGC and research 
support from Dexcom, Insulet, Animas, and Xeris.  

Satish Garg - S.G. has received consulting fees and honoraria for participation on advisory 
boards for Medtronic, Roche Diabetes Care, Merck, Lexicon, Novo-Nordisk, Sanofi, Mannkind, 
Senseonics, Zealand, and Eli Lilly and Company and research grants from Eli Lilly and 
Company, Novo-Nordisk, Merck, Lexicon, Medtronic, Dario, NCI, T1D Exchange, NIDDK, 
JDRF, Animas, Dexcom, and Sanofi. 

George Grunberger -  G.G. has received consultiong fees from Novo Nordisk and Medtronic 
and honoraria for participation on speaker bureaus from Novo Nordisk, Eli Lilly and Company, 
Boehringer Ingelheim, and Sanofi.  

Simon Heller - S.H. declared no conflicts of interest. 

Lutz Heinemann - L.H. declared no conflicts of interest. 

Irl B. Hirsch  - L.B.H. declared no conflicts of interest. 

Roman Hovorka - R.H. reports having received speaker honoraria from Eli Lilly and Company 
Lilly, Novo Nordisk and Astra Zeneca, serving on advisory panel for Eli Lilly and Company and 
Novo Nordisk, and receiving license fees from BBraun and Medtronic.  

Weiping Jia -  W.J. declared no conflicts of interest. 

Olga Kordonouri  - O.K. declared no conflicts of interest. 

Boris Kovatchev - B.K. declared no conflicts of interest. 

Aaron Kowalski  - A.K. declared no conflicts of interest. 

Brian Levine - B.L. is an employee of Close Concerns and diaTribe, which receive funding 
CGM manufacturers, including Medtronic, Dexcom and Abbott Diabetes Care.  

Aleksander Mayorov -  A.M. declared no conflicts of interest. 

Chantal Mathieu -  C. M. serves or has served on the advisory panel or speaker’s bureau for 
Novo Nordisk, Sanofi, Merck Sharp and Dohme Ltd., Eli Lilly and Company, 
Novartis,  AstraZeneca, Boehringer Ingelheim, Hanmi Pharmaceuticals, Roche, Medtronic, 
ActoBio Therapeutics, Pfizer, Dianax and UCB. Financial compensation for these activities has 
been received by KU Leuven. 

Helen R. Murphy - H.R.M. received honoraria from participation on advisory boards for 
Medtronic and research support from Dexcom, Medtronic, Abbott Diabetes Care, and Johnson & 
Johnson.  



 24 

Revital Nimri  - R.N. declared no conflicts of interest. 

Kirsten Nørgaard - K.N. owns shares in Novo Nordisk and has received consulting fees from 
Medtronic, Abbott Diabetes Care and Novo Nordisk, speaker honoraria from Medtronic, Roche 
Diabetes Care, Rubin Medical, Sanofi, Novo Nordisk, Zealand Pharma and Bayer, and research 
support from Novo Nordisk, Zealand Pharma, Medtronic, and Roche Diabetes Care.   

Christopher G. Parkin  - C.G.P. has received consulting fees from Dexcom, Diasome, Onduo, 
Proteus, Roche Diabetes Care, and Senseonics.   

Eric Renard - E.R. has received consulting fees from A. Menarini Diagnostics, Abbott Diabetes 
Care, Becton-Dickinson, Cellnovo, Dexcom Inc., Eli Lilly and Company, Insulet Inc., Johnson & 
Johnson, Medtronic, Novo-Nordisk, Roche, Sanofi and research support from Abbott Diabetes 
Care, Dexcom, Insulet, and Roche.  

David Rodbard - D.R. has received consulting fees from Eli Lilly and Company and Better 
Therapeutics.  

Banshi Saboo - B.S. declared no conflicts of interest 

Desmond Schatz - D.S. declared no conflicts of interest. 

Keaton Stoner - K.S. declared no conflicts of interest. 

Tatsuiko Urakami  - T.U. declared no conflicts of interest. 

Stuart A. Weinzimer -  S.A.W. has received consulting fees from Insulet.  

