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(ABSTRACT)

Improvements in sensor accuracy, greater convenience saeease and expanding
reimbursement have led to growing adoption of continuous ggug@nitoring (CGM).

However, successful utilization of CGM technology in routihieical practice remains

relatively low. This may be due in part to the lack of ckead agreed upon glycemic targets that
both diabetes teams and people with diabetes can workdswsthough unified
recommendations for use of key CGM metrics have baableshed in three separate peer
reviewed articles, formal adoption by diabetes profeskmnganizations, and guidance in the
practical application of these metrics in clinical praethas been lacking. In February 2019, the
Advanced Technologies & Treatments for Diabetes (ATTD)gress convened an international
panel of physicians, researchers, and individuals withetks who are expert in CGM
technologies to address this issue. This article sumesattie ATTD consensus
recommendations for relevant aspects of CGM data uidizand reporting among the various

diabetes populations.



Adoption of continuous glucose monitoring (CGM), which includeth real-time CGM
(rtCGM) and intermittently-scanned CGM (isCGM), has graamdly over the past few years
due to improvements in sensor accuracy, greater converggicease of use and expanding
reimbursement. Numerous studies have demonstrated signiloacal benefits of CGM use in
people with diabetes regardless of insulin delivery mehel5). In many countrieshe benefits
and utility of CGM are now recognized by national and magonal medical organizations for
individuals with insulin-requiring diabetes and/or thosaskt for hypoglycemia (16-21)
However, despite increased CGM adoption (22; 233cessful utilization of CGM data in
routine clinical practice remains relatively low. Thisynee due in part to the lack of clear and
agreed upon glycemic targets toward which both diabetes teahpeaple with diabetes can
work.

In 2012 the Helmsley Charitable Trust sponsored the fipgtreypanel to recommend the
standardization of CGM metrics and CGM report visualira{P4) This was followed by
series of CGM consensus statements refining the d8iM @etrics but the conclusions were
never in alignment. In 2017, several articles supportedfusetematic approaches to CGM
data evaluation (18-20). To date, the key CGM metrics reamunified recommendations in
three separate peer reviewed articles, yet formal adopyialiabetes professional organizations
and guidance in the practical application of these nseimiclinical practice has been lacking
(29).

In February 2019, the Advanced Technologies and Treatrfeerisabetes (ATTD)
Congress convened an international panel of individuiiftsdiabetes and clinicians and
researchers expert in CGM. Our objective was to develaeree-based, clinical CGM targets
to supplement the currently agreed-upon metrics for CGMetetimes in glucose ranges
(within target range, below target rangbove target range) in order to provide guidance for
clinicians, researchers, and individuals with diabetegilizing, interpreting and reporting CGM
data in routine clinical care and research. Imponaintiorder to make the recommendations
generalizable and comprehensive, the consensus panel ingiddeduals living with diabetes
and had international representation from physiciadsrasearchers from all geographic

regions



The panel was divided into subgroups to review literature and previdence-based
recommendations for relevant aspects of CGM data uidizand reportinganong the various
diabetes populations. Because long-term trials demomgtiasvv CGM metrics relate to and/or
predict clinical outcomes have not been conducted, thexgygestive evidence from a number
of recent studies, one a cross-sectional study ctngleurrent retrospective 3-day TIR with
varying degrees of diabetes retinopathy (25) and an anafytbie @-point SMBG data from the
DCCT (26) have shown correlations of time in target rg@@e180 mg/dL [3.9-10.0 mmol/L])
with diabetes complicatiorRelationships between time in target range and A1C (25; 26) and
number of severe and non-severe hypoglycemic events (2&3i also been observed
Recommendations from each subgroup were then presentedftdl franel and voted upon.
This article summarizes the consensg®mmendations and represents the panel members’

evaluation of the issues.

Need for Metrics Beyond A1C

A1C is currently recognized as the key surrogate markehdéodevelopment of long-
term diabetes complications in people with type 1 and 2ypiabetes and has been used the
primary endpoint for many CGM studies (1; 3; 4; 6; 32; 33). WAIIE reflects the average
glucose over the last 2-3 months, its limitatiorhis kack of information about acute glycemic
excursions and the acute complications of hypo- and hiygergia. A1C also fails to identify
the magnitude and frequency of intra- and inter-day glucasation (34; 35). Moreover, certain
conditions such as anemia (36), hemoglobinopathies (37)l&ficiency (38), and pregnancy
(39) can confound1C measurementsmportantly, as reported by Beck and colleagues, the
A1C test can at times fail to accurately reflect mdanagse even when none of these conditions
are present (40). Despite these limitations, A1C is thepospectively evaluated tool for
assessing the risk for diabetes complications and its tanpa in clinical decision-making
should not be undervalued. Rather, the utility of A1C ishkrenhanced when used in
combination with CGM data.

Unlike A1C measurement, use of CGM allows for the directrgbsien of glycemic
excursions and daily profiles, which can inform on immediateathy decisions and/or lifestyle
modifications. CGM also provides the ability to assess glicariability GV) and identify
patterns of hypo- and hyperglycemia



Effective use of CGM data to optimize clinical outcomegiites the user to interpret the
collected data and act upon them appropriately. This reqdye®mmon metrics for assessment
of CGM glycemic status; 2) graplaitvisualization of the glucose data and CGM daily profile

and 3) clear evidence-based clinical targets.

Standardization of CGM Metrics
In February 2017, the Advanced Technologies and Treatrweriisabetes (ATTD)
Congress convened an international panel of expertielivé and researchers to define core

metrics for assessing CGM data (18)alfle 1)

Table 1. Standardized CGM Metrics

2017 International Consensus on CGM Metrics (18)

1. Number of Days CGM Worn

2. Percentage of time CGM is active

3. Mean Glucose

4. Estimated Alc (eA1C)

5. Glycemic Variability (%CV or SD)

6. Time >250 mg/dL (>13.9 mmol/L)

7. Time >180 mg/dL (>10.0 mmol/L)

8. Time 70-180 mg/dL (3.9-10.0 mmol/L)

9. Time <70 mg/dL (<3.9 mmol/L)

10. Time <54 mg/dL (<3.0 mmol/L)

11. LBGI & HBGI (risk indices)

12. Episodes (hypoglycemia and hyperglycemia) 15 min

13. Area under the curve (AUC)

14. Time Blocks (24-h, day, night)

Use of Ambulatory Glucose Profile (AGP) for CGM report

CV=Coefficient of variation; SD=standard deviation; LBGl=low blood glucose index; HBGI=high blood glucose index.



The list of core CGM metrics has now been streamlinedse in clinical practice based
on the expert opinion of this International Consensus G(b8pOf the 14 core metrics, the

panel selected that 10 metrics that may be most useaflihical practice (able 2).

Table 2. Standardized CGM Metrics for Clinical Care

2019 Core CGM Metrics for Clinical Care (18)

1. Number of Days CGM Worn (recommend 14 days) (41; 42)

2. Percentage of time CGM is active (recommend 70% of data from 14 days) (41; 42).

3. Mean Glucose

4. Glucose Management Indicator (GMI) (43)

5. Glycemic Variability (%CV) Target <36% (44)*

6. Time Above Range (TAR) - % of readings and time >250 mg/dL (>13.9 mmol/L) Level 2
7. Time Above Range (TAR) - % of readings and time 181-250 mg/dL (10.1-13.9 mmol/L) Level 1
8. Time In Range (TIR) - % of readings and time 70-180 mg/dL (3.9-10.0 mmol/L) In Range
9. Time Below Range (TBR) - % of readings and time 54-69 mg/dL (3.0-3.8 mmol/L) Level 1
10. Time Below Range (TBR) - % of readings and time <54 mg/dL (<3.0 mmol/L) Level 2