Moshe Phillip - M.P. is a member of the Advisory Board of AstraZeneca, Sanofi, Medtronic, Eli 
Lilly, Novo Nordisk, Insulet and is a consultant to RSP Systems A/S, Qulab Medical, and Pfizer. 
The Institute headed by MP received research support from Medtronic, Novo Nordisk, Eli Lilly, 
Dexcom, Sanofi, Insulet, OPKO, DreaMed Diabetes, Bristol-Myers Squibb, and Merck. MP is a 
stock/shareholder of DreaMed Diabetes, NG Solutions and Nutriteen Professionals and reports 
two patent applications. 
 

 
 
 
 
 
 
 
 



 25 

References 
1. Lind M, Polonsky W, Hirsch IB. Continuous glucose monitoring vs conventional therapy for 

glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the 

GOLD randomized clinical trial. JAMA 2017;317(4):379-387  

2. Aleppo G, Ruedy KJ, Riddlesworth TD, et al. REPLACE-BG: A randomized trial comparing 

continuous glucose monitoring with and without routine blood glucose monitoring in adults 

with well-controlled type 1 diabetes. Diabetes Care 2017;40(4):538-545.  

3. Beck RW, Riddlesworth T, Ruedy K, et al. Effect of continuous glucose monitoring on glycemic 

control in adults with type 1 diabetes using insulin injections: The DIAMOND randomized 

clinical trial. JAMA 2017; 317:371-378.  

4. Beck RW, Riddlesworth TD, Ruedy K, et al. Continuous glucose monitoring versus usual care 

in patients with type 2 diabetes receiving multiple daily insulin injections: a randomized trial. 

Ann Intern Med 2017;167:365-374.  

5. Polonsky WH, Hessler D, Ruedy KJ, Beck RW, for the DIAMOND Study Group. The impact of 

continuous glucose monitoring on markers of quality of life in adults with type 1 diabetes: 

further findings from the DIAMOND randomized clinical trial. Diabetes Care 2017; 40:736-741.  

ϲ͘ ŠŽƵƉĂů J͕ PĞƚƌƵǎĞůŬŽǀĄ L͕ FůĞŬĂē M͕ Ğƚ Ăů͘ CŽŵƉĂƌŝƐŽŶ ŽĨ ĚŝĨĨĞƌĞŶƚ ƚƌĞĂƚŵĞŶƚ ŵŽĚĂůŝƚŝĞƐ ĨŽƌ 
type 1 diabetes, including sensor-augmented insulin regimens, in 52 weeks of follow-up: a 

COMISAIR study. Diabetes Technol Ther. 2016;18(9):532-538.  

7. van Beers CA, DeVries JH, Kleijer SJ, et al. Continuous glucose monitoring for patients with 

type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL): a randomised, open-

label, crossover trial. Lancet Diabetes Endocrinol. 2016;4(11):893-902.  

8. Bolinder J, Antuna R, Geelhoed-Duijvestijn P, Kröger J, Weitgasser R. Novel glucose-sensing 

technology and hypoglycemia in type 1 diabetes: a multicentre, non-masked, randomised 

controlled trial. Lancet 2016;388:2254-2263.  

9. Haak T, Hanaire H, Ajjan R, Hermanns N, Riveline JP, Rayman G. Flash glucose-sensing 

technology as a replacement for blood glucose monitoring for the management of insulin-

treated type 2 diabetes: a multicenter, open-label randomized controlled trial. Diabetes Ther 

2017;8(1):55-73.  

10. Choudhary P, Olsen BS, Conget I, et al. Hypoglycemia prevention and user acceptance of an 

insulin pump system with predictive low glucose management. Diabetes Technol Ther 

2016;18(5):288-291.  

11. Bergenstal RM, Garg S, Weinzimer SA, et al. Safety of a hybrid closed-loop insulin delivery 

system in patients with type 1 diabetes. JAMA. 2016;316:1407-1408.  

12. Heinemann L, Guido Freckmann G, Gabriele Faber-Heinemann G, et al. Benefits of 

continuous glucose monitoring use in adults with type 1 diabetes and impaired hypoglycaemia 

awareness and/or severe hypoglycaemia treated with multiple daily insulin injections: Results 

of the multicentre, randomised controlled HypoDE study. The Lancet 2018 (In Press).  

13. Reddy M, Jugnee N, El Laboudi A, Spanudakis E, Anantharaja S, Oliver N. A randomised 

controlled pilot study of continuous glucose monitoring and flash glucose monitoring in people 

with type 1 diabetes and impaired awareness of hypoglycaemia. Diabet Med. 2017 Dec 12. doi: 

10.1111/dme.13561. [Epub ahead of print].  



 26 

14. Battelino T, Nimri R, Dovc K, Phillip M, Bratina N. Prevention of Hypoglycemia with 

Predictive Low Glucose Insulin Suspension in Children with Type 1 Diabetes: A Randomized 

Controlled Trial. Diabetes Care. 2017;40(6):764-770.  

15. Dovc K, Cargnelutti K, Sturm A, Selb J, Bratina N, Battelino T. Continuous glucose monitoring 

use and glucose variability in pre-school children with type 1 diabetes. Diabetes Res Clin Pract. 

2019 Jan;147:76-80.  

16. American Diabetes Association. 7. Diabetes technology. Standards of medical care-2019. 

Diabetes Care 2019: 42 (Suppl 1): S71-S80.  

17. Fonseca VA, Grunberger G, Anhalt H, et al. for the Consensus Conference Writing 

Committee. Continuous Glucose Monitoring: A Consensus Conference of the American 

Association of Clinical Endocrinologists and American College of Endocrinology. Endocr Pract. 

2016;22(8):1008-1021.  

18. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose 

Monitoring. Diabetes Care. 2017;40(12):1631-1640.  

19. Petrie JR, Peters AL, Bergenstal RM, Holl RW, Fleming A, Heinemann L. Improving the 

Clinical Value and Utility of CGM Systems: Issues and Recommendations. A Joint Statement of 

the European Association for the Study of Diabetes and the American Diabetes Association 

Diabetes Technology Working Group. Diabetes Care 2017;40:1614ʹ1621.  

20. Agiostratidou G, Anhalt H, Ball D, et al. Standardizing Clinically Meaningful Outcome 

Measures Beyond HbA1c for Type 1 Diabetes: A Consensus Report of the American Association 

of Clinical Endocrinologists, the American Association of Diabetes Educators, the American 

Diabetes Association, the Endocrine Society, JDRF International, the Leona M. and Harry B. 

Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange. Diabetes 

Care 2017; 40(12):1622-1630.  

21. Sherr JL, Tauschmann M, Battelino T, et al. ISPAD Clinical Practice Consensus Guidelines 

2018: Diabetes Technologies. Pediatr Diabetes. 2018;19(Suppl 27):302-325.  

22. Foster NC, Beck RW, Miller KM, et al. State of Type 1 Diabetes Management and Outcomes 

from the T1D Exchange in 2016ʹ2018. Diabetes Technol Ther 2019; 1 Feb 

2019https://doi.org/10.1089/dia.2018.0384.  

23. Foster NC, Miller K, Dimeglio L, et al. Marked Increases in CGM Use Has Not Prevented 

Increases in HbA1c Levels in Participants in the T1D Exchange (T1DX) Clinic Network. Diabetes 

2018;67(Suppl 1). https://doi.org/10.2337/db18-1689-P. Accessed April 1, 2019.  

24. Bergenstal RM, Ahmann AJ, Bailey T, et al. Recommendations for standardizing glucose 

reporting and analysis to optimize clinical decision making in diabetes: the Ambulatory Glucose 

Profile (AGP). Diabetes Technol Ther. 2013;15(3):198-211.  

25. Beck RW, Bergenstal RM, Cheng P, Kollman C, Carlson AL, Johnson ML, Rodbard D. The 

Relationships Between Time in Range, Hyperglycemia Metrics, and HbA1c. J Diabetes Sci 

Technol. 2019 Jan 13:1932296818822496. doi: 10.1177/1932296818822496. [Epub ahead of 

print].  