Use of Ambulatory Glucose Profile (AGP) for CGM report

CV=Coefficient of variation; SD=standard deviation; LBGI=low blood glucose index; HBGI=high blood glucose index.
* Some studies suggest that lower %CV targets (<33%) provide additional protection against hypoglycemia for
those receiving insulin or sulfonylureas: <33% (44-46)

Fundamental to accurate and meaningful interpretatiotGd & ensuring that adequate
glucose data are available for evaluation. As showtunhiess >70% use of CGM over the recent
14 days correlates strongly with 3 montfisnean glucose, time in ranges, and hyperglycemia
metrics (41; 42). In individuals with type 1 diabetesrrelations are weaker for hypoglycemia
and glycemic variability; however, these correlations hatebeen shown to increase with
longer sampling periods (42). Longer CGM data collection periaadgs be required for
individuals with more variable glycemic control (e.g., 4 weeks of datavestigate

hypoglycemia exposuye



Time in Ranges

The development of blood glucose testing in 1965 providedithdils with diabetes the
ability to obtain immediate information about their catrglucose levels and adjust their therapy
accordingly. Over the past decades, national and intenatinedical organization have been
successful in developing, harmonizing, and disseminatingatdized glycemic targets based
on risk for acute and chronic complications. CGM techygwlgreatly expands the ability to
assess glycemic control throughout the day, presentingatit@ta to inform daily treatment
decisions and quantifying time below, within, and above stebished glycemic targets.

Although each of the core metrics established in the 2017 AJrSensus conference
(18) provides important information about various aspectéyoémic statusit is often
impractical to assess and fully utilize many of theseiosein real-world clinical practices. To
streamline data interpretation, the consensus panel iddrtifime in ranges” as a composite
metric of glycemic control that provides more actieanformation than A1C alone. The panel
agreed that establishing target percentages of time in tlmsaiycemic ranges with the ability
to adjust the percentage cutpoints to address the specificafegabcial diabetes populations
(e.g., pregnancy, high-risk) would facilitate safe and dffe¢herapeutic decision-making
within the parameters of the established glycemic goals.

The composite metric includes three key CGM measurempatsentage of reading and
time per day within target glucose range (Tlithe below target glucose range (TBR), and time
above target glucose range (TARable 3). The primary goal for effective and safe glucose
control is to increase the TIR while reducing the TBRe consensus group agreed that
expressing time in the various ranges can be done asfitentage (%) of CGM, average hours
and minutes spent in each range or both, depending omdhmstances.

It was agreed that CGM based glycemic targets must be personal meet the needs of
each individual with diabetel addition, the group reached consensus on glycemic ctapain
target range of 70-180 mg/dL [3.9-10.0 mmol/L] for individuals wythe 1 diabetes and type 2
diabetes and 63-140 mg/dL [3.5-7.8 mmol/L] during pregnancy, alothganget of targets for
the time per day [% of CGM readings or minutegjhirddividuals with type 1 diabetes and type
2 diabetesTable 3)and women during pregnancVable 4) should strive to achieve. It should

be noted that premeal and postprandial targets remadiabetes in pregnancy (ADA Standards

10



of medical care-2019. Diabetes Care 2019: 42 (Suppl 1)) in@dddtithe new TIR targets for

overall glycemia.