26. Vigersky RA, McMahon C. The Relationship of Hemoglobin A1C to Time-in-Range in Patients 

with Diabetes. Diabetes Technol Ther. 2019;21(2):81-85.  

27. Brod M, Christensen T, Thomsen TL, Bushnell DM. The impact of non-severe hypoglycemic 

events on work productivity and diabetes management. Value Health. 2011;14(5):665-671.  

https://doi.org/10.1089/dia.2018.0384
https://doi.org/10.2337/db18-1689-P


 27 

28. Brod M, Rana A, Barnett AH. Impact of self-treated hypoglycaemia in type 2 diabetes: A 

multinational survey in patients and physicians. Curr Med Res Opin. 2012;28:1947-1958.  

29. Seaquist ER, Anderson J, Childs B, et al. Hypoglycemia and diabetes: a report of a workgroup 

of the American Diabetes Association and the Endocrine Society. Diabetes Care 2013;36:1384ʹ
1395.  

30. International Hypoglycaemia Study Group. Glucose concentrations ŽĨ ůĞƐƐ ƚŚĂŶ ϯ͘ϬരŵŵŽůͬL 
;ϱϰരŵŐͬĚLͿ ƐŚŽƵůĚ ďĞ ƌĞƉŽƌƚĞĚ ŝŶ ĐůŝŶŝĐĂů ƚƌŝĂůƐ͗ A ũŽŝŶƚ ƉŽƐŝƚŝŽŶ ƐƚĂƚĞŵĞŶƚ ŽĨ ƚŚĞ AŵĞƌŝĐĂŶ 
Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 40 

(2017), pp. 155-157.  

31. Novodvorsky P, Bernjak A, Chow E, et al. Diurnal differences in risk of cardiac arrhythmias 

during spontaneous hypoglycemia in young people with type 1 diabetes. Diabetes Care 

2017;40:655ʹ662.  

32. Battelino T, Conget I, Olsen B, et al. The use and efficacy of continuous glucose monitoring 

in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. 

Diabetologia 2012;55(12):3155-3162.  

33. Bergenstal RM, Tamborlane WV, Ahmann A, et al. Sensoraugmented pump therapy for A1C 

reduction (Star 3) study: results from the 6-month continuation phase. Diabetes Care. 

2011;34:2403-2405.  

34. Cox DJ, Kovatchev BP, Julian DM, et al. Frequency of severe hypoglycemia in insulin 

dependent diabetes mellitus can be predicted from self-monitoring blood glucose data. J Clin 

Endocrinol Metab 1994;79:1659-1662.  

35. Qu Y, Jacober SJ, Zhang Q, Wolka LL, DeVries JH. Rate of hypoglycemia in insulin-treated 

patients with type 2 diabetes can be predicted from glycemic variability data. Diabetes Technol 

Ther 2012.;14(11):1008-1012.  

36. National Diabetes Information Clearinghouse (NDIC). Sickle cell trait and other 

hemoglobinopathies and diabetes: important information for providers [Internet]. Available 

from http://diabetes.niddk.nih.gov/dm/pubs/hemovari-A1C/index.aspx. Accessed January 12, 

2018.  

37. Bry L, Chen PC, Sacks DB. Effects of hemoglobin variants and chemically modified 

derivatives on assays for glycohemoglobin. Clin Chem 2001;47(2):153-163.  

38. Ford ES, Cowie CC, Li C, Handelsman Y, Bloomgarden ZT. Iron-deficiency anemia, non-iron-

deficiency anemia and HbA1c among adults in the US. J Diabetes 2011;3(1):67-73.  

39. Nielsen LR, Ekbom P, Damm P, et al. HbA1c levels are significantly lower in early and late 

pregnancy. Diabetes Care 2005;27(5):1200-1201.  

40. Beck RW, Connor CG, Mullen DM, Wesley DM, Bergenstal RM. The fallacy of average: how 

using HbA1c alone to assess glycemic control can be misleading. Diabetes Care 2017;40:994-

999  

41. Xing D, Kollman C, Beck RW, et al. Optimal sampling intervals to assess long-term glycemic 

control using continuous glucose monitoring. Diabetes Technol Ther 2011;13:351-358.  