Table 3. Recommended cutpoints for assessment of glycemic control: Type 1 / Type 2 and
Older / High-Risk Individuals

Time in Range (TIR)

Time Below Range (TBR)

Time Above Range (TAR)

Diabetes
Group % of readings Target % of readings | Below Target | % of readings | Above Target
time/day Range time /day Level time/ day Level

<4% <70 mg/dL <25% >180 mg/dL
>70% 70-1 L <1 hr <3.9 mmol/L <6 hr >10.0 mmol/L

Type 1% / Type 2 0% ' 0-180 mg/d / /

>16hr, 48 min | 3.9 -10.0 mmol/L <1% <54 mg/dL <5% >250 mg/dL
<15 min <3.0mmol/L |<1hr, 12 min | >13.9 mmol/L

Older/High-Risk >50% 70-180 mg/dL <1% <70 mg/dL <10% >250 mg/dL
Type 1/ Type 2 >12 hr 3.9-10 mmol/L <15 min <3.9mmol/L |<2hr, 24 min | >13.9 mmol/L

Each incremental 5% increase in TIR is associated with clinically significant benefits for
Type 1/ Type 2 (25; 26)

* For age <25 yr., if the A1C goal is 7.5% then set TIR target to approximately 60%. (See “Clinical Applications of Times
in Range” in the text for additional information regarding target goal setting in pediatric management)

Table 4. Consensus guidance on cutpoints for assessment of glycemic control: Pregnancy

Diabetes Time in Range (TIR) Time Below Range (TBR) Time Above Range (TAR)
Group % of readings Target % of readings | Below Target |% of readings | Above Target
time/day Range time /day Level time/ day Level
<4% <63 mg/dLt
Pregnancy >70% 63-140 mg/dL+ <lhr <3.5 mmol/L* <25% >140 mg/dL
Typel$§ >16 hr, 48 min | 3.5-7.8 mmol/L* <1% <54 mg/dL <6 hr >7.8 mmol/L
<15 min <3.0 mmol/L
<63 mg/dLt
Pregnancy § | see Pregnancy | 63-140 mg/dLt | see Pregnancy| <3.5 mmol/LT |see Pregnancy| >140 mg/dL
Type 2 / GDM section 3.5-7.8 mmol/Lt section <54 mg/dL section >7.8 mmol/L
<3.0 mmol/L

Each incremental 5% increase in TIR is associated with clinically significant benefits for
Pregnancy Type 1 (47; 48)

t Glucose levels are physiologically lower during pregnancy

§ Percentages of time in range are based on limited evidence. More research is needed.

11




Although the composite metric includes TIR, TBR and TAghieving the TBR and TIR
goals would result in reduced time spent above range argbthienprove glycemic control.
However, some clinicians may choose to target the reduatithe high glucose values and
minimize hypoglycemia, thereby arriving at more time intdrget range. In both approaches,
the first priority is to reduce TBR to target levels and thedress TIR or TAR targets.

Note that for people with type 1 diabetes, the targetsfmened by the ability to reach
the targets with hybrid closed-loop therapy (11), thé éxample of which is now commercially
available, with several more systems in final stageéssting. Importantly, recent studies have
shown the potential of reaching these targets with CGMdividuals using multiple daily
injections (MDI) (6) In type 2 diabetes, there is generally less glycemic varihitid
hypoglycemia than in type 1 diabetes (48)us, people with type 2 diabetes can often achieve
more time in target range while minimizing hypoglycemia (4)désionstrated by Beck et al.,
individuals with type 2 diabetes increased their TIR b%(from 55.6% to 61.3%) after 24
weeks of CGM use with slight reductions in TBR. (Mpst recently, the beneficial effects of
new medications, such as sodium glucose cotranspo(&&i2T-2) agents have helg
individuals with type 1 diabetes increase TIR (49-38yrgets for type 1 diabetes and type 2
diabetes were close enough to combine them into oné tsegets, outside of pregnancy.

Another way to visualize the CGM-derived targets for the fategories of diabetes is
shown inFigure 1 which displays and compares the targets for time igadhIR - green), time
below range (TBR - 2 categories in light and dark red) mmel above range (TAR -2 categories
in yellow and orange). It becomes clear at a glancehbeat are different expectations for the
various time in ranges relating to safety concerns Hiwhey based on currently available

therapies and medical practice.
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Figure 1. International consensus on time in range: CGM-based targets for different types of

diabetes
Older/High-Risk Pregnancy:
Type 1¢ & Type 2 Type 1 & Type 2 Pregnancy Type 1 Gestational & Type 2
Diabetes Diabetes Diabetes" Diabetes®
Target Target Target
e redinioy e bty “10% oy
180 et “25%" Pyt 23%
180 ik “50%*
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e beoge
70 e e R ]
0% _.u‘.):: o, 70% iy
et Rarge
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{35100 mea
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¢ Forage <25yr, if the A1C goal is 7.5% then set TIR target to approximately 60%. (See Clinical Applications of Time in Ranges section in the text for
additional information regarding target goal setting in pediatric management).
t Percentages of time in ranges are based on limited evidence. More research is needed.
§ Percentages of time in range have not been included because there is very limited evidence in this area. More research is needed. Please see
Pregnancy section in text for more considerations on targets for these groups.
* Includes percentage of values >250 mg/dL (>13.9 mmol/L).
** Includes percentage of values <54 mg/dL (<3.0 mmol/L).

Clinical Validity of Measures

To fundamentally change clinical care with use of the metrics, it would be important
to demonstrate that the metrics relate to and predict @lioitcomes. In this regard, longer-term
studies relating to time spent within specific CGM glycemiges diabetes complications, and
other outcomes are required. However, there is evideonedrnumber of recent studies that
have shown correlations of TIR (70-180 mg/dL [3.9-10.0 mmpiAlifh diabetes complications
(52; 53) as well as a relationship between TIR and A1C (25A&Bpugh there is10 evidence
regarding time in range for older and/or high-risk individuaumerous studies have shown the
elevated risk for hypoglycemia in these populations (54-5@) heve lowered the TIR target
from >70% to >50% and reduced TBR to <1/% at <70 mg/dL (<3.9 mmol/L) ¢e pleater
emphasis on reducing hypoglycemia with less emphagisaimaining target glucose levels

(Table 3.

Type 1 Diabetes and Type 2 Diabetes

Association with Complications

13



Associations between TIR and progression of both dabetinopathy (DR) and
development of microalbuminuria were reported by Beckcafidagues, using the Diabetes
Control and Complications Trial (DCCT) data §&point blood glucose profiles) to validate the
use of TIR as an outcome measure for clinical trials. (bi3gir analysis showed that the hazard
rate for retinopathy progression increased by 64% for #d&hreduction in TIR. The hazard
rate for microalbuminuria development increased by 40% for rEai4ction in TIRA post-hoc
analysis of the same DCCT data set showed a link betwearsglo€ <70 mg/dL (<3.9 mmol/L)
and <54 mg/dL (<3.0 mmol/L) and an increased risk for severeghygemia (60).

Similar associations between DR and TIR were reportad@tent study by Lu and
colleague in which 3,262 individuals with type 2 diabetes weatuated for DR, which was
graded as: non-DR; mild nonproliferative DR (NPDR); moderate NRDRsion-threatening
DR (VTDR) (52). Results showed that individuals with moreaaded DR spent significantly
less time within target (70-180 mg/dL [3.9-10.0 mmol/L) and thatglemce of DR decreased
with increasing TIR.

Relationship Between TIR and A1C

Analyses were conducted utilizing datasets from four randaoniiisds encompassing
545 adults with type 1 diabetes who had central-laboratorguneaents of A1C (25). TIR (70-
180 mg/dL [3.9-10.0 mmol/L]) of 70% and 50% strongly correspondddamtA1C of
approximately 7% (53 mmol/mol) and 8% (64 mmol/mol), respegtivan increase in TIRf
10% (2.4 hours per day) corresponded to a decrease in Ajproikanately 0.5% (5.0
mmol/mol); similar associations were seen in an anabfsl8 RCTs by Vigersky et al. that
included over 2,500 individuals with type 1 diabetes and typal#tks over a wide range of
ages and A1C levels (26)dble 4)