42. Riddlesworth TD, Beck RW, Gal RL, et al. Optimal Sampling Duration for Continuous Glucose 

Monitoring to Determine Long-Term Glycemic Control. Diabetes Technol Ther. 2018;20(4):314-

316.  

43. Bergenstal RM, Beck RW, Close KL, et al. Glucose Management Indicator (GMI):a new term 

for estimating A1C from continuous glucose monitoring. Diabetes Care 2018;41:2275ʹ2280.  

http://diabetes.niddk.nih.gov/dm/pubs/hemovari-A1C/index.aspx


 28 

44. Monnier L, Colette C, Wojtusciszyn A, et al. Toward defining the threshold between low and 

high glucose variability in diabetes. Diabetes Care 2017;40:832ʹ838.  

45. Rodbard D. Hypo- and hyperglycemia in relation to the mean, standard deviation, 

coefficient of variation, and nature of the glucose distribution. Diabetes Technol Ther. 2012 

Oct;14(10):868-876.  

46. Rama Chandran S, Tay WL, Lye WK, et al. Beyond HbA1c: Comparing Glycemic Variability 

and Glycemic Indices in Predicting Hypoglycemia in Type 1 and Type 2 Diabetes. Diabetes 

Technol Ther. 2018 May;20(5):353-362.  

47. Feig DS, Donovan LE, Corcoy R, et al. Continuous glucose monitoring in pregnant women 

with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. 

Lancet. 2017;390:2347-2359.  

48. Kristensen K, Ögge LE, Sengpiel V, et al. Continuous glucose monitoring in pregnant women 

with type 1 diabetes: an observational cohort study of 186 pregnancies. Diabetologia 2019 

https://doi.org/10.1007/s00125-019-4850-0. Accessed April 4, 2019.  

49. Famulla S, Pieber TR, Eilbracht J, et al. Glucose Exposure and Variability with Empagliflozin 

as Adjunct to Insulin in Patients with Type 1 Diabetes: Continuous Glucose Monitoring Data 

from a 4-Week, Randomized, Placebo-Controlled Trial (EASE-1). Diabetes Technol Ther. 2017 

Jan;19(1):49-60.  

50. Dandona P, Mathieu C, Phillip M, et al. Efficacy and safety of dapagliflozin in patients with 

inadequately controlled type 1 diabetes: the DEPICT-1 52-week study. Diabetes Care 

2018;41(12):2552-2559.  

51. Mathieu M, Dandona P, Moshe P, et al. Glucose Variables in Type 1 Diabetes Studies with 

Dapagliflozin: Pooled Analysis of Continuous Glucose Monitoring Data from DEPICT-1 and 2. 

Diabetes Care 2019 (IN PRESS).  

52. Lu J, Ma X, Zhou J, et al. Association of time in range, as assessed by continuous glucose 

monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care. 2018;41(11):2370-

2376.  

53. Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of time in range as an outcome 

measure for diabetes clinical trials. Diabetes Care. 2018 Oct 23. pii: dc181444. doi: 

10.2337/dc18-1444. [Epub ahead of print]. 

http://care.diabetesjournals.org/content/early/2018/10/17/dc18-1444.long. Accessed 

November 15, 2018.  

54. Weinstock RS, DuBose SN, Bergenstal RM, et al. Risk Factors Associated With Severe 

Hypoglycemia in Older Adults With Type 1 Diabetes. Diabetes Care 2016;39(4):603-610.  

55. Bremer JP, Jauch-Chara K, Hallschmid M, Schmid S, Schultes B. Hypoglycemia unawareness 

in older compared with middle-aged patients with type 2 diabetes. Diabetes Care 2009; 

32:1513-1517.  

56. Punthakee Z, Miller ME, Launer LJ, et al. Poor cognitive function and risk of severe 

hypoglycemia in type 2 diabetes: post hoc epidemiologic analysis of the ACCORD trial. Diabetes 

Care 2012; 35:787-793.  