14



Table 4. Estimate of A1C for a given TIR level based on type 1 diabetes and type 2 diabetes
studies

Beck et al. (n=545 type 1 diabetes participants) (25) Vigersky et al. (n=1,137 type 1/type 2 participants) (26)
TIR Al1C 95% Cl for TIR Al1C
70-180 mg/dL % (mmol/mol) | predicted values 70-180 mg/dL % (mmol/mol)
(3.9-10.0 mmol/L) (3.9-10.0 mmol/L)
20% 9.4 (79) (8.0,10.7) 20% 10.6 (92)
30% 8.9 (74) (7.6,10.2) 30% 9.8 (84)
40% 8.4 (68) (7.1,9.7) 40% 9.0 (75)
50% 7.9 (63) (6.6,9.2) 50% 8.3 (67)
60% 7.4 (57) (6.1, 8.8) 60% 7.5 (59)
70% 7.0 (53) (5.6, 8.3) 70% 6.7 (50)
80% 6.5 (48) (5.2,7.8) 80% 5.9 (42)
90% 6.0 (42) (4.7,7.3) 90% 5.1(32)
Every 10% increase in TIR = ~0.5% (5.5 mmol/mol) A1C Every 10% increase in TIR = ~0.8% (8.7 mmol/mol) A1C
reduction reduction

*The difference between findings from the two studies likely stems from differences in number of studies analyzed
and subjects included (RCTs with type 1 vs. RCTs with type 1/type 2 with CGM and SMBG).

Pregnancy

During pregnancy, the ambition is to safely increase TIguakly as possible, while
reducing TAR and glycemic variability. The first longituaitcGM data demonstrated a 13-
percentage point increase in TIR (43% to 56% TIR 70-140 mg/dL7[8.9amol/L) (61). The
TBR < 50 mg/dL reduced from 6% to 4%, although the higher ¥B®R mg/dL was high (13-
15%) using older generation sensors. With improved sensoraay, recent type 1 diabetes
pregnancy studies report a lower threshold of <63 mg/dL (<&blfn) for TBR and >63
mg/dL (>3.5 mmol/L) for TIR (47; 48) Data from Sweden, and the CONCEPTT control group,
report 50% TIR in the first trimester, improving to 60% TIRhe third trimester, reflecting
contemporary antenatal care. Of note, these data catfifrinthe TBR <63 mg/dL (<3.5
mmol/L) recommendation of <4% is safely achievable, espgcfibr the first trimester.
Furthermore, 33% of women achieved the recommendation of TR%63F140 mg/dL (3.5-7.8
mmol/L) in the final (>34) weeks of pregnancy. Preliminaryadatggest that closed-loop may

allow pregnant women to safely achieve 70% TIR, at an e&¢r weeks) gestation (62; 63)
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Law et al analyzed data from two early CGM trials (64;@&gcribing the associations between
CGM measures and risk of large for gestational age (L&#&hts. Taken together, the Swedish
and CONCEPTT data confirm that a 5-7% higher TIR duringsém®nd and third trimesters is
associated with decreased risk of LGA and neonatal oesoncluding macrosomia, shoulder
dystocia, neonatal hypoglycemia and NICU admissions. Mat& are needed to define the
clinical CGM targets for pregnant women with type 2digs, who spend one third less time
hyperglycemic than women with type 1 diabetes, and achiBv®fl90% (61)Because of the
lack of evidence on CGM targets for women with GDM or t¥mBabetes in pregnancy,
percentages of time spent in range, below range, and sdoye have not been included in this
report. Recent data suggest that even more stringent té@gend greater attention to
overnight glucose profiles may be required to normalizeooogs in pregnant women with

gestational diabetes (67).