57. Giorda CB, Ozzello A, Gentile S, et al. Incidence and risk factors for severe and symptomatic 

hypoglycemia in type 1 diabetes. Results of the HYPOS-1 study. Acta Diabetol 2015; 52:845-853.  

https://doi.org/10.1007/s00125-019-4850-0
http://care.diabetesjournals.org/content/early/2018/10/17/dc18-1444.long


 29 

58. Cariou B, Fontaine P, Eschwege E, et al. Frequency and predictors of confirmed 

hypoglycaemia in type 1 and insulin-treated type 2 diabetes mellitus patients in a real-life 

setting: results from the DIALOG study. Diabetes Metab 2015; 41:116-125.  

59. Abdelhafiz AH, Rodrşguez-MaŹas L, Morley JE, Sinclair AJ.  Hypoglycemia in Older People - A 

Less Well Recognized Risk Factor for Frailty. Aging Dis 2015;6(20;156-167.  

60. Beck RW, Bergenstal RM, Riddlesworth TD, Kollman C. The association of biochemical 

hypoglycemia with the subsequent risk of a severe hypoglycemic event: analysis of the DCCT 

data set. Diabetes Technol Ther. 2019 Jan;21(1):1-5. doi: 10.1089/dia.2018.0362. Epub 2018 

Dec 21.  

61. Murphy HR, Rayman G, Duffield K, et al. Changes in the glycemic profiles of women with 

type 1 and type 2 diabetes during pregnancy. Diabetes Care. 2007;30(11):2785-2791.  

62. Stewart ZA, Wilinska ME, Hartnell S, et al. Closed-Loop Insulin Delivery during Pregnancy in 

Women with Type 1 Diabetes. N Engl J Med. 2016;375(7):644-654.  

63. Stewart ZA, Wilinska ME, Hartnell S, et al. Day-and-Night Closed-Loop Insulin Delivery in a 

Broad Population of Pregnant Women With Type 1 Diabetes: A Randomized Controlled 

Crossover Trial. Diabetes Care 2018;41(7):1391-1399.  

64. Murphy HR, Rayman G, Lewis K, et al. Effectiveness of continuous glucose monitoring in 

pregnant women with diabetes: randomised clinical trial. BMJ 2008;337:a1680.  

65. Secher AL, Ringholm L, Andersen HU, Damm P, Mathiesen ER. The Effect of Real-Time 

Continuous Glucose Monitoring in Pregnant Women With Diabetes: A randomized controlled 

trial. Diabetes Care 2013;36(7):1877-1883.  

66. Paramasivam SS, Chinna K, Singh AKK, et al. Continuous glucose monitoring results in lower 

HbA1c in Malaysian women with insulin-treated gestational diabetes: a randomized controlled 

trial. Diabet Med 2018;35(8):1118-1129.  

67. Law GR, Alnaji A, Alrefaii L, et al. Suboptimal Nocturnal Glucose Control Is Associated With 

Large for Gestational Age in Treated Gestational Diabetes Mellitus. Diabetes Care 

2019;42(5):810-815.  

68. Mazze RS, Lucido D, Langer O, Hartmann K, Rodbard D. Ambulatory glucose profile: 

representation of verified self-monitored blood glucose data. Diabetes Care. 1987;10(1):111-

117.  

69. Fonseca V, Grunberger G. Standard Glucose Reporting: Follow-up to the February 2016 

AACE CGM Consensus Conference. Endocrine Practice 2017;23(5):629-632  

70. Mullen DM, Bergenstal R, Criego A, Arnold KC, Goland R, Richter S. Time Savings Using a 

Standardized Glucose Reporting System and Ambulatory Glucose Profile. J Diabetes Sci Technol. 

2018;12(3):614-621.  

71. Carlson AL, Mullen DM, Bergenstal RM.  Clinical Use of Continuous Glucose Monitoring in 

Adults with Type 2 Diabetes.  Diabetes Technol Ther 2017;19(S2):S4-S1.  

72. Hirsch IB, Verderese CA. Professional flash continuous glucose monitoring with ambulatory 

glucose profile reporting to supplement A1C: rationale and practical implementation. Endocr 

Pract 2017;23:1333ʹ1344.  