Older and/or High-Risk Individuals with Diabetes

Older andar high-risk individuals with diabetes are at notably higiek for severe
hypoglycemia due to age, duration of diabetes, duration ofinthdrapy, and greater
prevalence of hypoglycemia unawareness (54-58). The imdes& of severe hypoglycemia is
compounded by cognitive and physical impairments and other codit@m®i(56; 59). High-risk
individuals include those with a higher risk of complicasiocomorbid conditions (e.g.,
cognitive deficits, renal disease, joint disease, pstexsis, fracture, and/or cardiovascular
disease), and often require assisted care, which canicatagreatment regimens (59)
Therefore, when setting glycemic for high-risk and/or iydeeople, it is important to
individualize and be conservative, with a strong focusedncing the percentage of time spent

<70 mg/dL (<3.9 mmol/L) and preventing excessive hyperglycemia.

Standardization of CGM Data Presentation

As noted aboven 2013, a panel of clinicians with expertise in CGM published
recommendations for use of the Ambulatory Glucose Pr@ieP) as a template for data
presentation and visualization. Originally created by Ma&zal. (68), the standardized AGP
report was further developed by the International Diak@&ger and now incorporates all the

core CGM metrics and targets along with a 14-day compglsitese profile as an integral
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component of clinical decision making (24). This recomdagion was later endorsed at the
aforementioned international consensus conference on @&kts (18) and is referenced as an
example in the American Diabetes AssociatidDA) 2019 Standards of Care (16) and in an
update to the American Association of Clinical EndocrinolsgistACE) consensus on use of
CGM (69) The AGP report, in slightly modified formats, has badopted by most of the CGM
device manufacturers in their download software. An exaofiee AGP report, updated to
incorporate targetss presented ifrigure 2. In the AGP report, glucose ranges are defined as
“Very High” (Level 2), “High” (Level 1), “Low” (Level 1) and “Very Low” (Level 2). A

“mmol/L” version is provided in Supplemental Figure 1

Figure 2. Ambulatory Glucose Profile
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There is a general consensus that a useful CGM reporé ighat can be understood by
clinician and people with diabetes. While there may bessiemms (e.g., glucose variability) that
are less familiar for many people with diabetes to utaeds the value dd single-page report
that the medical team can review and file in the elaanmedical record and can be used as a
shared decision-making tool with people with diabetes wasidened to be of value (70-73).
More detailed reports (e.g., adjustable data ranges, dedailgydeports) should remain

available for individualized review by or with people witlalketes.

Clinical Application of Time in Ranges
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Despite its demonstrated vajwdinical utilization of CGM data has remained
suboptimal Although time constraints and reimbursement issues amyotdrstacles, clinician
inexperience in data interpretation dack of standardization software for visualization of CGM
data have also played a role (74). The proposed standardized report enables clinicians to readily
identify important metrics such as the percentage of sppeat within, below and above each
individual’s target range, allowing for greater personalization efepy through shared decision
making.

Using the standardized report the clinician can also asldtesose variability (e.g
%CV metric) (75) or use glucose management indicator (GMilien@3) to discuss the
possible discrepancies noted in glucose exposure dermeddGM data versus thedividual’s
laboratory-measured A1C (40; 78Yith appropriate educational materials, time and expegjenc
clinicians will develop a systematic approach to CGM datdyais and the most effective ways
to discuss the data with patients in person or remotely.

Goal Setting

Numerous studies have demonstrated the clinical benetiarlyfachievement of near-
normal glycemic control in individuals with type 1 diad®tnd type 2 diabetes (77-83)
However, when advising people with diabetes, goal-setting lbeusollaborative and take into
account the individual needs/capabilities of each pasiedtstart with the goals that are most
achievable. An early study by DeWalt and colleagues foundséttimg small, achievable goals
not only enhanceseople’s ability to cope with their diabetes, but that people ditbetes who
set and achieved their goals often initiated additionaaiehal changes on their own (84). One
approach to consider is the S.M.AR.T. Goal (Specific, Miedde, Achievable, Relevant, Time
bound) intervention, which is directly applicable to settangets for times in ranges. First
described by Lawlor and Hornyak in 2012 (85), this approach iocates four key components
of behavioral change relevant to goal setting: 1) the igagecific and defines exactly what is to
be achieved; 2) the goal is measurable and there ibkaeyidence when it has been achieved;
3) the goal is achievable but stretches the patienttisligh that he/she feels challenged; and 4)
the goal should be attainable over a short period of time

Effective goals should utilize CGM data to identify spedifistances for the patient to

take measurable action to prevent hypoglycemia. Althoughsisafthe AGP reports provides
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an opportunity for meaningful discussion, individuals shaeldtounseled to look at patterns
throughout the day to see when low glucose events are mgcand make adjustments in their
therapy to reduce these events.

When applying the CGM metrics in clinical practice, it ri@ymore meaningful and
motivating to communicate to people with dialsdtee importance of working to reduce the time
spent <70 mg/dL (<3.9 mmol/L) to less than one hour per day asdhan 15 minutes per day
<54 mg/dL (<3.0 mmol/L) rather than using <4% and <1% respectaglhe goal. However, as
discussed earlier, targets must be personalized to mestete and capabilities of each person
focusing on small steps and small succedsdsviduals with diabetes should work with their
physician and/or educator to develop a SMART goal to reduce tiroe bahge.

Individualized goals are particularly important for pedéaand young adult populations.
The International Society for Pediatric Diabete®?@B) recommends that targets for
individuals<25 years aim for the lowest achievable A1C without undue exposis®vere
hypoglycemia balances with quality of life and burden of ¢&63. An A1C target of 7.0% (53
mmol/mol) can be used in children, adolescents and adifitgears who have access to
comprehensive care (86However, a higher A1C goal (e.g., <7.5% [<58 mmol/mol] tay
more appropriate in the following situations: inability ttcalate hypoglycemia symptoms;
hypoglycemia; hypoglycemia unawareness; history of severe lygeoga, lack of access to
analog insulins and/or advanced insulin delivery technology, ihatoliregularly check glucose
(86). This would equate to a TIR target of ~60Pal(e 4).

The consensus group recognized that achieving the targéte fearious time in ranges
is aspirational in some situations and many individudlg&guire ongoing support, both
educational and technological, from their healthcaretéaportantly, as demonstrated by Beck
et al. (25), Vigersky et al. (26) and Feig et al. (4¥gn small, incremental improvements yield
significant glycemic benefits. Therefore, when advising indislwvith diabetes (particularly
children, adolescents, high-risk) about their glycemic gdalmportant to take a step-wise
approach, emphasizing that what may appear to be small, mt&irsuccesses (e.g. 5%
increase in TIR) are, in fact, clinically significantimproving their glycemic control (25; 26;
47). However, when counseling women planning pregnancy and pregmaiein, greater

emphasis should be placed on getting to goal as soorssiblpq47; 48).
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Conclusions

Use of CGM continues to expand in clinical practice. Asmponent of diabetes self-
management, daily use of CGM provides the ability to obtamediate feedback on current
glucose levelsdirection and rate of change in glucose levels. Thdgmation allows people
with diabetes to optimize dietary intake and exercis&entgormed therapy decisions regarding
meal-time and correctioof insulin dosing and, importantly, react immediately and amately
to mitigate or prevent acute glycemic events (87-B@jrospective analysis of CGM data,
utilizing standardized data management tools such as the A@ieselinicians and people
with diabetes to work collaboratively in identifying problameas and then set achievable goals
(71-73) We conclude that, in clinical practice, time in ranges (witarget rangebelow range,
above range) are both appropriate and useful as clinigagtssand outcome measurements that
complement A1C for a wide range of people with diabeted,that the target values specified in
this paper should be considered an integral component of @g&analysis and dag-day

treatment decision making.
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