73. Kruger DF, Edelman SV, Hinnen DA, Parkin CG. Reference guide for integrating continuous 

glucose monitoring into clinical practice. Diabetes Educ. 2019 Feb;45(suppl 1):3S-20S.  

74. Rodbard D. Continuous Glucose Monitoring: A Review of Successes, Challenges, and 

Opportunities. Diabetes Technol Ther 2016;18(Suppl 2):S2-3-S2-13.  



 30 

75. Rodbard D. Glucose Variability: A Review of Clinical Applications and Research 

Developments. Diabetes Technol Ther. 2018;20(S2):S25-S215.  

76. Cohen RM, Franco RS, Smith EP, Higgins JM. When HbA1c and Blood Glucose Do Not Match: 

How Much Is Determined by Race, by Genetics, by Differences in Mean Red Blood Cell Age? J 

Clin Endocrinol Metab. 2019;104(3):707-710.  

77. Svensson E, Baggesen LM, Johnsen SP, et al. Early Glycemic Control and Magnitude of 

HbA1c Reduction Predict Cardiovascular Events and Mortality: Population-Based Cohort Study 

of 24,752 Metformin Initiator. Diabetes Care 2017;40(6):800-807.  

78. Safford MM, Shewchuk R, Qu H, et al. Reasons for not intensifying medications: 

ĚŝĨĨĞƌĞŶƚŝĂƚŝŶŐ ͞ĐůŝŶŝĐĂů ŝŶĞƌƚŝĂ͟ ĨƌŽŵ ĂƉƉƌŽƉƌŝĂƚĞ ĐĂƌĞ͘ J GĞŶ IŶƚĞƌŶ MĞĚ͘ ϮϬϬϳ͖ϮϮ͗ϭϲϰϴʹ1655.  

79. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment 

of diabetes on the development and progression of long-term complications of insulin-

dependent diabetes mellitus. N Engl J Med 1993;329, 977-986  

80. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with 

sulphonlylureas or insulin compared with conventional treatment and risk of complications in 

patients with type 2 diabetes (UKPDS 33). Lancet 1998;352(9131):837-853.  

81. Holman RR, Paul SK, Bethel A, Matthews DR, Neil HAW. 10-Year Follow-up of Intensive 

Glucose Control in Type 2 Diabetes. N Engl J Med 2008; 359:1577-1589.  

82. Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia 

on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. 

Lancet. 2010;376(9739):419-430.  

83. Hayward RA, Reaven PD, Wiitala WL, et al. Follow-up of glycemic control and cardiovascular 

outcomes in type 2 diabetes. N Engl J Med. 2015;372:2197-2206.  

84. DeWalt DA, Davis TC, Wallace AS, et al.  Goal setting in diabetes self-management: Taking 

the baby steps to success. Patient Educ Couns 2009;77(2):218-223.  

85. Lawlor KB, Hornyak MJ. SMART goals: how the application of SMART goals can contribute to 

achievement of student learning outcomes. Developments in Business Simulation and 

Experiential Learning 2012;39:259-267  

86. DiMeglio LA, Acerini C, Codner E, et al. ISPAD Clinical Practice Consensus Guidelines 2018: 

Glycemic control targets and glucose monitoring for children, adolescents, and young adults 

with diabetes. Pediatr Diabetes. 2018;19(Suppl 270:105-114.  

87. Aleppo G, Laffel LM, Ahmann AJ, et al. Practical approach to using trend arrows on the 

Dexcom G5 CGM system for the management of adults with diabetes. J Endocr Soc. 

2017;20;1(12):1445-1460.  

88. Laffel LM, Aleppo G, Buckingham BA, et al. A Practical Approach to Using Trend Arrows on 

the Dexcom G5 CGM System to Manage Children and Adolescents With Diabetes.  J Endocr Soc. 

2017;1(12):1461-1476.  

89. Kudva YC, Ahmann AJ, Bergenstal RM, et al. Approach to using trend arrows in the FreeStyle 

Libre Flash Glucose Monitoring Systems in adults.J Endocr Soc 2018;14;2(12):1320-1337.  
 


